

OCIATION

Australian Orthopaedic Association National Joint Replacement Registry

Hip, Knee & Shoulder Arthroplasty

ANNUAL REPORT 2021

Director: Professor Stephen Graves **E**: <u>segraves@aoanjrr.org.au</u>

Manager: Ms Cindy Turner **E**: <u>cturner@aoanjrr.org.au</u> AOANJRR SAHMRI, North Terrace ADELAIDE SA 5000 **T:** +61 8 8128 4280

The AOANJRR is funded by the Australian Government Department of Health

Suggested citation:

Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2021 Annual Report, Adelaide; AOA, 2021: 1-432. [Accessed from: https://aoanjrr.sahmri.com/annual-reports-2021]

The use and/or reproduction of AOANJRR data provided in this report requires adherence to the AOANJRR Publications and Authorship Policy available at: https://aoanjrr.sahmri.com/aoanjrr-data-publication-and-authorship

www.aoa.org.au

© Australian Orthopaedic Association National Joint

Replacement Registry 2021 ISSN 1445-3657

The 2021 Hip, Knee and Shoulder Arthroplasty Annual Report by the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit <u>https://creativecommons.org/licenses/by-nc-nd/4.0</u>

Australian Orthopaedic Association National Joint Replacement Registry

2021 Annual Report

Hip, Knee & Shoulder Arthroplasty September 1999 – December 2020

Preface

It is my great pleasure to present the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) Annual Report for 2021. This is the 22nd Annual Report produced by the AOANJRR. The Registry has information on joint replacement that goes back many years and during this time there have been significant changes in both the practice and outcomes of joint replacement surgery. To ensure ongoing relevance for surgeons, patients and other stakeholders this year's report has focused on providing information on currently used prostheses.

I hope that the two new chapters are found to be both helpful and informative. They reflect the increasingly important role of the Registry. The first new chapter is a brief overview of the impact of COVID-19 on the delivery of joint replacement surgery in Australia during 2020. The AOANJRR is the only organisation that can provide an accurate national perspective on this. COVID-19 has significantly impacted the delivery of healthcare, particularly elective surgery in the public system. The AOA remains concerned about the increasing burden of unmet needs which has now been exacerbated by the pandemic, not only in 2020 but likely into the foreseeable future. Strategies to address this going forward will need to be implemented and monitored, which the Registry will be able to do.

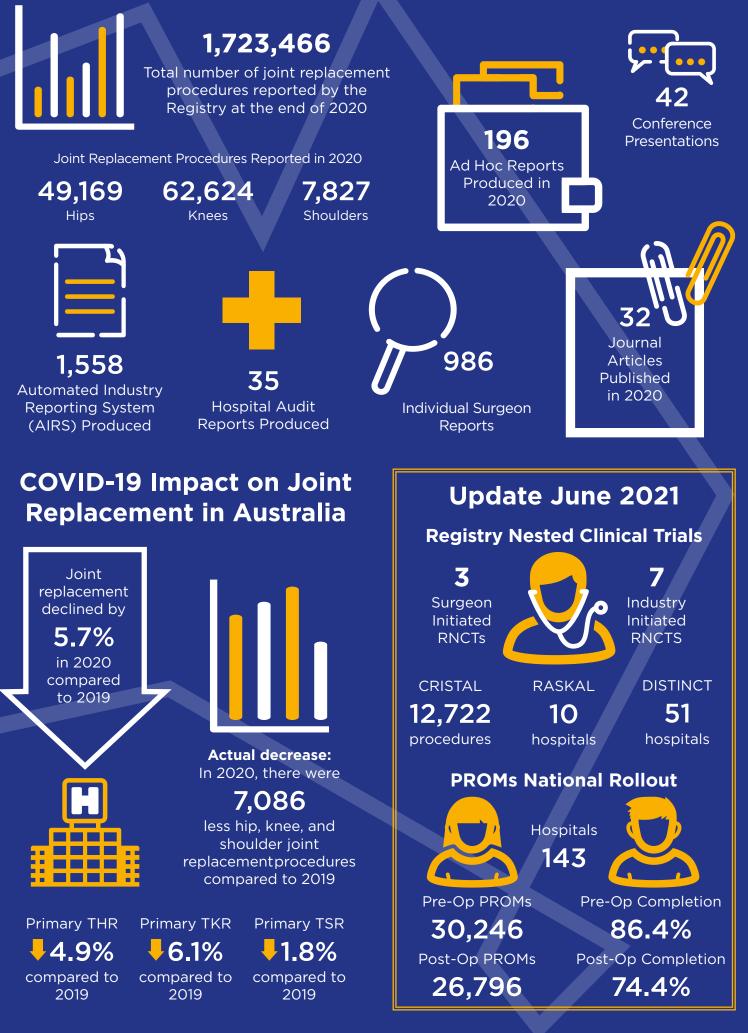
The second new chapter reports, for the first time, the initial findings of patient-reported outcomes. The Registry is currently rolling out an ambitious national program to collect these data directly from all patients having elective joint replacement procedures. The Registry team is ensuring that the rollout is on track with an anticipated completion date in mid-2022. This is being supported by funds from Federal, and all State and Territory Governments. The AOA greatly appreciates their support and ongoing participation in the program.

The Registry continues to work diligently at achieving the goals set by the AOA through the AOANJRR strategic plan. It has made great progress in all areas including the implementation of registry nested trials with 10 active trials currently being managed by the Registry staff. National data linkage projects are also providing additional high-quality new information on the outcomes of joint replacement surgery. The continual enhancement of stakeholder reporting is progressing and will soon incorporate the new area of patient reported outcomes.

The AOA carefully reviews the Annual Report prior to publication through an annual review by an independent group of surgeons with expertise in arthroplasty surgery as well as a separate review by the Board. Both have assessed this report to be of the highest quality.

I would like to take the opportunity to thank all of those who have made this report possible. The committed, quality registry team led by the registry manager, director, and deputy directors. The South Australian Health and Medical Research Institute (SAHMRI) who are responsible for data collection, management, and analysis. The University of South Australia who provides additional statistical expertise and data linkage analysis support. The Federal Government who funds the Registry core activity through the legislated cost recovery program and has maintained and expanded the Registry's coverage under qualified privilege. In addition, the ongoing advice, support and involvement of the Therapeutics Goods Administration and the orthopaedic and healthcare industry.

Lastly, I would like to thank those that provide the high-quality data to the Registry, including patients, surgeons and hospitals. Their involvement is entirely voluntary, but their support and commitment are reflected in the almost 100% participation rates. This has been responsible for greatly enhancing the outcomes of joint replacement, not only in Australia but internationally. Their ongoing commitment is required to ensure the continued success of what I often refer to as the "Jewel in the Crown" of the AOA.


Michael J Gillespie

President of the Australian Orthopaedic Association

AOANJRR Data Snapshot 2020

Executive Summary

This summary provides a brief overview of some of the major findings from the 2021 Annual Report. Although the design and structure of this report are similar to previous reports, there are important differences in the approach to reporting prosthesis outcomes. In the 2019 Annual Report, the Registry detailed the significant changes in prosthesis use, approach to implantation, and the improving outcomes over time. Many of the prostheses used since the Registry first began collecting data in 1999 are no longer available and it is known that the performance of many of these older designs is inferior compared to many of the currently used prostheses (described as 'modern prostheses'). To ensure that the relevance and currency of AOANJRR data are maintained, almost all analyses (unless specifically stated) have been confined to hip, knee and shoulder prostheses that were still being used in 2020. The impact is that overall outcomes reported for the different device classes have improved and a reduced number of individual prostheses/prosthesis combinations are listed in the report. For those who may be interested, historic data are still available in previous Annual Reports on the AOANJRR website.

As with previous Annual Reports, new information is presented on additional topics in what is referred to as the 'new chapters'. The first new chapter provides an overview of the impact of COVID-19 on joint replacement in Australia during 2020. The second new chapter details for the first time, preoperative and 6 months post-operative patient reported outcomes.

In addition to the main report, the Registry continues to publish Supplementary Reports. The Supplementary Reports are listed in the introductory chapter and will be available on the AOANJRR website https://aoanjrr.sahmri.com/annual-reports-2021 from 1 October 2021. They include a Lay Summary of the main report and 14 additional reports on arthroplasty topics, as well as detailed analyses of all prostheses identified as having a higher than anticipated rate of revision.

Impact of COVID-19 in 2020

For the first time since the Registry commenced data collection, the number of joint replacement procedures decreased compared to the previous year. There were 5.7% fewer hip, knee and shoulder joint replacement procedures performed in 2020 compared to 2019. This equates to just over 7,000 fewer procedures. However, this number does not include the anticipated increase in procedures that would have normally occurred. Taking this into account, the likely reduction in during 2020 was over 11,000 procedures.

Most of the reduction nationally occurred during the months of April and May. There was a rebound in the number of procedures after June, but this occurred only in the private system. The number of procedures undertaken in the public system remained below previous years for the remainder of the year. The reduction in joint replacement in Victoria was greater than other states and territories, in part due to a second shutdown occurring later in the year (August-October).

The impact varied depending on the type of joint replacement and the indication. The reduction was greatest for primary elective procedures particularly knee replacement. A proportion of hip and shoulder replacements are undertaken as emergency procedures, most often to treat fractures. There was no reduction in hip and shoulder replacements to treat fractures. The number of revision procedures also declined, particularly during April and May. This reduction was not to the same extent as primary procedures, but the evident rebound in primary procedures after June did not occur for revision procedures.

Patient Reported Outcome Measures

The AOANJRR is providing information on patient reported outcome measures (PROMs) for the first time. These are additional joint replacement outcomes that are reported directly by patients through a bespoke electronic data capture system. The system is currently being implemented nationally in all hospitals undertaking joint replacement surgery. Several different instruments are used to collect data on patients' quality of life and joint-specific pain, function, and recovery. This year, PROMs data are reported for primary total hip and primary total knee replacement undertaken for osteoarthritis (OA), and primary reverse total shoulder replacement undertaken for OA and separately for rotator cuff arthropathy. There were insufficient data at this time to include information on stemmed total shoulder replacement. The data are presented overall for each category of joint replacement as well as for the two shoulder diagnoses assessed, and how this varied by age and gender. Individual surgeon and individual hospital (both de-identified) pre-operative quality of life and joint-specific scores are also reported for primary total hip and primary total knee only. There were insufficient data to replacement.

All groups demonstrated large improvements in quality of life, joint-specific pain and function, 6 months after joint replacement surgery. This varied very little by age and gender. There was also little variation in the pre-operative quality of life and joint-specific scores for individual surgeons. This was true for both hip and knee replacement. Similarly, there was little variation in these scores when individual hospitals (public and private) were compared. Although in general, public patients had lower pre-operative quality of life and joint-specific scores.

Ten, Fifteen and Twenty Year Outcome Data

This section of the report provides 10 and 15 year benchmarks for prostheses used in >350 procedures in primary total hip and primary total knee replacement undertaken for OA. For the first time, this chapter reports 20 year outcomes for a small number of prostheses that are still used.

Restricting the analysis to prostheses that were used in 2020 has had a significant impact on the data provided. Fewer hip and knee prosthesis combinations are now listed, and the benchmark standards have changed. In previous years, the 10 year benchmark standard chosen was the commonly used 5% cumulative percent revision for both hip and knee replacement. This benchmark standard is now considered to be an overestimation. Restricting analyses to modern prostheses reduces the 10 year benchmark standard to 4.4% for hips and 4.8% for knees. The calculated 15 year benchmark standard for hips is 6.5% and for knees is also 6.5%.

The AOANJRR uses the benchmark approach recommended by the International Working Group to identify those devices that have superior and non-inferior performance at 10 years. The same approach has been applied to the 15 year benchmarks. The benchmarks reflect proven long-term success. In this chapter, the benchmark approach is described and the prostheses achieving the benchmarks are highlighted. Of those hip and knee prosthesis combinations with a sufficient number of procedures and follow-up, 22.9% of hip and 16.3% of knee prosthesis combinations achieved a 10 year superiority benchmark. At 15 years, 27.8% of hip and 20.8% of knee prostheses combinations still in use achieve a superiority benchmark.

Hip Replacement Data

In 2020, hip replacement decreased by 4.8% compared to 2019. The revision burden in 2020 is 8.0% which is the lowest burden reported by the Registry. However, the impact of COVID-19 makes the interpretation of this finding uncertain. Only summary data on partial hip replacement are provided in this year's report. A full report on partial hip replacement is available as a supplementary report. The summary information reports that the use of bipolar hip replacement continues to increase at the expense of unipolar modular partial hip replacement. Bipolar prostheses continue to be associated with the lowest rate of revision for the management of femoral neck fractures requiring arthroplasty.

Primary total hip replacement decreased by 4.8% in 2020. Of the two types of primary total hip replacement, conventional total hip has a lower cumulative percent revision than resurfacing hip replacement. The 20 year cumulative percent revision for currently used devices undertaken for osteoarthritis is 9.0%. Age does not have a major impact on revision risk, particularly in males. Updated information on the effect of ASA score and BMI are provided with the cumulative percent revision increasing with increasing ASA score and increasing BMI category. With the analysis restricted to modern prostheses, there is little difference in outcomes based on fixation except for patients aged ≥75 years where the revision rate is lower when either hybrid or cement fixation is used. Dual mobility has the same revision risk as standard acetabular prostheses when used in the management of OA, but has half the risk of being revised for dislocation. When adjusted for age, gender, ASA score, BMI category, femoral fixation, and head size, there is no difference in the rate of revision related to operative approach. However, there are differences in the reasons for revision. The anterior approach has a higher rate of revision for loosening and early fracture compared to the posterior and lateral approach and a lower rate of revision for infection and dislocation. Data on the outcomes of primary total hip replacement used for the management of femoral neck fracture are also provided.

Knee Replacement Data

In 2020, knee replacement decreased by 6.8%. The revision burden decreased to 7.3% which is the lowest reported, but as was the case for hip replacement, the impact of COVID-19 makes the interpretation of this finding uncertain. There has been a small increase in the use of partial knee replacement, but in 2020 it remains a small proportion (6.2%) of all knee replacement procedures. Younger age and female gender are associated with higher rates of revision for unicompartmental knee replacement. Robotic assistance is associated with a reduced revision risk, but its use is restricted to specific prostheses. Mobile bearings increase revision risk. There is no difference between medial and lateral unicompartmental knee replacement.

Primary total knee replacement decreased by 6.1% in 2020. The 20 year cumulative percent revision of knee prostheses still used in 2020 for the management of OA is 8.1%. Despite restricting the analysis to modern prostheses, the impact of patient and prosthesis factors on the outcome of knee replacement surgery is similar to previous reports. There are higher revision rates in younger patients and males, and there is an increased risk of revision for infection associated with increasing ASA score and BMI category. There is a reduced rate of revision when patella resurfacing is used. With respect to bearing surface, the use of XLPE continues to increase. Its impact on the revision rate varies depending on the prosthesis but it is never detrimental and often associated with a reduced revision rate. Medial pivot designs have a higher rate of revision compared to minimally stabilised prostheses. However, there is no difference if the patella is resurfaced. Medial pivot designs have a lower rate of revision compared to posterior stabilised prostheses. There is no difference when minimally stabilised and ultra-congruent inserts are compared.

The effect of fixation varies depending on prosthesis stability. For minimally stabilised prostheses, hybrid fixation has the lowest rate of revision. For posterior stabilised prostheses, cement fixation has the lowest revision rate in the first 1.5 years, but after that time cementless fixation has the lowest rate of revision. For medial pivot prostheses, the use of cementless fixation is associated with a higher rate of revision.

Shoulder Replacement Data

In 2020, shoulder replacement decreased by 1.8%. The revision burden decreased to 7.9% which is the lowest reported. As with hip and knee replacement, due to the impact of COVID-19, the interpretation of this result remains uncertain. Less than 300 partial shoulder replacements were undertaken in 2020. Summary data on these procedures are provided in the Annual Report and a full analysis is provided in the Partial Shoulder Arthroplasty Supplementary Report.

There are three main types of total shoulder replacement: reverse, total stemmed shoulder replacement, and total mid head. The proportional use of both the reverse and mid head increased in 2020. However, reverse shoulder replacement is by far the most common type of total shoulder replacement undertaken in Australia and accounts for 66.9% of all total shoulder procedures reported to the Registry. When the outcomes of these three different types of total shoulder are compared, reverse and mid head have lower rates of revision compared to stemmed total shoulders. The outcome of stemmed total shoulders is influenced in a major way by cement fixation of the glenoid and the use of XLPE, each of which are associated with a lower rate of revision in this class of total shoulder replacement.

The rate of revision for reverse total shoulders is the same when used for either osteoarthritis or rotator cuff arthropathy. Younger age and male gender are associated with an increased risk of revision. It is becoming evident that higher ASA scores increase revision risk, but the evidence for BMI categories impacting revision rates remains unclear. The method of fixation is not a risk factor for revision.

The Registry now reports the impact of glenoid morphology on the different types of shoulder replacement. At this point, it appears to have little effect on the early revision rates. This is true for each of the three most common total shoulder designs.

Prostheses with Higher than Anticipated Rates of Revision

Each year, the AOANJRR identifies prostheses with higher than anticipated rates of revision. This year, 1 total conventional hip, 1 unicompartmental knee, 1 total stemmed shoulder, 1 reverse total shoulder, and 1 total ankle prosthesis combination have been newly identified.

Acknowledgements

The Registry continues to receive support and invaluable assistance from the Commonwealth Government, state and territory health departments and orthopaedic companies.

The Registry acknowledges the cooperation and support provided by those undertaking the surgery and completing the data forms, in particular, all orthopaedic surgeons, registrars and nursing staff.

The Registry acknowledges the ongoing support of all hospitals, both public and private, that undertake arthroplasty surgery nationally. The support provided by each hospital through their nominated coordinator(s) is appreciated. A complete list of participating hospitals and coordinators is presented at the end of the Hip, Knee and Shoulder Arthroplasty Annual Report.

The Registry greatly appreciates the participation of all joint replacement patients throughout Australia. Their contribution allows ongoing improvements in arthroplasty outcomes to be achieved.

DIRECTOR

Professor Stephen Graves

DEPUTY DIRECTORS

Professor Richard de Steiger Mr Peter Lewis Professor Ian Harris

ASSISTANT DEPUTY DIRECTOR

Mr James D Stoney Mr Bill Donnelly

CLINICAL ADVISOR

Professor Richard Page Mr Andrew Beischer

PROMs ADVISOR

llana Ackerman

Cindy Turner (Registry Manager) Sophie Rainbird Rianne Thompson

AOANJRR COMMITTEE

Neil Bergman **Stephen Graves** Richard de Steiger Peter Lewis Ian Harris James Stoney Michael Solomon **Richard Page** Andrew Beischer Matthew Scott-Youna Peter McEwen Paul Smith Fraser Taylor Matt Lyons Michael Pritchard Markus Kuster

Committee Chair Director Deputy Director (Victoria) Deputy Director (South Australia) Deputy Director (New South Wales) Assistant Deputy Director Arthroplasty Society of Australia Shoulder & Elbow Society Foot & Ankle Society Spine Society Knee Society Australian Capital Territory Queensland New South Wales Tasmania Western Australia

AOANJRR

Tamara Hooper Durga Bastiras Libby Poole Tania Alland Dianne Buranyi-Trevarton Grace O'Donohue Marta Jasinska Benedict Okonjo Nea Ryan Katherine Duszynski - UniSA

SOUTH AUSTRALIAN HEALTH & MEDICAL RESEARCH INSTITUTE

Project Managers

Liddy Griffith Emma Heath Kathy Mott **Data Managers** Janey Barrow Robert Armitage Primali De Silva

Statisticians Michelle Lorimer Alana Cuthbert Andrea Peng Dylan Harries Carl Holder Kara Cashman Chelsea Dyer

Data Entry

Georgina Daynes Kirsty Modystach Anh Pham Thu Ha Dang Courtney Cullen Natalie Morrall Andrew Ioakim Jacinta Greer Rachel Calley Anna Fergusson Vivien Do ICT Andrew Brock Nazia Dilnaz Jennifer Coleman Peter Weston

Anu Bakshi

Contents

Contents	
PREFACE	
EXECUTIVE SUMMARY	
ACKNOWLEDGEMENTS	
CONTENTS	
INTRODUCTION	
Background	
Purpose	
Aims	
Benefits	
Governance	
DATA QUALITY	
Data Collection	
Data Validation	
Outcome Assessment Report Review Prior to Publication	
SUMMARY OF THE IMPACT OF COVID-19 ON JOINT REPLACEMENT IN AUSTRALIA IN 2020	
Introduction All Joint Replacement Nationally	
All Joint replacement by State and Territory	
Procedure type and Indication	
PATIENT REPORTED OUTCOME MEASURES	
Introduction	
Outcomes	
Summary	
TEN, FIFTEEN AND TWENTY YEAR PROSTHESIS OUTCOMES	
Ten Year Outcomes	
Fifteen Year Outcomes	
Twenty Year Outcomes	
HIP REPLACEMENT	
Categories of Hip Replacement	
Use of Hip Replacement ASA Score and BMI in Hip Replacement	
PRIMARY PARTIAL HIP REPLACEMENT SUMMARY	
Introduction	
Classes of Partial Hip Replacement Use of Partial Hip Replacement	
Outcome for Fractured Neck of Femur	
PRIMARY TOTAL HIP REPLACEMENT	
Classes of Total Hip Replacement	
Use of Total Hip Replacement	
Primary Total Conventional Hip Replacement	
Primary Total Resurfacing Hip Replacement	1
KNEE REPLACEMENT	1
Categories of Knee Replacement	
Use of Knee Replacement	1
ASA Score and BMI in Knee Replacement	

PRIMARY PARTIAL KNEE REPLACEMENT SUMMARY	191	
Introduction	191	
Classes of Partial Knee Replacement	191	
Use of Partial Knee Replacement	191	
Patella/Trochlea	192	
Unicompartmental	193	
PRIMARY TOTAL KNEE REPLACEMENT	207	
Class of Total Knee Replacement		
SHOULDER REPLACEMENT		
Categories of Shoulder Replacement		
Use of Shoulder Replacement		
ASA Score and BMI		
CT Scan and Glenoid Morphology	275	
PRIMARY PARTIAL SHOULDER REPLACEMENT SUMMARY	276	
Introduction		
Classes of Partial Shoulder replacement		
Use of Partial Shoulder Replacement		
Primary Partial Resurfacing Shoulder Replacement		
Primary Hemi Resurfacing Shoulder Replacement		
Primary Hemi Mid Head Shoulder Replacement		
Primary Hemi Stemmed Shoulder Replacement		
PRIMARY TOTAL SHOULDER REPLACEMENT	201	
Classes of Total Shoulder Replacement		
Use of Total Shoulder Replacement		
Primary Total Resurfacing Shoulder Replacement		
Primary Total Mid Head Shoulder Replacement		
Primary Total Stemmed Shoulder Replacement		
Primary Total Reverse Shoulder Replacement		
PROSTHESES WITH HIGHER THAN ANTICIPATED RATES OF REVISION		
Introduction		
Identified Prostheses		
Primary Partial Hip Replacement		
Primary Total Hip Replacement		
Primary Partial Knee Replacement Primary Total Knee Replacement		
Primary Partial Shoulder Replacement		
Primary Total Shoulder Replacement		
Primary Total Ankle Replacement		
APPENDICES		
APPENDIX 1 - Participating Hospitals & Coordinators		
APPENDIX 2 - Glossary		
APPENDIX 3 – Diagnosis Hierarchy		
APPENDIX 4 – Patient Consent and Confidentiality Guidelines		
APPENDIX 5 - Patient Information Sheet		
APPENDIX 6 – Implementation Timeline		
APPENDIX 7 – ICD – 10-AM Codes	424	
LIST OF TABLES	426	
LIST OF FIGURES	120	

Introduction

The 2021 Hip, Knee, and Shoulder Arthroplasty Annual Report is based on the analysis of 1,723,466 (743,899 hip, 911,953 knee and 67,614 shoulder) primary and revision procedures recorded by the Registry with a procedure date up to and including 31 December 2020. Shoulder arthroplasty has been included in this report since 2017.

In addition, there are 15 Supplementary Reports that complete the AOANJRR Annual Report for 2021:

- 1. Lay Summary Hip, Knee & Shoulder Replacement
- 2. Demographics of Hip, Knee & Shoulder Arthroplasty
- 3. Cement in Hip and Knee Arthroplasty
- 4. Mortality of Hip and Knee Arthroplasty
- 5. Revision of Hip and Knee Arthroplasty
- 6. Metal/Metal Bearing Surface in Total Conventional Hip Arthroplasty
- 7. Prosthesis Types No Longer Used
- 8. Demographics and Outcomes of Elbow and Wrist Arthroplasty
- 9. Demographics and Outcomes of Ankle Arthroplasty
- 10. Demographics of Spinal Disc Arthroplasty
- 11. Analysis of State and Territory Health Data All Arthroplasty 1993/1994 – 2019/2020
- 12. Partial Hip Arthroplasty
- 13. Partial Knee Arthroplasty
- 14. Partial Shoulder Arthroplasty
- 15. Comparative Prosthesis Performance

In addition to the 15 Supplementary Reports, investigations of prostheses with higher than anticipated rates of revision are published online

https://aoanjrr.sahmri.com/annual-reports-2021

All public and private hospitals undertaking joint replacement submit their data to the Registry. Currently, there are 319 participating hospitals. However, this may vary from time to time due to hospital closures, new hospitals, or changes to services within hospitals.

BACKGROUND

Joint replacement is a commonly performed major surgical procedure that has considerable success in alleviating pain and disability. The Australian Orthopaedic Association (AOA) recognised the need to establish a national joint replacement registry in 1993. At that time, the outcome of joint replacement in Australia was unknown. Patient demographics were not available, and the types of prostheses and techniques used in arthroplasty were unknown.

The need to establish a Registry was, in part, based on the documented success of a number of arthroplasty registries in other countries. In particular, the Swedish arthroplasty registries. In Sweden, the ability to identify factors important in achieving successful outcomes has resulted in both improved standards and significant cost savings.

In 1998, the Commonwealth Department of Health (DoH) funded the AOA to establish the Registry. The Department of Health continues to provide funding to maintain the Registry. In June 2009, Federal Parliament passed legislation to enable the government to cost recover this funding from the orthopaedic industry. This legislation was updated in 2015.

The Registry began hip and knee data collection on 1 September 1999. Implementation was undertaken in a staged manner in each of the Australian states and territories, becoming national during 2002. The first year of full national data collection for shoulder procedures was 2008 (Appendix 6).

The AOA contracts the South Australian Health and Medical Research Institute (SAHMRI) to provide data management and independent data analysis services for the Registry. The SAHMRI team contributes crucial data management and analysis expertise through the Registry Working Group and a variety of project working groups.

The AOA contracts the University of South Australia to provide expertise in the ongoing development of analytical techniques for Registry data.

PURPOSE

The purpose of the Registry is to define, improve and maintain the quality of care for individuals receiving joint replacement surgery. This is achieved by collecting a defined minimum data set that enables outcomes to be determined based on patient characteristics, prosthesis type and features, method of prosthesis fixation, and surgical technique. The principal outcome measure is time to first revision surgery. This is an unambiguous measure of the need for further intervention. Combined with a careful analysis of potential confounding factors, this can be used as an accurate measure of the success, or otherwise, of a procedure. The Registry also monitors mortality of patients, which is critical when determining the rate of revision.

AIMS

- 1. Establish demographic data related to joint replacement surgery in Australia.
- 2. Provide accurate information on the use of different types of prostheses.
- 3. Determine regional variation in the practice of joint surgery.
- Identify the demographic and diagnostic characteristics of patients that affect outcomes.
- 5. Analyse the effectiveness of different prostheses and treatment for specific diagnoses.
- 6. Evaluate the effectiveness of the large variety of prostheses currently on the market by analysing their survival rates.
- Educate orthopaedic surgeons on the most effective prostheses and techniques to improve patient outcomes.
- 8. Provide surgeons with an auditing facility.
- 9. Provide information that can instigate tracking of patients if necessary.
- Provide information for the comparison of the practice of joint replacement in Australia and other countries.

BENEFITS

Since its inception, the Registry has enhanced the outcome of joint replacement surgery in Australia.

There are many factors known to influence the outcome of joint replacement surgery. Some of these include age, gender, diagnosis, ASA score and BMI of patients, as well as the type of prosthesis and surgical technique used. Another coexisting influence is the rapid rate of change in medical technology. There is continual development and use of new types of prostheses and surgical techniques, for many of which the outcome remains uncertain.

Information obtained by the analysis of Registry data is used to benefit the community. The Registry releases this information through publicly available annual and supplementary reports, journal publications and ad hoc reports (196 in 2020). These ad hoc reports are specific analyses requested by surgeons, hospitals, academic institutions, government and government agencies as well as orthopaedic companies.

The Registry provides surgeons with access to their individual data and downloadable reports through a secure online portal. Separate online facilities are available for orthopaedic companies to monitor their own prostheses, and for Australian and regulatory bodies in other countries to monitor prostheses used in Australia. The data obtained through the online facilities are updated daily and are over 90% complete within 6 weeks of the procedure date, although there has been some disruption to this timeframe in 2020 due to COVID-19.

The percentage of revision hip procedures has declined from a peak of 12.9% in 2003 to 8.0% in 2020. The percentage of revision knee procedures has declined from a peak of 8.8% in 2004 to 7.3% in 2020. Revision shoulder arthroplasty peaked at 10.9% in 2012 and has declined to 7.9% in 2020.

A major reason for the reduction in revision following hip, knee and shoulder joint replacement is the increased use of the type and class of prostheses shown to have better outcomes, and an associated decline in use of prostheses when less satisfactory outcomes are identified.

There are many examples of AOANJRR data enhancing the outcome of joint replacement surgery in Australia. These include:

- The identification of high revision rates associated with the use of Austin Moore hemiarthroplasty for the treatment of fractured neck of femur (2003). Its use subsequently reduced, particularly in younger patients with this diagnosis.
- The reduction in the use of unicompartmental knee replacement. This

reduction followed the identification of high revision rates (2004) and subsequent reporting that the results of revision of primary unicompartmental knee replacement were similar to revising primary total knee replacements.

- The identification of the high revision rate associated with unispacer use (2004).
- The AOANJRR was the first to identify ASR Resurfacing and ASR XL THR as protheses with higher than anticipated rates of revision (2007/2008). These prostheses were subsequently removed from the market in Australia, a year earlier than the global recall.
- The importance of gender, age and femoral head size to the outcomes of resurfacing prostheses (2007/2008).
- The identification of the entire class of large head metal/metal conventional total hip prostheses (2010).
- The reduction in revision associated with patella resurfacing (2010).
- Detailed analysis of the revision rates relating to bearing surface, including the improved outcomes associated with XLPE for both hips (2011) and knees (2013).
- The benefit of computer assisted surgery for knee replacement.
- The identification of prostheses with higher than anticipated rates of revision. This is almost always associated with a rapid reduction in use. Many of these devices have subsequently been removed from the market.
- The increasing adoption of Registryidentified best practice and use of better performing devices.

GOVERNANCE

The AOANJRR is an initiative of the AOA funded by the Commonwealth Government.

The National Board of the AOA established the AOANJRR Committee to develop and manage AOANJRR policies. The Committee reports to the AOA Board. Members include the Chairperson, AOANJRR Director, three AOANJRR Deputy Directors and two Assistant Deputy Directors. In addition, an orthopaedic surgeon from each state, the ACT, and a representative from each of the AOA specialty arthroplasty groups are included. A complete list of the current AOANJRR Committee is provided in the acknowledgements section of this report. The Director, Deputy Directors and Assistant Deputy Directors are appointed by the AOA Board and are responsible for providing strategic and clinical guidance. Additionally, the Directors are responsible for ensuring the cooperation of hospitals, surgeons and government, maintaining the profile and reputation of the Registry, continued collaboration with other arthroplasty registries internationally, and sustaining the current level of excellence.

The AOANJRR staff include the Registry Manager, Project Managers, Project Officers, Administration Officer, and Publications Manager. The AOANJRR team are responsible for the day-to-day operations, implementing new strategies and activities, provision of data reports, research and publications activity, and coordinating the preparation of the Annual Report.

Data Quality

DATA COLLECTION

Hospitals provide joint replacement data on specific Registry forms which are completed in theatre at the time of surgery. The completed forms are submitted to the Registry each month. Examples of these forms are available on the AOANJRR website.

Hard copy forms are sent to the Registry where a small team of expert data entry staff enter the data directly into the database. Onsite Data Managers are available to resolve queries at the time of data entry to reduce any potential data entry errors. The Registry data entry system uses a predictive text function which greatly reduces the possibility of transcription errors and enables the experienced data entry staff to enter the data rapidly and accurately.

The Registry has also established mechanisms to collect data electronically when it becomes feasible for contributing hospitals to do so. To date, there are no hospitals providing data electronically.

DATA VALIDATION

The Registry validates data collected from both public and private hospitals by comparing it to data provided by state and territory health departments. Validation of Registry data is a sequential multi-level matching process against health department unit record data.

The validation process identifies:

- 1. Registry procedure records for procedures notified to state/territory health departments by hospitals.
- 2. State/territory records for procedures not submitted to the Registry by hospitals.
- 'Exact match' procedures, that is, records held by the Registry and state/territory health departments.
- 4. Procedures that match on some parameters, but which require additional checking with hospitals to enable verification.

Initial validation is performed using hospital and patient identity numbers with subsequent verification undertaken on relevant procedure codes and appropriate admission periods.

Data errors can occur within Government or Registry data at any of these levels; that is, errors in patient identification, coding, or admission period attribution by either the hospital, state/territory health department or the Registry. Data mismatches are managed depending on the nature of the error. For example, a health department record for a primary 'knee' may match a Registry-held record for a 'hip' on all parameters except procedure type. The Registry would regard the Reaistry data to be correct in this instance as the Registry record contains details of the prostheses implanted. Other errors may be resolved by contacting hospitals for clarification. Most commonly, this may include a reassessment of procedure codes or admission period.

In the 2019/20 financial year, the Registry received 3,115 more hip, knee and shoulder procedures than were provided in the various health department data files.

The validation process identifies procedures not submitted to the Registry. As in previous years, the majority of these procedures have an ICD10 code for hemiarthroplasty of the femur. Sufficient information is provided in the state unit record data to enable the Registry to request hospitals to provide forms for unreported procedures.

The Registry is able to obtain over 97.3 % of joint replacement procedures undertaken in Australia. On initial submission of forms from participating hospitals, the Registry's capture rate is 94.3%. Following verification against health department data, checking of unmatched data and subsequent retrieval of unreported procedures, the Registry is able to obtain an almost complete dataset relating to hip, knee and shoulder replacement in Australia.

OUTCOME ASSESSMENT

The Registry describes the time to first revision using the Kaplan-Meier estimates of survivorship. The cumulative percent revision at a certain time, for example, 5 years, is the complement (in probability) of the Kaplan-Meier survivorship function at that time, multiplied by 100. The cumulative percent revision accounts for right censoring due to death and 'closure' of the database at the time of analysis.

Mortality information is obtained by matching all procedures with the National Death Index (NDI) biannually. The NDI is the national mortality database maintained by the Australian Institute of Health and Welfare (AIHW). The AIHW requires ethics approval for access to the NDI data.

Prior to 2013, the Registry reported the revisions per 100 observed component years. This statistic provides a good estimate of the overall rate of revision. However, it does not allow for changes in the rate of revision over time. A more informative estimate of the rate of revision over time is the cumulative percent revision.

Confidence intervals for the cumulative percent revision are unadjusted point-wise Greenwood estimates and should not be used to infer significant differences in revision between groups. Reported hazard ratios should be used when judging statistical significance.

Hazard ratios (HR) from Cox proportional hazards models, adjusting for age and gender where appropriate, are used to compare rates of revision. For each model, the assumption of proportional hazards is checked analytically. If the interaction between the predictor and the log of time is statistically significant in the standard Cox model, then a time varying model is estimated. Time points are iteratively chosen until the assumption of proportionality is met, then the hazard ratios are calculated for each selected time period. If no time period is specified, then the hazard ratio is over the entire follow-up period. All tests are two-tailed at the 5% level of significance. The cumulative percent revision (CPR) is displayed until the number at risk for the group reaches 40, unless the initial number for the group is less than 100, in which case the cumulative percent revision is reported until 10% of the initial number at risk remains. This avoids uninformative, imprecise estimates at the right tail of the distribution where the number at risk is low. Analytical comparisons of revision rates using the proportional hazards model are based on all available data.¹

In the presence of a competing risk for revision, the Kaplan-Meier method is known to overestimate the true probability of revision. Death of the patient before revision presents such a competing risk. In circumstances where the risk of death is high, e.g. in elderly patients with fractured neck of femur, the bias in the Kaplan-Meier estimates may be substantial and the reported cumulative percent revision should be interpreted with caution.

The Registry is currently investigating the introduction of different analytical methods to cope with competing risks. Cumulative incidence is one method of estimating the probability of revision in the presence of competing risks. Cumulative incidence revision diagnosis graphs deal with the competing risks of reasons for revision, highlighting the differences between groups in the pattern of revision over time. They also provide important insight into different mechanisms of failure. A further approach to address the issue of death is to assess the probability of revision in only those patients that are still alive at the time of assessment. This is referred to as conditional probability.

More detailed information on the statistical methods used in this report is presented in Appendix 2.

An important Registry focus has been the continued development of a standardised algorithm to identify prostheses or combination of prostheses not performing to the level of others in the same class. The Registry refers to this group as 'prostheses with a higher than

¹ Pocock SJ, Clayton TC, Altman DG. *Survival plots of time to event outcomes in clinical trials: good practice and pitfalls*, Lancet 2002; 359: 1686-89.

anticipated rate of revision'. A three-stage approach has been developed and is outlined in detail in the relevant chapter of the report.

REPORT REVIEW PRIOR TO PUBLICATION

Prior to publication, there are two workshops held to review, comment, and provide advice on all sections of the report. This year, as was the case in 2020, due to COVID-19 restrictions workshops were held online rather than face-toface. The workshop format was modified to accommodate the online delivery. This enabled a larger than usual number of surgeons to attend.

In addition to AOANJRR and SAHMRI staff, and the AOA Executive, 29 AOA members with expertise in hip and knee arthroplasty attended the workshop. This workshop was online on the weekend of 7 and 8 August 2021. Members of the AOA with expertise in shoulder surgery were invited to attend a separate workshop to review this section of the report. In addition to AOANJRR and SAHMRI staff, and the AOA Executive, 11 AOA members with expertise in shoulder arthroplasty attended the workshop. This workshop was held online on 14 August 2021.

This year 1 ankle prosthesis was reidentified as having a higher than anticipated rate of revision, this was reviewed separately by a subgroup of ankle arthroplasty surgeons and has been included in this report.

Following these workshops, the report was provided to the AOA Board for consideration and final approval prior to publication.

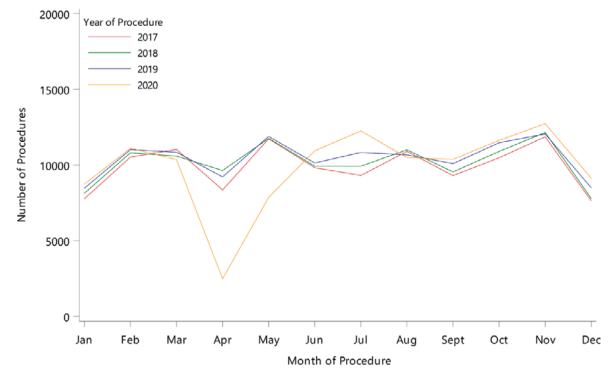
Summary of the Impact of COVID-19 on Joint Replacement in Australia in 2020

INTRODUCTION

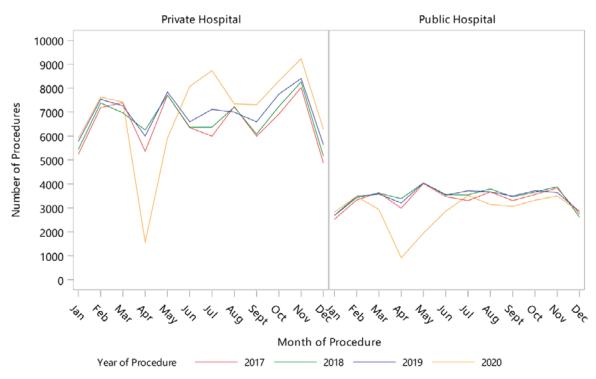
COVID-19 had a significant impact on the delivery of health services in Australia during 2020. The AOANJRR is in a unique position to assess this impact with respect to joint replacement surgery nationally and by state and territory. The number of joint replacement procedures performed in 2020 has been compared to the previous three years (2019, 2018, and 2017).

The information is presented for all procedures nationally, by state and territory, as well as by public and private hospitals. The information is also presented by joint replacement type (hip, knee, and shoulder) for primary procedures (overall, elective and trauma) as well as revision procedures.

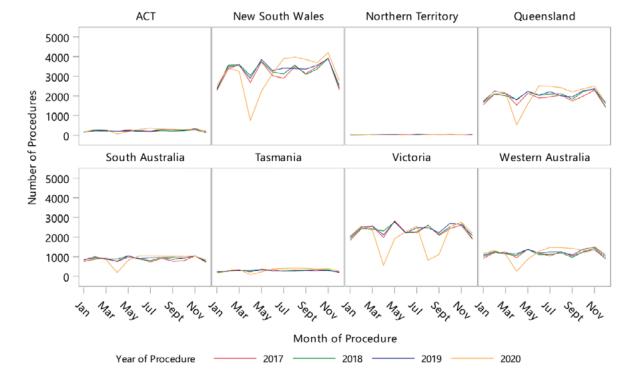
Since the AOANJRR commenced data collection, the number of procedures undertaken each year has increased. If COVID-19 had not occurred, it could have been anticipated that the number of primary procedures undertaken in 2020 would have increased slightly compared to 2019, and revision procedures would have remained steady or declined.


ALL JOINT REPLACEMENT NATIONALLY

Joint replacement declined by 5.7% in 2020 compared to 2019 with most of that reduction occurring in the months of April and May (Figure C1). There was a rebound in the number of procedures undertaken in subsequent months. From July through to the end of December, more procedures were performed in 2020 compared to 2019. However, this increase only occurred in the private hospital system. Not only was there no rebound in the public system, the number of public procedures during the latter 6 months of 2020 remained below that of previous years (Figure C2).


In 2020, there were 7,086 fewer hip, knee, and shoulder joint replacement procedures compared to 2019. Calculating the expected number of procedures in 2020 based on the average increase that occurred in the previous 3 years for each procedure type, the likely shortfall in 2020 is estimated to be 11,407 procedures.

All Joint Replacement Hip, Knee and Shoulder (Primary and Revision)



ALL JOINT REPLACEMENT BY STATE AND TERRITORY

The impact of COVID-19 varied by state and territory. Larger states demonstrated a greater proportional reduction during the April-May period. The only state to have a second period of decline was Victoria (August-October). The rebound in procedure numbers observed nationally was evident in all states and territories except for Victoria (Figure C3).

Figure C3 All Joint Replacement – By State and Territory

PROCEDURE TYPE AND INDICATION

Primary knee replacement had a greater reduction compared to primary hip and primary shoulder replacement (Figure C4, Figure C5 and Figure C6). A possible explanation for this is that primary knee replacement is almost entirely an elective procedure, whereas a proportion of primary hip and primary shoulder surgery is undertaken for fracture management, which is usually an emergency procedure. There was no reduction in hip and shoulder replacement undertaken for the management of fractures during 2020 (Figure C7 and Figure C8).

Revision procedures declined during the April-May period but not to the same extent as occurred with primary procedures. Unlike primary procedures, there was no rebound in the number of revision procedures in later months (Figure C9).

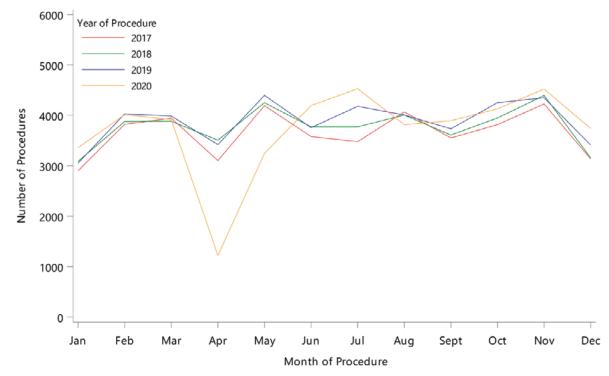
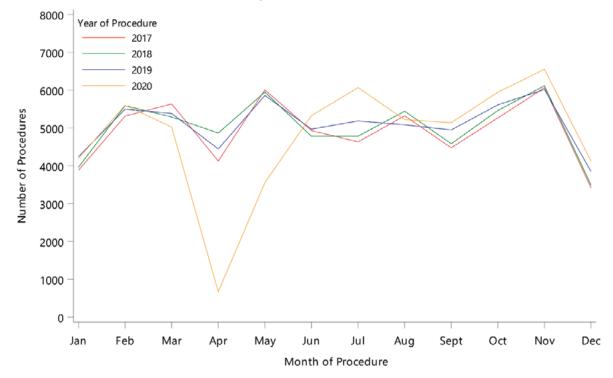
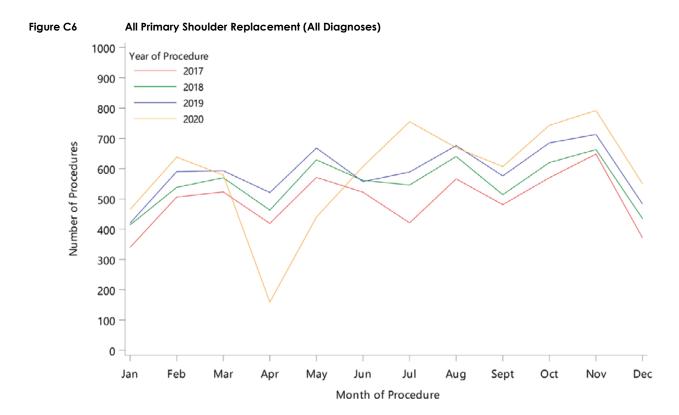




Figure C4 All Primary Hip Replacement (All Diagnoses)

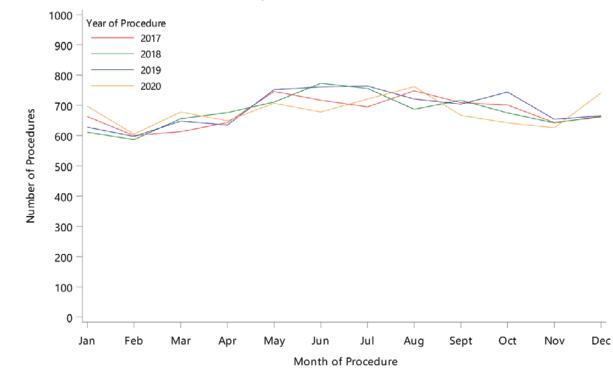
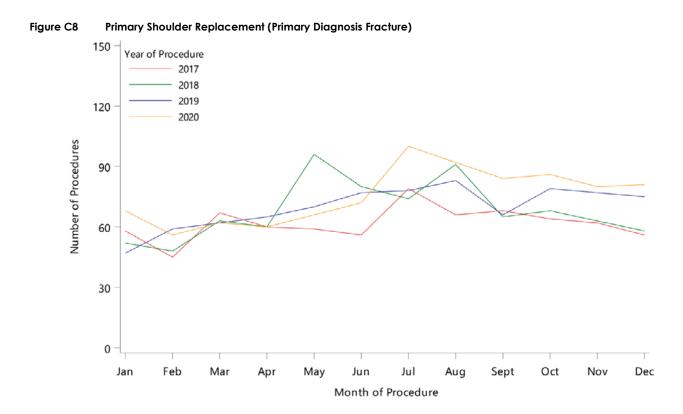



Figure C7 Primary Hip Replacement (Primary Diagnosis Fractured Neck of Femur)

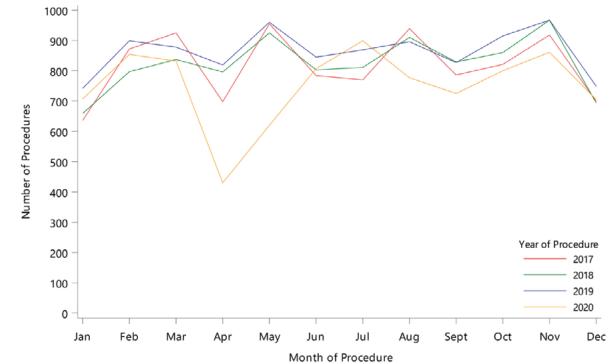


Figure C9 Revision Hip, Knee and Shoulder Replacement

Consumer Workshops

Participants' comments made during the consumer feedback workshops regarding the type of PROMs information they would like to see: "I want to know about function."

"People need to access their own information."

"Age-specific information is quite important."

"I like that I can go in and compare with people of my age and gender and operation."

"I want to know what prosthesis is being put in [....] so I can go research it myself."

"We need to know what is going to be our function and ability after we've had the surgery."

"If I can get information from data, I can be more confident if I go to a clinician [....]"

"It lets you know whether you have got a problem and whether you're way below par, or whether you're doing well [....]"

"Would be helpful if ...the data sets identified some goal settings for recovery, so you know whether you're on track."

> Project Funded by the Victorian Agency for Health Information

Patient Reported Outcome Measures

INTRODUCTION

Patient reported outcome measures (PROMs) are surveys that assess dimensions of health and wellbeing from the perspective of the patient. They are commonly used in research to measure the outcomes (effectiveness) of medical interventions, such as surgery. They are also frequently used in clinical practice to measure quality of care and to guide decisionmaking for patients and surgeons.

BACKGROUND

In 2017, the AOANJRR began a pilot program involving 44 hospitals to determine the feasibility of collecting PROMs within the Registry, for patients undergoing hip, knee or shoulder arthroplasty. A panel of international and local PROM experts was convened to determine which PROM instruments to use and the timing of collection, acknowledging a balance between the depth of information collected and the burden on patients.

Separately, the PROMs Working Group considered options for data collection, including the use of existing systems. Given the time and resource burden of paper and telephone collection, an electronic system was chosen. A bespoke electronic system for the collection and storage of patient-entered data was designed and built by AOANJRR and SAHMRI. The platform known as RAPID (Realtime Automated Platform for Integrated Data capture) is used for the core PROM data collection as well as clinical trials nested within the AOANJRR. Data collection for the AOANJRR PROMs program is now standardised. The RAPID platform has been designed to be flexible and accommodate the demands and requirements of individual research studies, specific sites and surgeons. Additional data fields and time points can be added depending on the requirements of the stakeholder.

A report on the PROMs pilot program is available on the AOANJRR website.² The report includes recommendations on overcoming barriers, infrastructure requirements, and optimising patient and clinician engagement.

PROMs INSTRUMENTS

The list of instruments used for AOANJRR PROMs collection are provided in Table P1 and includes measures of quality of life and joint-specific pain, function and recovery.

In reporting the EQ-5D health-related quality of life in this report, the EQ-5D Utility Index is also used; this is a summary score generated from the 5 domains listed in Table P1.

The Oxford Hip Score, Oxford Knee Score and Oxford Shoulder Score are standardised and validated PROM instruments developed to assess function and pain in patients undergoing total joint replacement surgery.

The HOOS-12 and KOOS-12 instruments are joint-specific measures of health and are included as optional surveys. These surveys consist of 12 questions each, reducing the responder burden associated with the full (42item) HOOS and KOOS surveys. The HOOS and KOOS instruments were completed by 58% of responders. HOOS and KOOS results are not presented in this report.

PATIENT REGISTRATION AND PARTICIPATION

Inclusion of patients in the AOANJRR PROMs program depends on patients being registered in the system (for example, by pre-admission staff) and invited to participate by email or SMS. Patients then respond to the invitation and enter their responses.

Registration rates (the proportion of all cases for which a patient was registered) varied widely between hospitals, from 4% to 85%. The response rate (the proportion of registered patients who provided data) varied from 51% to 100% for pre-operative collection and 34% to 89% for post-operative collection. Separate analyses performed by the Registry have shown that the representativeness of responders from each hospital is not greatly affected by the response rate.

² <u>https://aoanjrr.sahmri.com/proms-pilot-report</u>

Currently, PROMs are collected pre-operatively and at 6 months post-operatively. Telephone follow-up of patients was used in the pilot program for patients who did not provide data electronically. However, this method was discontinued in the national roll-out due to the high cost and lack of any significant improvement in representativeness from its use.

NATIONAL PROM DATA COLLECTION

After the success of the pilot program, the national roll-out of PROM data collection commenced in 2020. Data will progressively become available to all surgeons and hospitals as they become enrolled.

From 2020, PROM data are covered under the same Qualified Privilege legislation as other AOANJRR procedure data, ensuring the highest level of data protection for patients and surgeons.

Surgeons can review their patients' responses via online surgeon portals.

Patients can review their pre-operative and post-operative responses recorded in *RAPID* compared to all other patients undergoing the same procedure.

De-identified reports are provided to hospitals and funders (e.g. state governments and hospital owners). In 2020, the Registry began a consultation project with consumers to guide the production of patient-facing / publicly available reporting of PROM data.

The AOANJRR is also undertaking research on the validity, reliability and responsiveness of the PROMs used. This research includes detailed psychometric analyses and measurement of minimum clinically important differences, factors affecting the representativeness of PROMs data collection and the feasibility of developing crosswalks between similar PROMs.

In this chapter, a summary of the PROM data collected is provided. Information is also provided on pre-operative health, joint symptoms and surgical expectations, and post-operative outcomes of surgery. Reporting is restricted to total hip, total knee and reverse total shoulder replacement. Numbers for other types of arthroplasty (e.g. revision, unicompartmental, hemiarthoplasty and total stemmed shoulder replacement) were insufficient for graphical representation.

Measurement Tool	Scoring	Applied to Hip (H), Knee (K) or Shoulder (S)
EQ-5D (Quality of Life)		
Usual activities	5 categories	H, K, S
Mobility	5 categories	H, K, S
Pain	5 categories	Н, К, S
Depression / Anxiety	5 categories	Н, К, S
Quality of life	5 categories	Н, К, S
EQ-VAS (general health rating)	0-100	H, K, S
Oxford Hip Score	0-48	Н
Oxford Knee Score	0-48	К
Oxford Shoulder Score	0-48	S
HOOS-12		H (optional)
KOOS-12		K (optional)
Joint-specific pain (last 7 days)	0-10	H, K, S
Low back pain (last 7 days)	0-10	Н, К
Neck pain (last 7 days)	0-10	S
Expectation for pain, 6 months post-surgery	0-10	H, K, S
Expectation for mobility, 6 months post-surgery	5 categories	H, K, S
Expectation for health, 6 months post-surgery	0-100	H, K, S
Pre-operative patient-reported coincidental issues walking	Yes/No	Н, К
Pre-operative patient-reported problems with the corresponding side	Yes/No	H, K, S
Satisfaction with the procedure	5 categories	H, K, S
Improvement (in problems with joint compared to before surgery)	5 categories	H, K, S

Table P1 Data Captured in the Minimum Dataset for PROMs Collection

OUTCOMES

EQ-5D QUALITY OF LIFE SCORES

The pre- and post-operative scores for the EQ Visual Analogue Scale (VAS) and EQ-5D Utility Index are provided in Table P2. The EQ VAS (or EQ VAS Health) is a measure of patientreported health 'today' and ranges from 0 ('worst health imaginable') to 100 ('best health imaginable'). The EQ-5D Utility Index is a summary score generated from the 5 domains of the EQ-5D survey, anchored at 1 ('full health') and 0 ('a state as bad as being dead'). Changes in the EQ VAS from pre-operative to post-operative, overall, and by age and gender for each joint (hip, knee, and shoulder) are provided in Figure P1 to Figure P8. The box plots represent the median and interquartile range (the boxes), 1.5 x inter-quartile range (the lines), and outliers (the circles).

Pre- and post-operative changes in each of the 5 domains in the EQ-5D as well as the EQ VAS and the Oxford Scores are provided in Figure P9 to Figure P12.

•	•						
		Preoperative		Postoperative			
Joint	PROMs Outcome	N	Mean±SD	N	Mean±SD	Mean Difference (95% Cl)	
Total Conventional Hip (OA)	EQ VAS Health	7602	66.85±20.09	4606	80.99±16.12	14.13 (13.56, 14.70)	
	EQ-5D Utility	7675	0.35±0.35	4644	0.80±0.24	0.45 (0.44, 0.46)	
Total Knee (OA)	EQ VAS Health	12015	69.52±18.62	7148	79.58±15.94	10.06 (9.63, 10.49)	
	EQ-5D Utility	12148	0.44±0.32	7198	0.76±0.24	0.32 (0.31, 0.32)	
Total Reverse Shoulder (OA)	EQ VAS Health	258	68.45±18.91	146	75.55±19.64	7.10 (3.70, 10.50)	
	EQ-5D Utility	261	0.48±0.29	146	0.73±0.25	0.25 (0.21, 0.29)	
Total Reverse Shoulder (Rotator Cuff)	EQ VAS Health	227	70.62±17.87	117	76.51±17.11	5.90 (2.61, 9.19)	
	EQ-5D Utility	229	0.52±0.28	117	0.68±0.30	0.16 (0.11, 0.21)	

Table P2 PROMs of Primary Joint Replacement by Joint Class

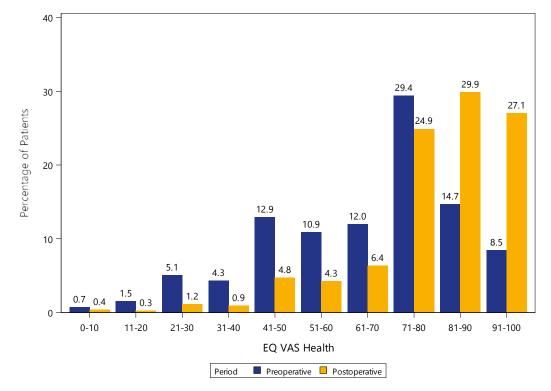



Figure P1 EQ VAS Health Pre- and Post-Operative for Primary Total Conventional Hip Replacement (Primary Diagnosis OA)

Figure P2 EQ VAS Health Pre- and Post-Operative for Primary Total Knee Replacement (Primary Diagnosis OA)

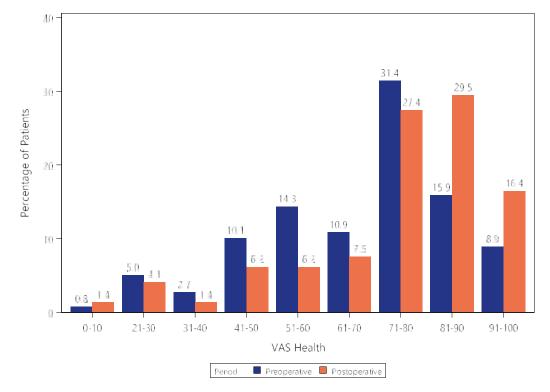
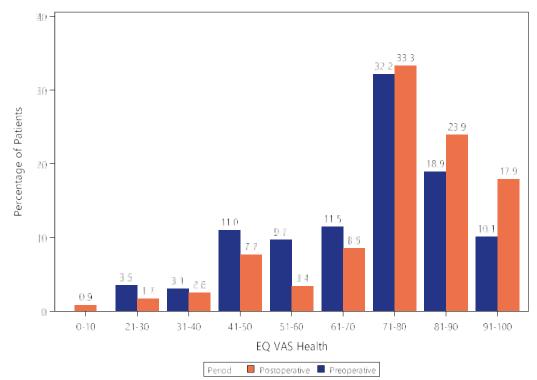



Figure P3 EQ VAS Health Pre- and Post-Operative for Primary Total Reverse Shoulder Replacement (Primary Diagnosis OA)

Figure P4 EQ VAS Health Pre- and Post-Operative for Primary Total Reverse Shoulder Replacement (Primary Diagnosis Rotator Cuff Arthropathy)

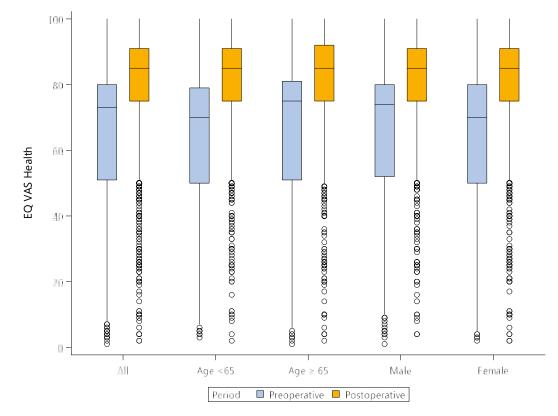
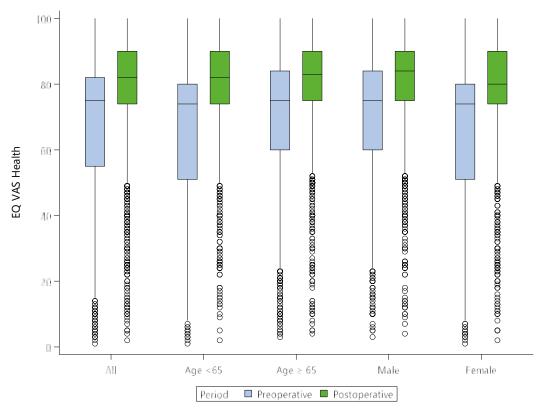
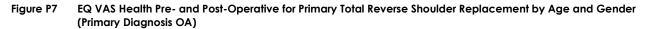




Figure P5 EQ VAS Health Pre- and Post-Operative for Primary Total Conventional Hip Replacement by Age and Gender (Primary Diagnosis OA)

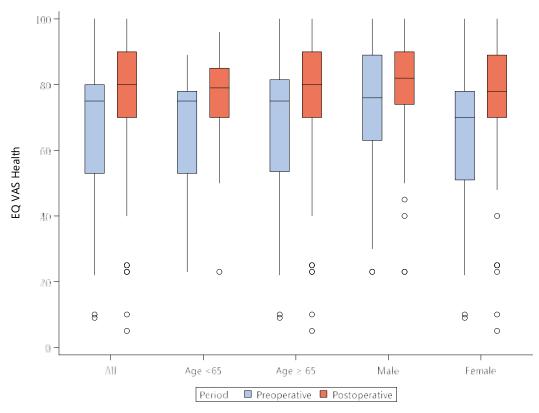


Figure P8 EQ VAS Health Pre- and Post-Operative for Primary Total Reverse Shoulder Replacement by Age and Gender (Primary Diagnosis Rotator Cuff Arthropathy)

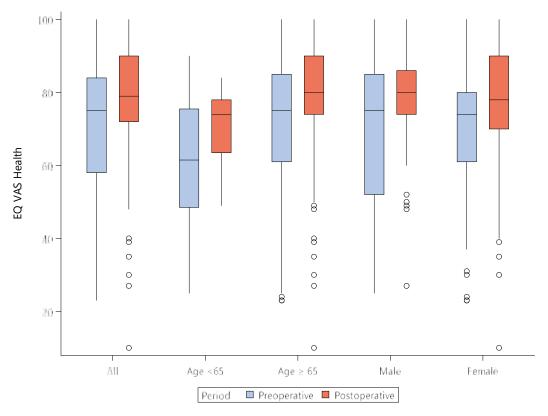


Figure P9 Percent Change in PROMs Scores from Pre-Operative to Post-Operative Primary Total Conventional Hip Replacement (Primary Diagnosis OA)

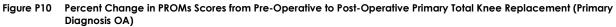
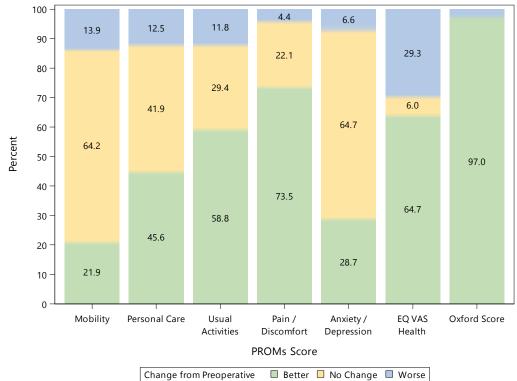
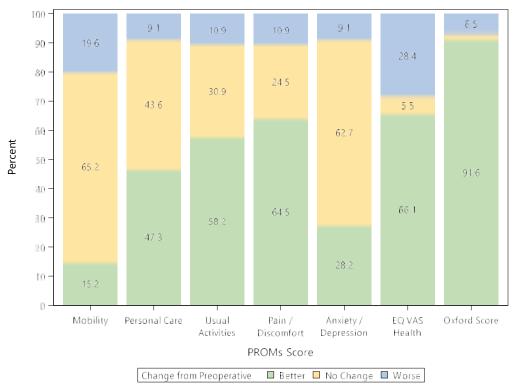
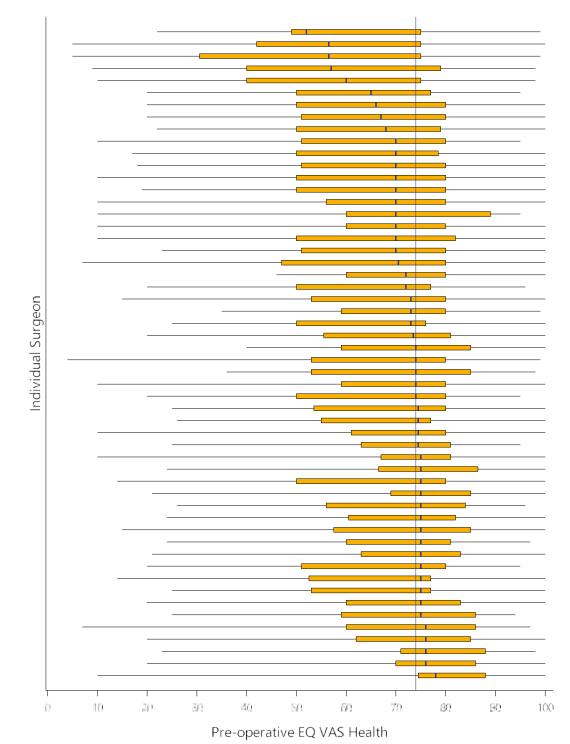
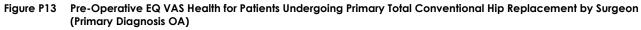
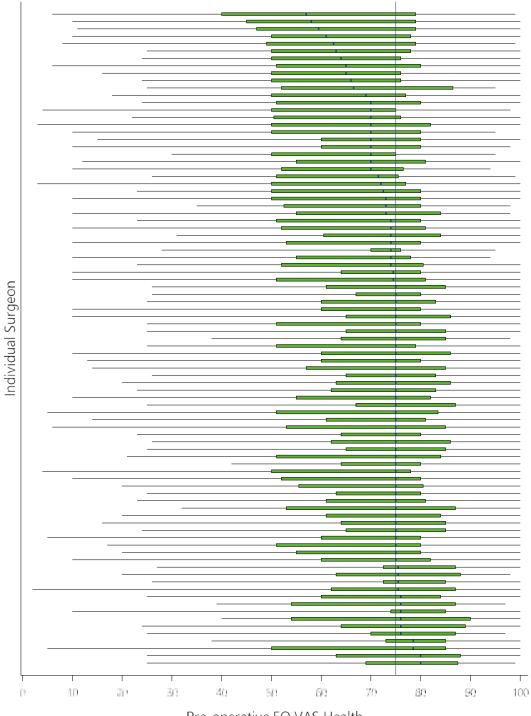


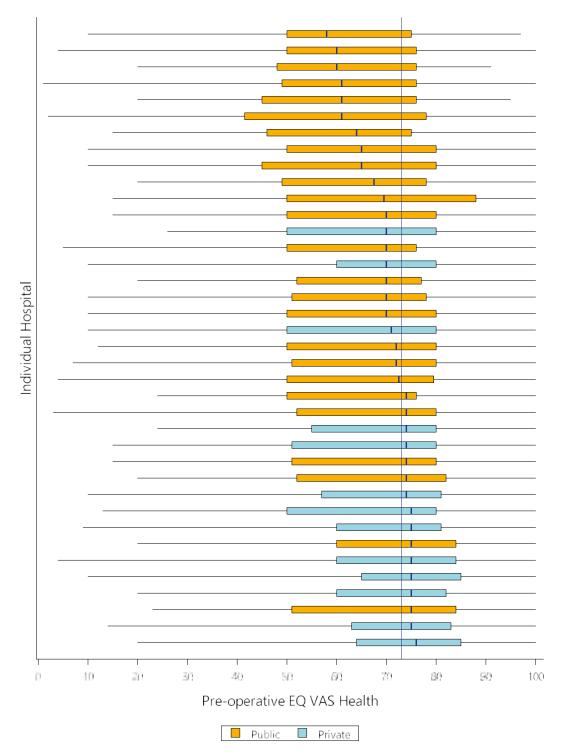
Figure P11 Percent Change in PROMs Scores from Pre-Operative to Post-Operative Primary Total Reverse Shoulder Replacement (Primary Diagnosis OA)

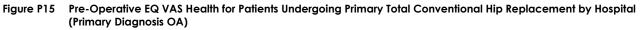





Figure P12 Percent Change in PROMs Scores from Pre-Operative to Post-Operative Primary Total Reverse Shoulder Replacement (Primary Diagnosis Rotator Cuff Arthropathy)


SURGEON AND HOSPITAL EQ VAS VARIATION

Variation between surgeons and between hospitals in the EQ VAS is displayed as 'caterpillar plots' for surgeons and hospitals with at least 50 recorded cases for hip and knee replacement (Figure P13 to Figure P16). There were insufficient data to report variation in shoulder outcomes.





Pre-Operative EQ VAS Health for Patients Undergoing Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA) Figure P14

Pre-operative EQ VAS Health

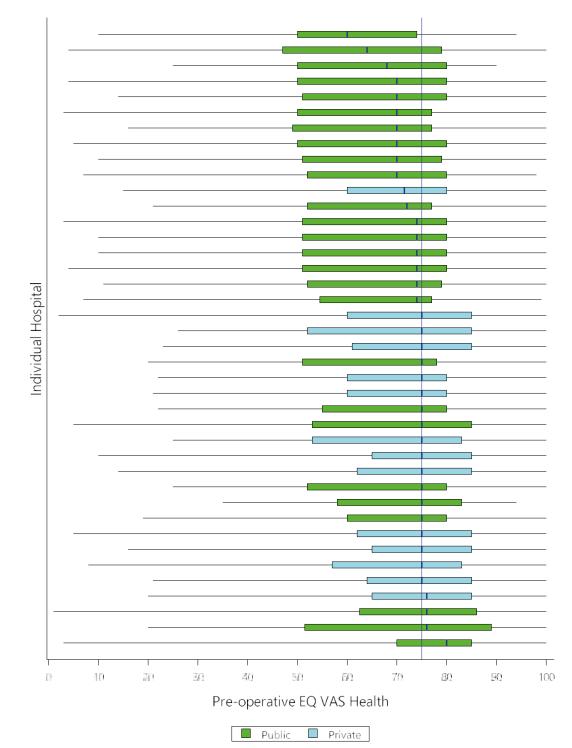


Figure P16 Pre-Operative EQ VAS Health for Patients Undergoing Primary Total Knee Replacement by Hospital (Primary Diagnosis OA)

OXFORD SCORE

The Oxford Score provides joint-specific scores of pain and function. There are separate Oxford Scores for the hip, knee and shoulder. These scores total the responses from 12 questions, each on a 5-level scale of 0 to 4. The worst possible score is 0 and the best possible score is 48.

A comparison of pre- and post-operative Oxford Score is provided in Table P3 and

visually represented in Figure P17 and Figure P18 for hip replacement, Figure P19 and Figure P20 for knee replacement and Figure P21 to Figure P24 for shoulder replacement.

Proportions of patients whose Oxford Score were better, the same, or worse after surgery are also provided (Figure P9 to Figure P12).

Table P3 Pre- and Post-Operative Oxford Score of Primary Joint Replacement by Joint Class

	Pi	reoperative	Pos	stoperative	
Joint	N	Mean±SD	N	Mean±SD	Mean Difference (95% Cl)
Total Conventional Hip (OA)	7585	20.42±8.89	4621	41.52±7.31	21.10 (20.84, 21.36)
Total Knee (OA)	11975	22.05±8.31	7150	37.57±7.95	15.52 (15.31, 15.73)
Total Reverse Shoulder (OA)	257	22.11±8.64	146	39.22±7.25	17.11 (15.73, 18.50)
Total Reverse Shoulder (Rotator Cuff)	224	22.17±8.52	117	36.83±9.34	14.65 (12.88, 16.43)

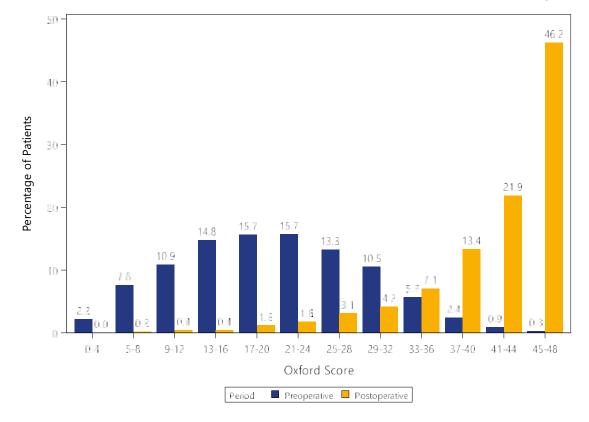
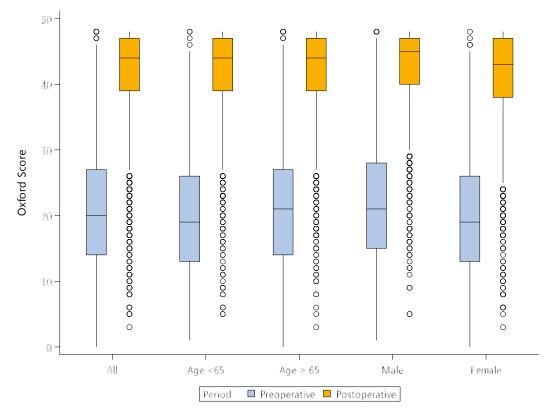



Figure P17 Pre- and Post-Operative Oxford Score for Primary Total Conventional Hip Replacement (Primary Diagnosis OA)

Figure P18 Pre- and Post-Operative Oxford Score for Primary Total Conventional Hip Replacement by Age and Gender (Primary Diagnosis OA)

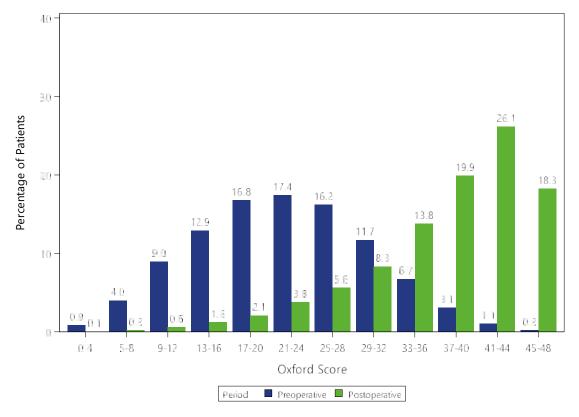
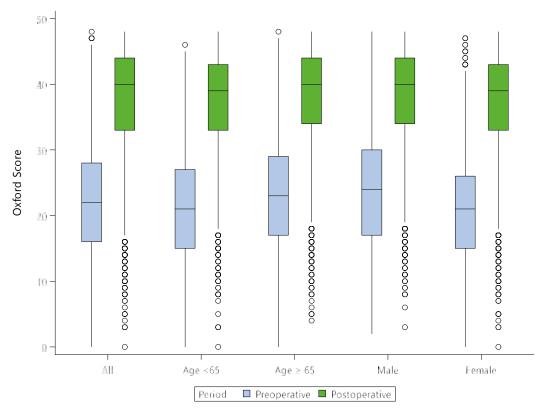



Figure P19 Pre- and Post-Operative Oxford Score for Primary Total Knee Replacement (Primary Diagnosis OA)

Figure P20 Pre- and Post-Operative Oxford Score for Primary Total Knee Replacement by Age and Gender (Primary Diagnosis OA)

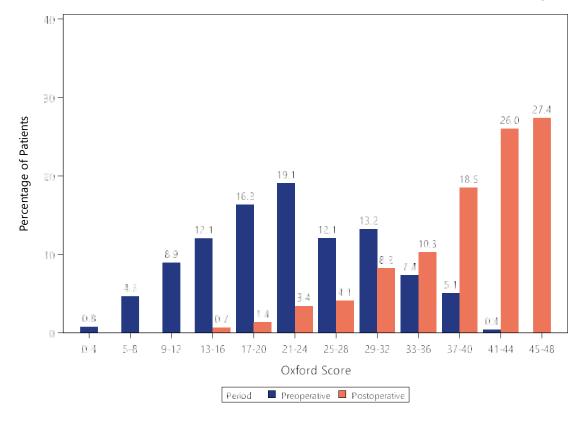
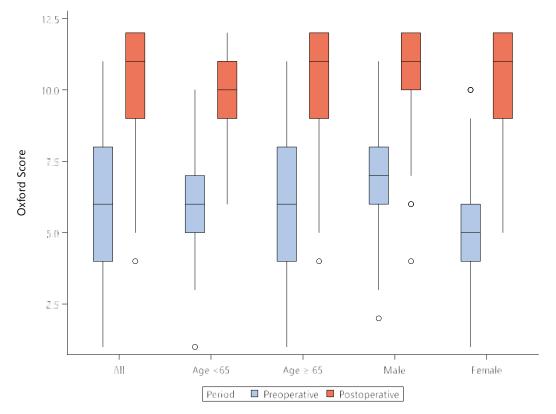
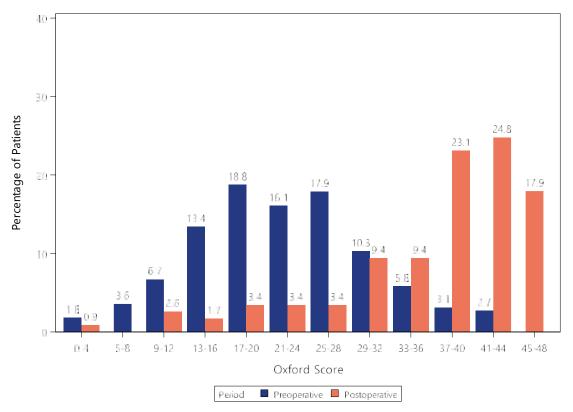
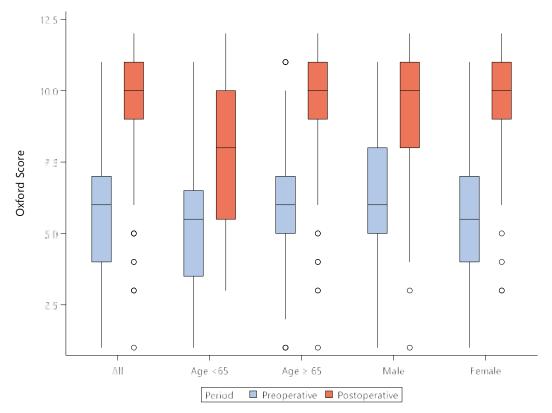
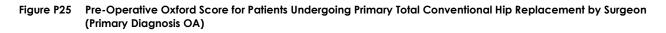
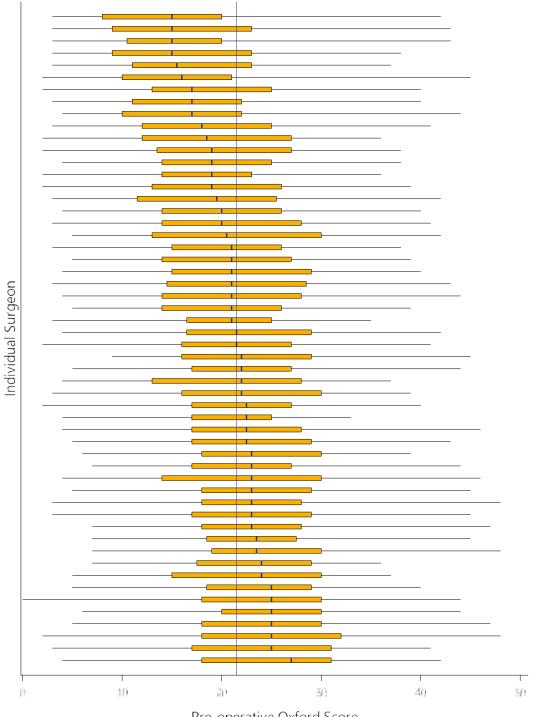



Figure P21 Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement (Primary Diagnosis OA)

Figure P22 Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement by Age and Gender (Primary Diagnosis OA)


Figure P23 Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement (Primary Diagnosis Rotator Cuff Arthropathy)


Figure P24 Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement by Age and Gender (Primary Diagnosis Rotator Cuff Arthropathy)

HOSPITAL AND SURGEON COMPARISONS FOR OXFORD SCORE

Hospital and surgeon comparisons of Oxford Score for hip and knee replacement are shown in Figure P25 to Figure P28.

Pre-operative Oxford Score

Note: The median pre-operative Oxford Score is 21.5

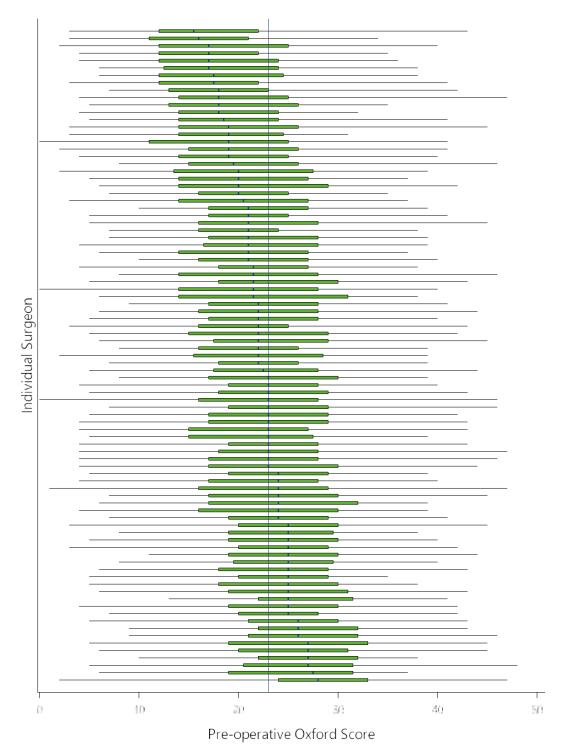
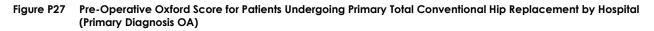
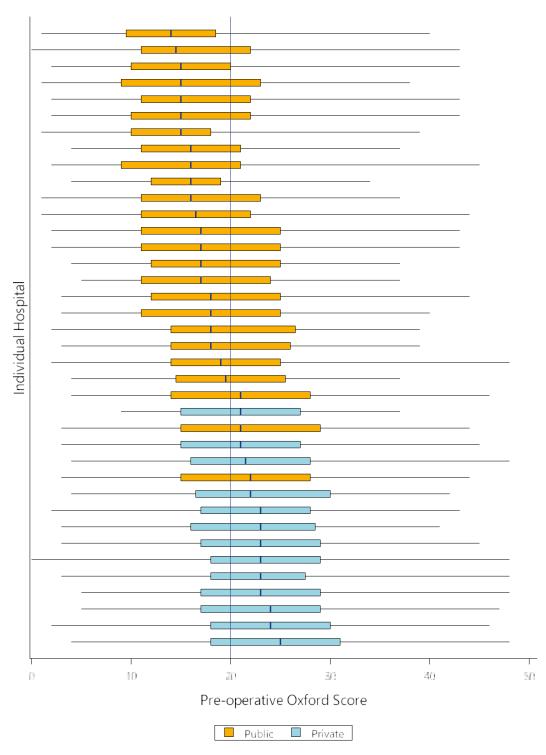
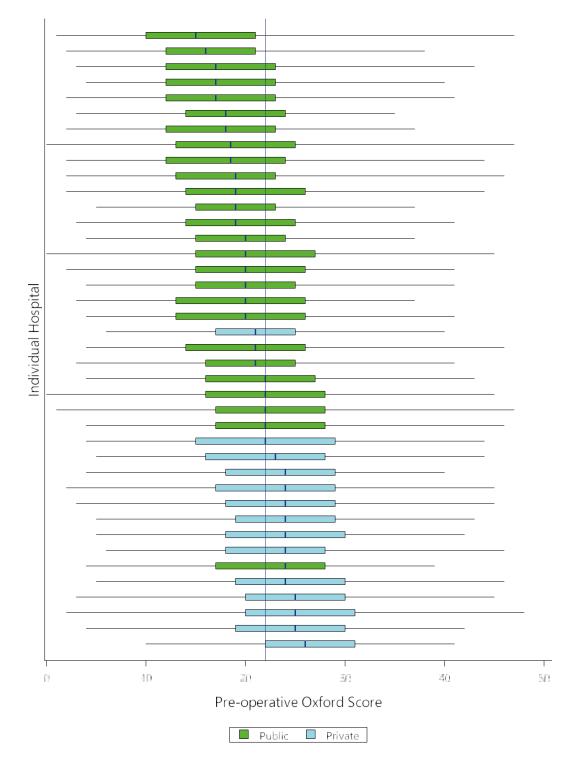
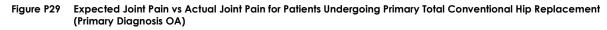
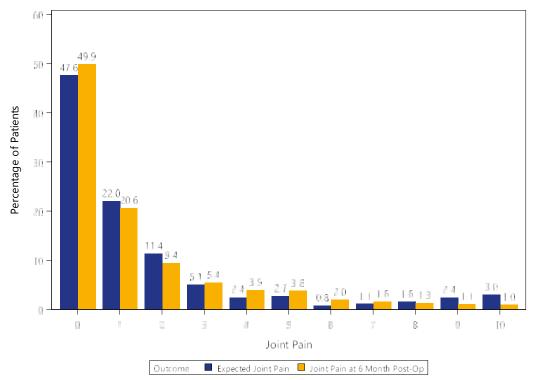




Figure P26 Pre-Operative Oxford Score for Patients Undergoing Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA)

Note: The median pre-operative Oxford Score is 23

Note: The median pre-operative Oxford Score is 20


Figure P28 Pre-Operative Oxford Score for Patients Undergoing Primary Total Knee Replacement by Hospital (Primary Diagnosis OA)

Note: The median pre-operative Oxford Score is 22

JOINT PAIN AND PATIENT EXPECTATIONS

In the figures below, patient-reported expectations of joint pain at 6 months postsurgery are plotted against patient-reported joint pain at 6 months post-surgery. Expected and experienced pain at 6 months are similar for hip replacement (Figure P29). However, for knee and reverse shoulder replacement, the pain reported at 6 months post-surgery is higher than the expected pain (provided preoperatively) (Figure P30 to Figure P32).

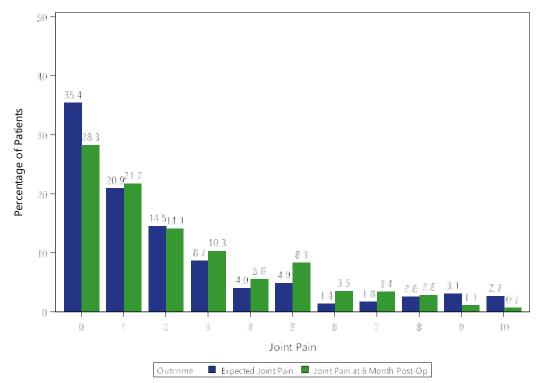
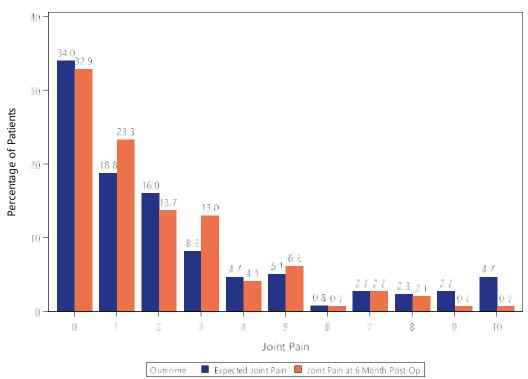
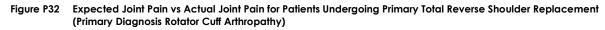
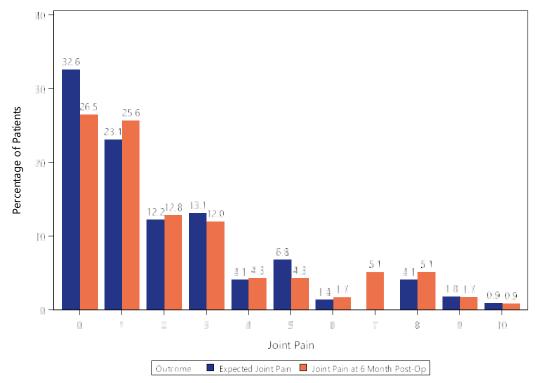
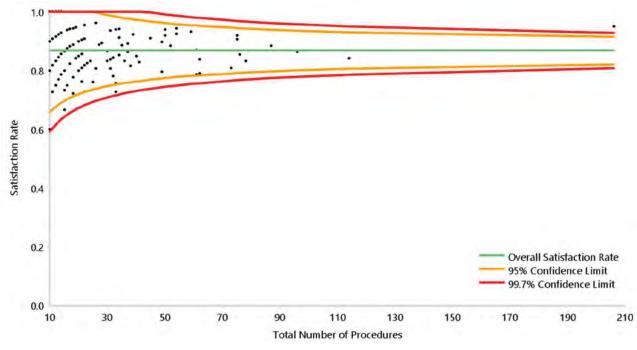





Figure P30 Expected Joint Pain vs Actual Joint Pain for Patients Undergoing Primary Total Knee Replacement (Primary Diagnosis OA)

Figure P31 Expected Joint Pain vs Actual Joint Pain for Patients Undergoing Primary Total Reverse Shoulder Replacement (Primary Diagnosis OA)

SATISFACTION

Patients were asked at 6 months post-surgery to rate their satisfaction with the outcome of the surgery on a 5-level scale: 'very satisfied', 'satisfied', 'neutral', 'dissatisfied', or 'very dissatisfied'. Funnel plots showing surgeon-level and hospital-level variation are provided in Figure P33 to Figure P36. Outcomes for shoulders were not included due to the low number of procedures.


Surgeons who had PROM data for at least 10 primary total conventional hip or knee replacements with a diagnosis of osteoarthritis were included in the funnel plots. For hospitals, data on at least 50 procedures were required for inclusion in the funnel plots.

Each dot on the funnel plot represents an individual surgeon's or hospital's proportion of patients who indicated that they were satisfied ('very satisfied' or 'satisfied') with the outcome of their joint replacement against the number of procedures they have undertaken. The green line represents the average satisfaction rate for all surgeons/hospitals. The orange and red lines represent the 95% and 99.7% confidence limits.

A higher rate means a greater proportion of patients indicated they were satisfied with the outcome of their joint replacement. A satisfaction rating of 1 means that all patients rated their outcome as 'very satisfied' or 'satisfied' at 6 months post-surgery.

For surgeons, the overall rate of satisfaction was higher for total hip replacement (87%) than for total knee replacement (81%). For hospitals, the overall rate of satisfaction was also higher for total hip replacement (87%) than for total knee replacement (81%).

Figure P33 Funnel Plot of Procedure Satisfaction After Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA)

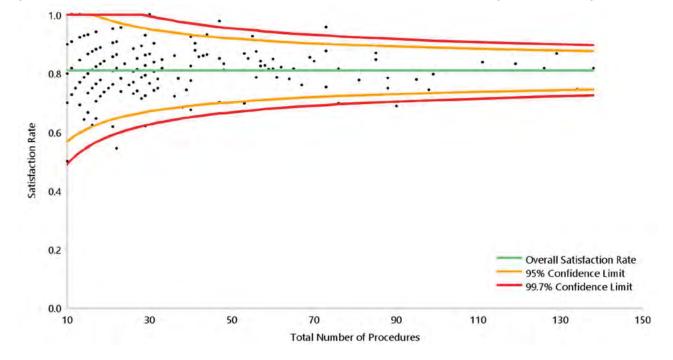
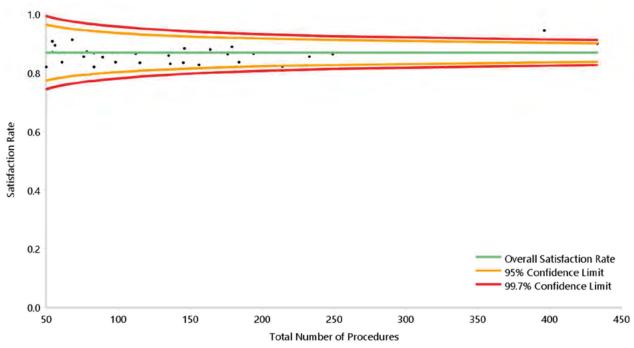



Figure P34 Funnel Plot of Procedure Satisfaction After Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA)

Figure P35 Funnel Plot of Procedure Satisfaction After Primary Total Conventional Hip Replacement by Hospital (Primary Diagnosis OA)

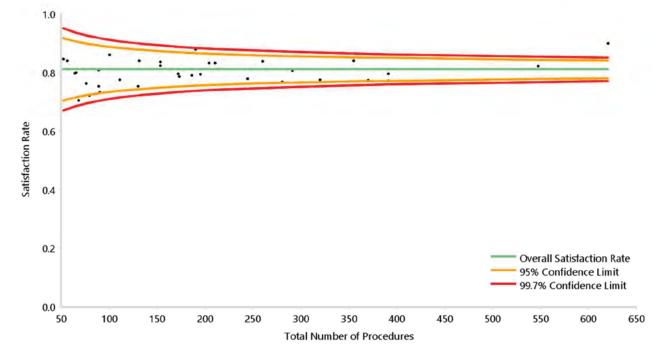
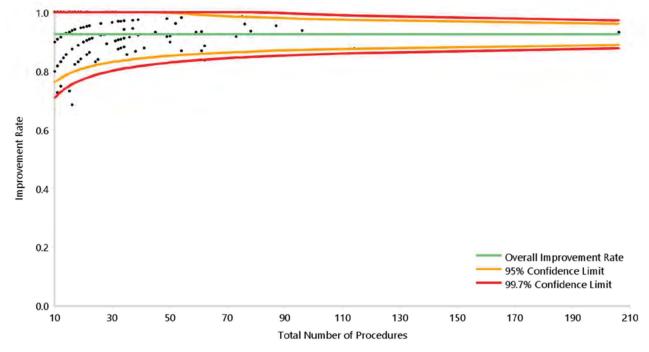


Figure P36 Funnel Plot of Procedure Satisfaction After Primary Total Knee Replacement by Hospital (Primary Diagnosis OA)

IMPROVEMENT

At 6 months post-surgery, patients were asked to rate 'how the problems are now' in the joint that was operated on compared to before their operation on a 5-level scale: 'much better', 'a little better', 'about the same', 'a little worse', and 'much worse'.

Funnel plots showing surgeon-level and hospital-level variation in this outcome are provided in Figure P37 to Figure P40. Outcomes for shoulders were not included in these analyses due to the low number of shoulder procedures.


Surgeons who had PROM data for at least 10 primary total hip or knee replacements with a diagnosis of osteoarthritis were included in the funnel plots. For hospitals, data for at least 50 procedures were required for inclusion in the funnel plots.


Each dot on the funnel plot represents an individual surgeon's or hospital's proportion of

patients who indicated they were 'much better' 6 months after their joint replacement out of the number of procedures undertaken. The green line represents the average improvement rate for all surgeons/hospitals. The orange and red lines represent the 95% and 99.7% confidence limits.

A higher rate means a greater proportion of patients indicated they were much better after their joint replacement. An improvement rate of 1 means that all patients were much better 6 months after their joint replacement.

Similar to the satisfaction rating, the proportion of patients reporting their joint problems to be 'much better' is higher for total hip replacement compared to total knee replacement. For surgeons and for hospitals, these proportions were 93% (hips) and 82% (knees).

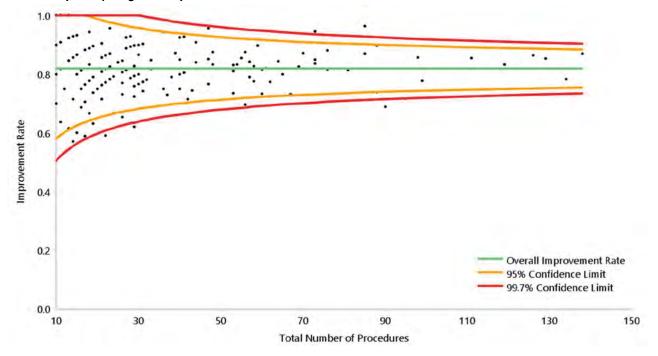
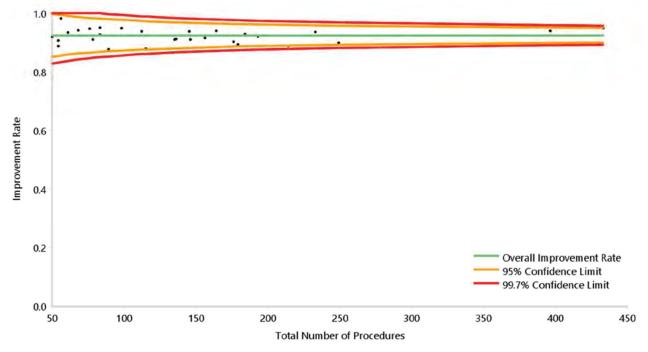



Figure P38 Funnel Plot of Patient-Rated Improvement ("Much Better") After Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA)

Figure P39 Funnel Plot of Patient-Rated Improvement ("Much Better") After Primary Total Conventional Hip Replacement by Hospital (Primary Diagnosis OA)

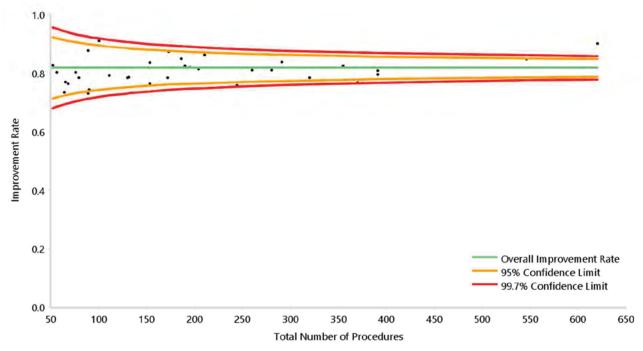


Figure P40 Funnel Plot of Patient-Rated Improvement ("Much Better") After Primary Total Knee Replacement by Hospital (Primary Diagnosis OA)

SUMMARY

The successful pilot program has led to a standardised collection of patientreported outcomes and has facilitated the Registry's ability to conduct nested clinical trials. This is the first time that the Registry has provided patient-reported outcomes in the Annual Report. The Registry is currently rolling out the PROMs program to hospitals nationally and will continue to refine individual patient, surgeon, and site reports, and provide an annual summary.

Consumer Workshops

Participants' comments after participating in the consumer feedback workshops:

"Learning about the Registry."

to have input into the design features."

"It was very pleasing to have the opportunity

"It was well run and a good experience to be part of. I would love to see the final product!"

> "Finding out that there is a trustworthy and competent organisation that is transparent and gives relevant data on joint replacements."

"Meeting other people who had been through a similar operation, and talking openly to professionals who were respectful, and listened to what we all had to say."

"I would like to see data kept on other medical procedures. When I was searching for detailed and updated info on hip prosthesis. I never found your group."

"Staff attendees were unfailingly patient and respectful to consumer reps. Warm and friendly atmosphere. Obvious intention to ensure that all consumers were encouraged to participate."

Project Funded by the Victorian Agency for Health Information

Ten, Fifteen and Twenty Year Prosthesis Outcomes

Ten, Fifteen and Twenty Year Prosthesis Outcomes

TEN YEAR OUTCOMES

The Registry first reported 10 year outcomes in 2011. Since that time, the Registry has reported on an increasing number of hip and knee prostheses that have achieved this length of follow-up. This outcome is widely regarded as an important milestone in assessing the performance of prostheses.

Since the Registry commenced data collection, revision rates have declined and many prostheses are no longer used. In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified. This approach has been applied to both the calculation of the benchmark standard used to identify superior and non-inferior performance and the selection of prosthesis combinations reported. In addition, the Registry has excluded prostheses where a single surgeon performed more than 50% of procedures.

Detailed information on prosthesis combinations is available in the supplementary report 'Comparative Prosthesis Performance' on the AOANJRR website: https://aoanirr.sahmri.com/annual-reports-2021

HIP REPLACEMENT

Individual femoral and acetabular prosthesis combinations are reported. A combination is included if >350 procedures have been reported and the follow-up period is ≥10 years.

There are 35 femoral and acetabular combinations with 10 year outcome data. These prosthesis combinations have been used in 74% of all primary total conventional hip procedures performed for osteoarthritis reported to the Registry.

The 10 year cumulative percent revision for the individual prosthesis combinations ranges from 2.6% to 8.2%. In the past, when assessing superior and non-inferior performance the commonly accepted benchmark standard of 5% cumulative percent revision at 10 years was used. The new benchmark, based on the cumulative percent revision at 10 years calculated with a restriction to modern prostheses, is now 4.4%. Approaches to benchmarking hip and knee prostheses have been reviewed by an International Working Group. An important recommendation was to use confidence intervals rather than the estimated rate of revision previously used. The reason for this is that data quality is inherently reflected in the confidence interval. To identify better performing prosthesis combinations, the following two approaches were recommended:

Superiority approach: the upper confidence interval is less than, or equal to, the benchmark standard. Using the new benchmark of 4.4% at 10 years, then 8 (22.9%) hip prosthesis combinations qualify for the superiority benchmark. These are highlighted in green in Table TY1.

Non-inferiority approach: the permitted upper confidence interval level is 20% above the benchmark standard. For the benchmark standard of 4.4% at 10 years, the accepted upper confidence interval is 5.3% or less. Using this approach, an additional 5 prosthesis combinations can be benchmarked, i.e. 13 (37.1%) prosthesis combinations would receive either a superiority or non-inferiority benchmark. The additional 5 prostheses with a non-inferiority benchmark are highlighted in blue in Table TY1.

It is important to emphasise that there are many reasons why a prosthesis combination may not achieve a benchmark standard. These include being used in small numbers, higher revision rates due to factors other than the prostheses used, as well as less satisfactory performance. However, it is clear that those prosthesis combinations that have achieved a benchmark standard have done so because they have revision rates that are comparatively lower.

Table TY1 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Prosthesis Combinations with 10 Year Data (Primary Diagnosis OA)

					Туре о	of Revision				
Femoral Component	Acetabular Component	N Revised	N Total	THR	Femoral	Acetabular	Other	2 Yrs	5 Yrs	10 Yrs
Alloclassic	Allofit	140	3333	12	78	17	33	1.8 (1.4, 2.3)	2.6 (2.1, 3.2)	4.3 (3.6, 5.1)
Anthology	R3	202	7018	18	61	39	84	2.2 (1.9, 2.6)	2.7 (2.3, 3.1)	3.5 (3.0, 4.1)
C-Stem AMT	PINNACLE	98	4131	8	37	11	42	1.6 (1.2, 2.0)	2.9 (2.3, 3.6)	4.5 (3.4, 6.0)
CLS	Allofit	29	469	2	16	8	3	2.6 (1.5, 4.5)	4.4 (2.8, 6.7)	5.7 (3.9, 8.4)
CORAIL	PINNACLE	1735	50561	147	643	273	672	2.1 (2.0, 2.2)	3.1 (2.9, 3.3)	4.9 (4.7, 5.2)
CPCS	R3	177	5662	19	52	35	71	2.4 (2.0, 2.8)	3.2 (2.7, 3.7)	4.8 (3.9, 5.8)
CPCS	Reflection (Cup)	71	791	24	3	31	13	1.5 (0.8, 2.6)	2.8 (1.8, 4.4)	8.2 (6.0, 11.0)
CPCS	Reflection (Shell)	98	2725	13	42	12	31	0.9 (0.6, 1.4)	1.7 (1.2, 2.2)	3.3 (2.6, 4.2)
CPT	Allofit	41	1423	3	20	4	14	1.2 (0.7, 1.9)	2.6 (1.8, 3.7)	4.7 (3.3, 6.6)
CPT	Continuum	124	2753	8	42	16	58	3.2 (2.6, 3.9)	4.2 (3.4, 5.0)	6.7 (5.2, 8.5)
CPT	Trabecular Metal (Shell)	92	1919	7	40	17	28	2.8 (2.1, 3.6)	4.2 (3.3, 5.3)	6.5 (5.2, 8.2)
CPT	Trilogy	354	7621	35	131	38	150	2.3 (2.0, 2.6)	3.5 (3.1, 4.0)	5.2 (4.7, 5.8)
CPT	ZCA	37	851	13	9	9	6	1.0 (0.5, 1.9)	2.3 (1.4, 3.6)	4.7 (3.3, 6.8)
Exeter V40	Contemporary	277	4577	70	46	129	32	2.1 (1.8, 2.6)	3.2 (2.7, 3.8)	5.6 (4.9, 6.4)
Exeter V40	Exeter Contemporary	154	2916	52	33	47	22	1.9 (1.5, 2.5)	3.0 (2.4, 3.7)	4.7 (3.9, 5.6)
Exeter V40	PINNACLE	46	1858	2	18	11	15	1.6 (1.1, 2.2)	1.9 (1.3, 2.7)	4.2 (2.9, 6.0)
Exeter V40	Trabecular Metal (Shell)	20	430	2	2	2	14	3.1 (1.8, 5.3)	4.3 (2.7, 6.8)	5.5 (3.5, 8.5)
Exeter V40	Trident (Shell)	1804	64640	253	557	244	750	1.5 (1.4, 1.6)	2.3 (2.2, 2.4)	3.6 (3.5, 3.8)
Exeter V40	Trident/Tritanium (Shell)	97	3955	8	19	23	47	1.7 (1.3, 2.2)	2.7 (2.2, 3.3)	3.9 (2.9, 5.4)
Exeter V40	Trilogy	18	517	2	5	2	9	2.3 (1.3, 4.1)	2.5 (1.5, 4.3)	3.7 (2.3, 5.9)
M/L Taper	Allofit	19	689	1	10	3	5	1.8 (1.0, 3.1)	2.1 (1.3, 3.6)	3.8 (2.2, 6.5)
MS 30	Fitmore	15	505	0	1	8	6	1.5 (0.7, 3.0)	2.7 (1.5, 4.9)	4.1 (2.4, 7.0)
Omnifit	Trident (Shell)	155	3787	12	38	27	78	2.2 (1.7, 2.7)	2.9 (2.4, 3.5)	3.8 (3.2, 4.5)
Polarstem	R3	320	12232	18	102	42	158	2.3 (2.0, 2.5)	3.0 (2.7, 3.4)	4.1 (3.3, 5.3)
Quadra-H	Versafitcup CC	282	8609	28	120	55	79	2.3 (2.0, 2.6)	3.3 (2.9, 3.7)	5.9 (4.8, 7.2)
S-Rom	PINNACLE	138	2488	14	77	12	35	2.8 (2.2, 3.6)	4.4 (3.6, 5.3)	5.7 (4.8, 6.7)
SL-Plus	EP-Fit Plus	47	1106	3	20	9	15	2.0 (1.3, 3.0)	3.0 (2.1, 4.2)	4.2 (3.1, 5.7)
SL-Plus	R3	89	1641	3	26	21	39	3.3 (2.5, 4.3)	4.4 (3.5, 5.6)	6.3 (5.1, 7.8)
Secur-Fit	Trident (Shell)	427	9531	24	186	79	138	2.3 (2.0, 2.6)	3.4 (3.1, 3.8)	4.6 (4.2, 5.1)
Secur-Fit Plus	Trident (Shell)	210	5752	15	54	52	89	1.5 (1.3, 1.9)	2.2 (1.9, 2.7)	3.3 (2.8, 3.8)
Spectron EF	R3	76	1992	11	11	16	38	2.4 (1.8, 3.1)	3.7 (2.9, 4.7)	5.1 (4.0, 6.5)
Summit	PINNACLE	149	5124	10	33	21	85	1.8 (1.5, 2.2)	2.3 (1.9, 2.8)	3.4 (2.9, 4.1)
Synergy	R3	139	4762	3	39	30	67	2.0 (1.7, 2.5)	2.6 (2.2, 3.2)	3.4 (2.8, 4.0)
Synergy	Reflection (Shell)	365	7243	32	81	115	137	1.9 (1.7, 2.3)	2.6 (2.2, 3.0)	3.8 (3.4, 4.3)
Tri-Lock	PINNACLE	20	919	0	8	4	8	1.5 (0.9, 2.5)	2.4 (1.5, 3.7)	2.6 (1.7, 4.1)
TOTAL		8065	234530	872	2660	1462	3071			

Note: Only prostheses with over 350 procedures have been listed

Green: prosthesis combination qualifies for a superiority benchmark Blue: prosthesis combination qualifies for non-inferiority benchmark Restricted to modern prostheses

KNEE REPLACEMENT

The Registry has information on individual femoral and tibial prosthesis combinations. A combination is included if >350 procedures have been reported to the Registry and the follow-up is ≥10 years.

The listed prostheses most often represent a family of devices that have a range of different femoral and tibial components, combined with different tibial inserts, listed under one prosthesis name. Prosthesis types are further characterised according to whether they are minimally stabilised (cruciate retaining) or posteriorly stabilised.

As with hips, to ensure that the data reflects contemporary practice, only procedures using modern prostheses are included in the analyses. This approach has been applied to both the calculation of the benchmark standard used to identify superior and noninferior performance and the selection of prosthesis combinations reported. In addition, the Registry has excluded prostheses where a single surgeon performed more than 50% of procedures.

Detailed information on prosthesis combinations is available in the supplementary report 'Comparative Prosthesis Performance' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2021

There are 43 total knee replacement combinations with 10 year outcome data. These prosthesis combinations were used in 84.6% of all primary total knee replacement procedures performed for osteoarthritis reported to the Registry. The 10 year cumulative percent revision ranges from 2.9% to 10.1%. In the past, when assessing superior and non-inferior performance, the benchmark standard used was a cumulative percent revision at 10 years of 5%. The new cumulative percent revision at 10 years, calculated with a restriction to modern prostheses, is now 4.8%.

Applying the recommendations of the International Benchmarking Working Group, and using the new benchmark of 4.8% at 10 years, 7 (16.3%) knee prosthesis combinations qualify for the superiority benchmark. These are highlighted in green in Table TY2.

To assess non-inferiority, the permitted upper confidence interval level is 20% above the new benchmark standard which is 5.8% or less. An additional 13 knee prosthesis combinations can be benchmarked, i.e. 20 (46.5%) prosthesis combinations would receive either a superiority or a non-inferiority benchmark. The additional 13 devices with a non-inferiority benchmark are highlighted in blue (Table TY2).

It is important to emphasise that there are many reasons why a prosthesis combination may not achieve a benchmark standard. These include being used in small numbers, higher revision rates due to factors other than the prostheses used, as well as less satisfactory performance. However, it is clear that those prosthesis combinations that have achieved a benchmark standard have done so because they have revision rates that are comparatively lower.

Table TY2	Cumulative Percent Revision of Primary Total Knee Replacement Prosthesis Combinations with 10 Year Data (Primary
	Diagnosis OA)

Blaghous CAy					Type of R	Revision				
	Tibial	N	N							10.11
Femoral Component	Component	Revised	Total	TKR	Femoral	Tibial	Other	2 Yrs	5 Yrs	10 Yrs
Active Knee	Active Knee	767	9964	218	29	42	478	2.5 (2.2, 2.8)	4.7 (4.3, 5.2)	8.2 (7.6, 8.8)
Advance	Advance	55	957	21	4	8	22	3.8 (2.7, 5.2)	5.7 (4.3, 7.4)	6.8 (5.2, 8.9)
Advance	Advance II	112	1621	45	3	13	51	3.6 (2.8, 4.6)	5.0 (4.0, 6.2)	6.8 (5.6, 8.2)
BalanSys	BalanSys	92	4001	24	5	7	56	1.3 (1.0, 1.8)	2.3 (1.8, 2.9)	4.1 (3.1, 5.3)
Columbus	Columbus	130	4097	33	6	7	84	2.2 (1.7, 2.8)	4.8 (3.9, 5.8)	7.7 (6.3, 9.4)
E.Motion	E.Motion	79	1344	23	10	4	42	4.2 (3.2, 5.4)	6.5 (5.2, 8.1)	7.2 (5.8, 8.9)
GMK Primary	GMK Primary	89	2621	30	2	12	45	2.5 (1.9, 3.2)	3.7 (3.0, 4.6)	4.6 (3.7, 5.9)
Genesis II CR	Genesis II	1092	24634	225	68	56	743	2.0 (1.8, 2.2)	3.5 (3.3, 3.8)	5.0 (4.7, 5.4)
Genesis II Oxinium CR (ctd)	Genesis II	513	9553	100	28	25	360	1.9 (1.6, 2.2)	3.6 (3.2, 4.0)	6.1 (5.5, 6.7)
Genesis II Oxinium PS (ctd)	Genesis II	1230	20507	166	33	162	869	2.8 (2.6, 3.1)	5.1 (4.8, 5.4)	7.5 (7.1, 8.0)
Genesis II PS	Genesis II	856	19724	151	29	54	622	2.1 (1.9, 2.3)	3.7 (3.4, 4.0)	5.2 (4.8, 5.5)
LCS CR	LCS	617	8323	251	24	89	253	2.5 (2.1, 2.8)	4.5 (4.0, 4.9)	6.4 (5.9, 7.0)
LCS CR	MBT	1280	32051	427	61	148	644	1.9 (1.8, 2.1)	3.4 (3.2, 3.6)	4.8 (4.6, 5.1)
LCS CR	MBT Duofix	803	15167	230	34	43	496	2.7 (2.4, 2.9)	4.1 (3.7, 4.4)	5.3 (4.9, 5.7)
Legion CR	Genesis II	183	6457	27	15	7	134	2.2 (1.8, 2.6)	3.6 (3.1, 4.2)	5.2 (4.0, 6.7)
Legion Oxinium CR	Genesis II	174	7231	43	16	3	112	1.7 (1.4, 2.1)	3.5 (3.0, 4.2)	4.6 (3.8, 5.4)
Legion Oxinium PS	Genesis II	574	14898	78	16	49	431	2.2 (2.0, 2.5)	4.1 (3.8, 4.5)	5.9 (5.3, 6.5)
Legion PS	Genesis II	169	5412	43	3	6	117	1.9 (1.5, 2.3)	3.2 (2.7, 3.7)	4.5 (3.7, 5.4)
MRK	MRK	20	675	4	1	0	15	1.8 (1.0, 3.1)	2.5 (1.5, 4.1)	3.7 (2.3, 5.9)
Natural Knee Flex	Natural Knee II	145	5962	44	6	7	88	1.5 (1.2, 1.9)	2.4 (2.0, 2.8)	3.3 (2.8, 4.0)
Nexgen CR	Nexgen	424	11521	136	22	31	235	1.2 (1.1, 1.5)	2.2 (1.9, 2.5)	3.1 (2.8, 3.5)
Nexgen CR	Nexgen TM CR	55	862	19	4	11	21	2.5 (1.6, 3.8)	5.6 (4.2, 7.4)	6.6 (5.1, 8.7)
Nexgen CR Flex	Nexgen	1410	58675	330	100	123	857	1.4 (1.3, 1.5)	2.3 (2.2, 2.4)	3.1 (2.9, 3.3)
Nexgen CR Flex	Nexgen TM CR	317	11937	98	21	28	170	1.3 (1.1, 1.5)	2.3 (2.0, 2.6)	3.2 (2.8, 3.6)
Nexgen LCCK	Nexgen	46	912	6	3	1	36	3.2 (2.2, 4.6)	5.2 (3.8, 7.0)	6.3 (4.6, 8.6)
Nexgen LPS	Nexgen	361	7003	94	20	33	214	2.0 (1.7, 2.3)	3.3 (2.9, 3.8)	4.9 (4.4, 5.5)
Nexgen LPS	Nexgen TM LPS	33	1436	10	3	6	14	1.0 (0.6, 1.6)	2.2 (1.5, 3.2)	2.9 (2.0, 4.2)
Nexgen LPS Flex	Nexgen	1512	37006	413	65	236	798	1.8 (1.6, 1.9)	3.2 (3.0, 3.3)	5.0 (4.8, 5.3)
Nexgen LPS Flex	Nexgen TM LPS	70	1565	34	4	6	26	2.0 (1.4, 2.8)	3.5 (2.7, 4.6)	4.7 (3.7, 6.0)
Nexgen RH	Nexgen	29	533	3	4	3	19	3.1 (1.8, 5.0)	5.3 (3.5, 8.2)	
PFC Sigma CR	MBT	322	6255	63	35	45	179		4.0 (3.5, 4.5)	
PFC Sigma CR	MBT Duofix	155	3314	24	18	6	107	2.5 (2.0, 3.1)	3.6 (3.0, 4.4)	5.0 (4.2, 5.9)
PFC Sigma CR	PFC Sigma	849	24584	214	54	64	517	1.5 (1.4, 1.7)	2.5 (2.3, 2.7)	3.6 (3.3, 3.8)
PFC Sigma PS	MBT	343	6322	115	14	24	190		3.9 (3.4, 4.4)	
PFC Sigma PS	MBT Duofix	173	2212	38	4	6	125		6.0 (5.1, 7.2)	
PFC Sigma PS	PFC Sigma	361	7979	123	12	27	199	1.9 (1.7, 2.3)	3.3 (2.9, 3.7)	4.8 (4.3, 5.3)
RBK	RBK	534	10891	203	14	42	275		3.9 (3.5, 4.3)	
Score	Score	326	5251	124	20	10	172		6.3 (5.6, 7.1)	10.1 (8.9,
Triathlon CR	Triathlon		109011	454						11.5)
Triathlon PS	Triathlon	2506 539	12926	454 97	106 28	115 71	1831 343	1.5 (1.4, 1.6)	2.5 (2.4, 2.6) 3.9 (3.6, 4.3)	3.8 (3.6, 4.0)
Vanguard CR	Regenerex	85	1706	21		10	545 49		4.1 (3.3, 5.2)	
-					5			2.7 (2.0, 3.5)		
Vanguard CR	Vanguard	906	26692	200	32	66 E 9	608		3.0 (2.8, 3.2)	
Vanguard PS	Vanguard	308	5104	75	7	58	168	3.5 (3.0, 4.0)	5.3 (4.7, 6.0)	1.5 (0.6, 8.4)
TOTAL		20644	548896	5077	988	1764	12815			

Note: CR 'cruciate retaining' refers to minimally stabilised

Green: prosthesis combination qualifies for a superiority benchmark Blue: prosthesis combination qualifies for non-inferiority benchmark Restricted to modern prostheses

FIFTEEN YEAR OUTCOMES

This year, the Registry is reporting 15 year outcomes for 18 hip and 24 knee prosthesis combinations. A combination is included if >350 procedures have been reported to the Registry and the follow-up period is \geq 15 years and the prosthesis is still available and still used.

Detailed information on those prostheses that are no longer used is available in the supplementary report 'Comparative Prosthesis Performance' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2021

HIP REPLACEMENT

The listed prosthesis combinations were used in 54.7% of all primary total conventional hip replacement procedures performed for osteoarthritis.

The 15 year cumulative percent revision ranges from 4.1% to 19.1%. The benchmark used to assess superiority and non-inferiority performance at 15 years was calculated with a restriction to modern prostheses. The 15 year benchmark is 6.5%. There are 5 (27.8%) hip prosthesis combinations that qualify for a superiority benchmark (highlighted in green). An additional 4 prosthesis combinations qualify for a non-inferiority benchmark, i.e. 9 (50.0%) qualify for either a superiority or non-inferiority benchmark. Those prosthesis combinations that qualify for a non-inferiority benchmark are highlighted in blue (Table TY3).

KNEE REPLACEMENT

The listed prosthesis combinations were used in 68.3% of all primary total knee replacement procedures performed for osteoarthritis.

The 15 year cumulative percent revision ranges from 4.0% to 11.9%. The benchmark used to assess superiority and non-inferiority at 15 years is 6.5%. There are 5 (20.8%) knee prosthesis combinations that qualify for a superiority benchmark (highlighted in green) (Table TY4). An additional 8 prosthesis combinations qualify for a non-inferiority benchmark, i.e. 13 (54.2%) prosthesis combinations qualify for either a superiority or non-inferiority benchmark. Those prostheses that qualify for a non-inferiority benchmark are highlighted in blue (Table TY4).

					Туре о	of Revision				
Femoral Component	Acetabular Component	N Revised	N Total	THR	Femoral	Acetabular	Other	5 Yrs	10 Yrs	15 Yrs
Alloclassic	Allofit	140	3333	12	78	17	33	2.6 (2.1, 3.2)	4.3 (3.6, 5.1)	6.4 (5.2, 7.7)
CLS	Allofit	29	469	2	16	8	3	4.4 (2.8, 6.7)	5.7 (3.9, 8.4)	8.1 (5.4, 11.9)
CORAIL	PINNACLE	1735	50561	147	643	273	672	3.1 (2.9, 3.3)	4.9 (4.7, 5.2)	8.0 (7.0, 9.3)
CPCS	Reflection (Cup)	71	791	24	3	31	13	2.8 (1.8, 4.4)	8.2 (6.0, 11.0)	19.1 (15.0, 24.3)
CPCS	Reflection (Shell)	98	2725	13	42	12	31	1.7 (1.2, 2.2)	3.3 (2.6, 4.2)	6.6 (5.1, 8.4)
СРТ	Trilogy	354	7621	35	131	38	150	3.5 (3.1, 4.0)	5.2 (4.7, 5.8)	6.7 (5.9, 7.6)
CPT	ZCA	37	851	13	9	9	6	2.3 (1.4, 3.6)	4.7 (3.3, 6.8)	6.5 (4.5, 9.5)
Exeter V40	Contemporary	277	4577	70	46	129	32	3.2 (2.7, 3.8)	5.6 (4.9, 6.4)	9.1 (7.9, 10.4)
Exeter V40	Exeter Contemporary	154	2916	52	33	47	22	3.0 (2.4, 3.7)	4.7 (3.9, 5.6)	8.0 (6.7, 9.7)
Exeter V40	Trident (Shell)	1804	64640	253	557	244	750	2.3 (2.2, 2.4)	3.6 (3.5, 3.8)	5.4 (5.0, 5.7)
Exeter V40	Trilogy	18	517	2	5	2	9	2.5 (1.5, 4.3)	3.7 (2.3, 5.9)	4.1 (2.6, 6.6)
MS 30	Fitmore	15	505	0	1	8	6	2.7 (1.5, 4.9)	4.1 (2.4, 7.0)	5.3 (2.9, 9.7)
Omnifit	Trident (Shell)	155	3787	12	38	27	78	2.9 (2.4, 3.5)	3.8 (3.2, 4.5)	5.1 (4.3, 6.1)
S-Rom	PINNACLE	138	2488	14	77	12	35	4.4 (3.6, 5.3)	5.7 (4.8, 6.7)	7.3 (6.0, 8.8)
Secur-Fit	Trident (Shell)	427	9531	24	186	79	138	3.4 (3.1, 3.8)	4.6 (4.2, 5.1)	6.0 (5.4, 6.7)
Secur-Fit Plus	Trident (Shell)	210	5752	15	54	52	89	2.2 (1.9, 2.7)	3.3 (2.8, 3.8)	4.5 (3.9, 5.2)
Summit	PINNACLE	149	5124	10	33	21	85	2.3 (1.9, 2.8)	3.4 (2.9, 4.1)	4.7 (3.8, 5.9)
Synergy	Reflection (Shell)	365	7243	32	81	115	137	2.6 (2.2, 3.0)	3.8 (3.4, 4.3)	5.7 (5.1, 6.4)
TOTAL		6176	173431	730	2033	1124	2289			

 Table TY3
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Prosthesis Combinations with 15 Year

 Data (Primary Diagnosis OA)

Note: Green: prosthesis combination qualifies for a superiority benchmark Blue: prosthesis combination qualifies for non-inferiority benchmark Restricted to modern prostheses

		Type of Revision								
Femoral Component	Tibial Component	N Revised	N Total	TKR	Femoral	Tibial	Other	5 Yrs	10 Yrs	15 Yrs
Active Knee	Active Knee	767	9964	218	29	42	478	4.7 (4.3, 5.2)	8.2 (7.6, 8.8)	11.9 (11.0, 12.9)
Advance	Advance II	112	1621	45	3	13	51	5.0 (4.0, 6.2)	6.8 (5.6, 8.2)	7.6 (6.3, 9.3)
BalanSys	BalanSys	92	4001	24	5	7	56	2.3 (1.8, 2.9)	4.1 (3.1, 5.3)	6.1 (3.9, 9.4)
Genesis II CR	Genesis II	1092	24634	225	68	56	743	3.5 (3.3, 3.8)	5.0 (4.7, 5.4)	6.2 (5.8, 6.7)
Genesis II Oxinium CR (ctd)		513	9553	100	28	25	360	3.6 (3.2, 4.0)	6.1 (5.5, 6.7)	8.7 (7.8, 9.6)
Genesis II Oxinium PS (ctd)		1230	20507	166	33	162	869	5.1 (4.8, 5.4)	7.5 (7.1, 8.0)	10.2 (9.4, 11.1)
Genesis II PS	Genesis II	856	19724	151	29	54	622	3.7 (3.4, 4.0)	5.2 (4.8, 5.5)	6.6 (6.0, 7.2)
LCS CR	LCS	617	8323	251	24	89	253	4.5 (4.0, 4.9)	6.4 (5.9, 7.0)	8.1 (7.5, 8.7)
LCS CR	MBT	1280	32051	427	61	148	644	3.4 (3.2, 3.6)	4.8 (4.6, 5.1)	6.0 (5.6, 6.4)
LCS CR	MBT Duofix	803	15167	230	34	43	496	4.1 (3.7, 4.4)	5.3 (4.9, 5.7)	7.3 (6.7, 7.9)
Nexgen CR	Nexgen	424	11521	136	22	31	235	2.2 (1.9, 2.5)	3.1 (2.8, 3.5)	4.5 (4.1, 5.0)
Nexgen CR	Nexgen TM CR	55	862	19	4	11	21	5.6 (4.2, 7.4)	6.6 (5.1, 8.7)	8.1 (6.0, 10.8)
Nexgen CR Flex	Nexgen	1410	58675	330	100	123	857	2.3 (2.2, 2.4)	3.1 (2.9, 3.3)	4.0 (3.7, 4.4)
Nexgen CR Flex	Nexgen TM CR	317	11937	98	21	28	170	2.3 (2.0, 2.6)	3.2 (2.8, 3.6)	4.3 (3.7, 5.0)
Nexgen LPS	Nexgen	361	7003	94	20	33	214	3.3 (2.9, 3.8)	4.9 (4.4, 5.5)	6.6 (5.9, 7.4)
Nexgen LPS Flex	Nexgen	1512	37006	413	65	236	798	3.2 (3.0, 3.3)	5.0 (4.8, 5.3)	6.9 (6.4, 7.3)
PFC Sigma CR	MBT	322	6255	63	35	45	179	4.0 (3.5, 4.5)	5.1 (4.6, 5.7)	6.7 (5.9, 7.6)
PFC Sigma CR	MBT Duofix	155	3314	24	18	6	107	3.6 (3.0, 4.4)	5.0 (4.2, 5.9)	7.3 (6.0, 8.9)
PFC Sigma CR	PFC Sigma	849	24584	214	54	64	517	2.5 (2.3, 2.7)	3.6 (3.3, 3.8)	5.4 (5.0, 5.9)
PFC Sigma PS	MBT	343	6322	115	14	24	190	3.9 (3.4, 4.4)	5.4 (4.8, 6.0)	7.7 (6.7, 8.9)
PFC Sigma PS	MBT Duofix	173	2212	38	4	6	125	6.0 (5.1, 7.2)	8.4 (7.2, 9.7)	10.7 (8.9, 12.9)
PFC Sigma PS	PFC Sigma	361	7979	123	12	27	199	3.3 (2.9, 3.7)	4.8 (4.3, 5.3)	6.6 (5.8, 7.4)
RBK	RBK	534	10891	203	14	42	275	3.9 (3.5, 4.3)	5.3 (4.9, 5.8)	6.8 (6.1, 7.6)
Triathlon CR	Triathlon	2506	109011	454	106	115	1831	2.5 (2.4, 2.6)	3.8 (3.6, 4.0)	5.7 (4.8, 6.8)
TOTAL		16684	443117	4161	803	1430	10290			

Table TY4 Cumulative Percent Revision of Primary Total Knee Replacement Prosthesis Combinations with 15 Year Data (Primary Diagnosis OA)

Note: Green: prosthesis combination qualifies for a superiority benchmark Blue: prosthesis combination qualifies for non-inferiority benchmark Restricted to modern prostheses

TWENTY YEAR OUTCOMES

For the first time, the Registry can report 20 year outcomes for 1 hip and 5 knee combinations of prostheses that are currently being used. A combination is included if >350 procedures have been reported to the Registry and the follow-up period is ≥20 years.

HIP REPLACEMENT

The listed prosthesis combination has been used in 1.8% of all primary total conventional hip replacement procedures performed for osteoarthritis. The 20 year cumulative percent revision is 5.4% (Table TY5).

KNEE REPLACEMENT

The listed prosthesis combinations were used in 11.7% of all primary total knee replacement procedures performed for osteoarthritis. All 5 combinations were used in 2020. The 20 year cumulative percent revision ranges from 6.1% to 9.6% (Table TY6).

Table TY5 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Prosthesis Combinations with 20 Year Data (Primary Diagnosis OA)

	Type of Revision												
Femoral Component	Acetabular Component	N Revised	N Total	THR	Femoral A	cetabular	Other	10 Yrs	15 Yrs	20 Yrs			
Secur-Fit Plus	Trident (Shell)	210	5752	15	54	52	89	3.3 (2.8, 3.8)	4.5 (3.9, 5.2)	5.4 (4.6, 6.4)			
TOTAL		210	5752	15	54	52	89						

Note: Restricted to modern prostheses

Table TY6 Cumulative Percent Revision of Primary Total Knee Replacement Prosthesis Combinations with 20 Year Data (Primary Diagnosis OA)

	Type of Revision													
Femoral Component	Tibial Component	N Revised	N Total	TKR	Femoral	Tibial	Other	10 Yrs	15 Yrs	20 Yrs				
Genesis II CR	Genesis II	1092	24634	225	68	56	743	5.0 (4.7, 5.4)	6.2 (5.8, 6.7)	7.3 (6.6, 8.2)				
LCS CR	LCS	617	8323	251	24	89	253	6.4 (5.9, 7.0)	8.1 (7.5, 8.7)	9.6 (8.7, 10.5)				
Nexgen CR	Nexgen	424	11521	136	22	31	235	3.1 (2.8, 3.5)	4.5 (4.1, 5.0)	6.1 (5.3, 7.0)				
Nexgen LPS	Nexgen	361	7003	94	20	33	214	4.9 (4.4, 5.5)	6.6 (5.9, 7.4)	7.9 (6.9, 9.0)				
PFC Sigma CR	PFC Sigma	849	24584	214	54	64	517	3.6 (3.3, 3.8)	5.4 (5.0, 5.9)	6.5 (5.6, 7.6)				
TOTAL		3343	76065	920	188	273	1962							

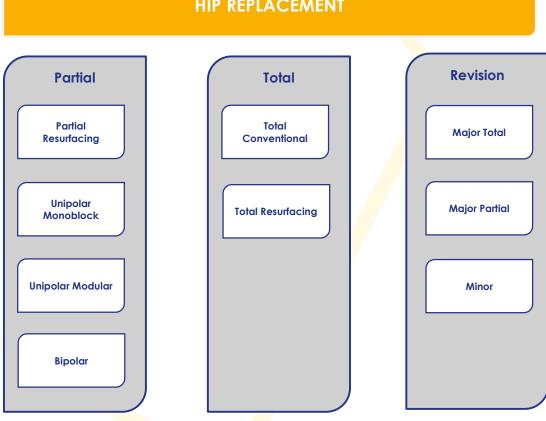
Note: CR 'cruciate retaining' refers to minimally stabilised Restricted to modern prostheses

Hip Replacement

Hip Replacement

CATEGORIES OF HIP REPLACEMENT

The Registry groups hip replacement into three broad categories: primary partial, primary total and revision hip replacement.


A primary replacement is an initial replacement procedure undertaken on a joint and involves replacing either part (partial) or all (total) of the articular surface.

Primary partial and primary total hip replacement are further subcategorised into classes depending on the type of prostheses used. Partial hip classes include partial resurfacing, unipolar monoblock, unipolar modular, and bipolar. Total hip classes include total conventional and total resurfacing.

Definitions for each of these classes are detailed in the subsequent sections. Revision hip replacements are re-operations of previous hip replacements where one or more of the prosthetic components are replaced, removed, or one or more components are added. Revisions include re-operations of primary partial, primary total, or previous revision procedures. Hip revisions are subcategorised into three classes: major total, major partial, or minor revisions.

Detailed information on demographics of each category of hip replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website

https://www.aoanjrr.sahmri.com/annual-reports-2021

HIP REPLACEMENT

USE OF HIP REPLACEMENT

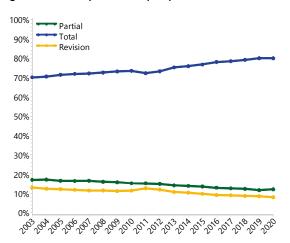

This report includes 743,899 hip replacements reported to the Registry with a procedure date up to and including 31 December 2020. This is an additional 49,169 hip procedures compared to the number reported last year. The relative frequency of each type of hip procedure is provided in Table H1.

Table H1 Number of Hip Replacements

Hip Category	Number	Percent
Partial	107643	14.5
Total	557117	74.9
Revision	79139	10.6
TOTAL	743899	100.00

In 2020, the number of hip replacements undertaken has decreased by 2,432 (4.8%) compared to 2019. During this time, the use of primary total hip replacement decreased by 4.8%, accounting for 79.9% of all hip replacement procedures in 2020. Primary partial hip replacement decreased by 0.9%, accounting for 12.1% of hip procedures in 2020. The proportion of revision hip procedures has declined from a peak of 12.9% in 2003 to 8.0% in 2020 (Figure H1). This is the first time the Registry has recorded a reduction in the number of hip replacements, and this is due to the cancellation of elective surgery during COVID-19 restrictions.

Figure H1 Proportion of Hip Replacement

ASA SCORE AND BMI IN HIP REPLACEMENT

Data are reported on hip replacement procedures for both the American Society of Anaesthesiologists - Physical Status Classification (ASA score) and Body Mass Index (BMI). The Registry commenced collecting ASA score in 2012 and BMI in 2015.

There are ASA score data on 356,126 and BMI data on 250,277 hip replacement procedures. Since its initial collection, ASA score has been recorded in 95.7% of procedures. BMI has been recorded in 86.6% of procedures since its collection commenced.

In 2020, ASA score is reported in 99.8% and BMI in 91.8% of hip replacement procedures. There is no variation in the reporting of ASA score based on procedure type. However, there is some variation in the reporting of BMI in 2020. The Registry recorded BMI for 61.9% of primary partial hip, 96.8% of primary total hip, and 86.9% of revision hip replacement procedures.

ASA score and BMI are both known to impact the outcome of hip replacement surgery.

ASA Score

There are five ASA score classifications.³

- 1. A normal healthy patient
- 2. A patient with mild systemic disease
- 3. A patient with severe systemic disease
- 4. A patient with severe systemic disease that is a constant threat to life
- 5. A moribund patient who is not expected to survive without the operation

There is a difference in ASA score depending on the class of hip replacement. Partial hip replacement procedures have a higher proportion of patients with ASA scores 3 and 4 compared to patients undergoing primary total hip replacement. Revision hip replacement procedures also have patients with higher ASA scores (Table H2).

BMI

BMI for adults is classified by the World Health Organisation into six main categories.⁴

Underweight	<18.50			
Normal	18.50 - 24.99			
Pre-obese	25.00 - 29.99			
Obese Class 1	30.00 - 34.99			
Obese Class 2	35.00 - 39.99			
Obese Class 3	≥40.00			

The majority of hip replacement procedures are undertaken in patients who are normal or pre-obese (Table H3).

³https://www.asahq.org/resources/clinical-information/asa-physicalstatus-classification-system

Table H2 ASA Score for Hip Replacement

ASA Score	Partial		Total		Revision		TOTAL	
	Ν	Col%	Ν	Col%	Ν	Col%	N	Col%
ASA 1	156	0.3	26632	9.6	1334	4.1	28122	7.9
ASA 2	5051	11.2	147522	53.0	11390	35.1	163963	46.0
ASA 3	27287	60.6	98847	35.5	17104	52.6	143238	40.2
ASA 4	12366	27.4	5562	2.0	2639	8.1	20567	5.8
ASA 5	194	0.4	19	0.0	23	0.1	236	0.1
TOTAL	45054	100.0	278582	100.0	32490	100.0	356126	100.0

Table H3 BMI Category for Hip Replacement

	Partial		То	Total		Revision		TOTAL	
BMI Category	N	Col%	Ν	Col%	Ν	Col%	Ν	Col%	
Underweight	1833	9.7	2198	1.0	360	1.7	4391	1.8	
Normal	9367	49.8	46600	22.1	5035	24.0	61002	24.4	
Pre Obese	5303	28.2	77555	36.8	7254	34.5	90112	36.0	
Obese Class 1	1667	8.9	51668	24.5	4950	23.6	58285	23.3	
Obese Class 2	450	2.4	21811	10.4	2165	10.3	24426	9.8	
Obese Class 3	184	1.0	10644	5.1	1233	5.9	12061	4.8	
TOTAL	18804	100.0	210476	100.0	20997	100.0	250277	100.0	

Note: BMI has not been presented for patients aged \leq 19 years

Primary Partial Hip Replacement Summary

INTRODUCTION

This section provides summary information on partial hip replacement. Previously, detailed information on partial hips was included in the Annual Report. It is now provided as a separate supplementary report. The Partial Hip Arthroplasty Report is one of 15 supplementary reports to complete the AOANJRR Annual Report for 2021 and is available on the AOANJRR website.

CLASSES OF PARTIAL HIP REPLACEMENT

The Registry identifies four classes of primary partial hip replacement. These are defined by the type of prostheses used.

Partial resurfacing involves the use of one or more button prostheses to replace part of the natural articulating surface on one or both sides of the hip joint. These prostheses are no longer used.

Unipolar monoblock involves the use of a femoral stem prosthesis with a fixed large head that replaces the natural femoral head.

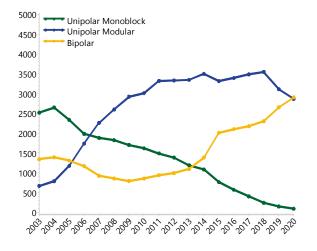
Unipolar modular involves the use of a femoral stem and exchangeable large head prosthesis that replaces the natural femoral head.

Bipolar involves the use of a femoral stem and standard head prosthesis that articulates with a non-fixed component replacing the natural femoral head.

USE OF PARTIAL HIP REPLACEMENT

The most common class of primary partial hip replacement is unipolar modular followed by bipolar and unipolar monoblock (Table HP1).

Table HP1 Primary Partial Hip Replacement by Class


Hip Class	Number	Percent
Unipolar Monoblock	29105	27.0
Unipolar Modular	49246	45.8
Bipolar	29277	27.2
TOTAL	107628	100.0

Note: Excludes 15 partial resurfacing procedures not used since 2014

In 2020, bipolar hip replacement was more commonly used than unipolar modular. The use of unipolar monoblock continues to decline (Figure HP1). The 10 most used femoral prostheses for partial hip replacement are listed in Table HP2. In 2020, the Exeter V40, CPT and CPCS were the most frequently used femoral prostheses.

Detailed demographic information on primary partial hip replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website: <u>https://aoanjrr.sahmri.com/annual-reports-2021</u>

Figure HP1 Primary Partial Hip Replacement by Class

Detailed information on partial resurfacing hip replacement is available in the supplementary report 'Prosthesis Types No Longer Used' on the AOANJRR website: <u>https://aoanjrr.sahmri.com/annual-reports-2021</u>

	2003 2017			2018		2019	2020		
N	Model	N	Model	N	Model	N	Model	Ν	Model
1988	Austin-Moore Type	2645	Exeter V40	2851	Exeter V40	2964	Exeter V40	2863	Exeter V40
810	Exeter V40	722	CPT	812	CPCS	722	CPCS	827	CPT
526	Thompson Type	712	CPCS	623	CPT	712	CPT	756	CPCS
186	Alloclassic	434	C-Stem AMT	459	C-Stem AMT	475	C-Stem AMT	472	C-Stem AMT
127	Elite Plus	239	CORAIL	292	Absolut	175	Absolut	122	Short Exeter V40
105	CPT	231	ETS	166	CORAIL	141	CORAIL	106	CORAIL
95	Spectron EF	192	Absolut	164	ETS	121	ETS	84	ETS
74	C-Stem	101	Austin-Moore Type	83	Quadra-C	96	Short Exeter V40	83	Taper Fit
65	CPCS	96	Spectron EF	83	Short Exeter V40	63	Spectron EF	77	twinSys (ctd)
63	Omnifit	70	Thompson Type	62	Austin-Moore Type	56	Quadra-C	60	Quadra-C
10 Most	Used								
4039	(10) 89.3%	5442	(10) 89.8%	5595	(10) 92.0%	5525	(10) 93.5%	5450	(10) 93.0%
Remaind	ler								
482	(52) 10.7%	620	(46) 10.2%	489	(40) 8.0%	385	(36) 6.5%	409	(35) 7.0%
TOTAL									
4521	(62) 100.0%	6062	(56) 100.0%	6084	(50) 100.0%	5910	(46) 100.0%	5859	(45) 100.0%

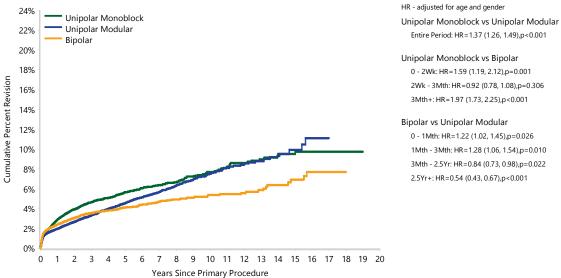
OUTCOME FOR FRACTURED NECK OF FEMUR

In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified.

Fractured neck of femur is the principal diagnosis for the three main classes of primary partial hip replacement: unipolar monoblock (97.6%), unipolar modular (96.0%) and bipolar (93.6%). A comparative analysis of partial hip replacement and total conventional hip replacement was undertaken for fractured neck of femur and is presented in the primary total hip replacement chapter of this report.

The outcome of primary partial hip replacement varies depending on the class. Outcomes are restricted to 10 years because of the high mortality in this group. The prosthesis class variation in mortality is almost certainly due to patient selection (Table HP3).

At 10 years, bipolar has the lowest cumulative percent revision for fractured neck of femur, followed by unipolar modular, and unipolar monoblock (Table HP4 and Figure HP2). The difference in outcome between classes is most apparent in patients aged <75 years (Table HP5 and Figure HP3).


Table HP3	Cumulative Percent Mortality	of Primary Partial Hip	Replacement by Class (P	rimary Diagnosis Fractured NOF)
-----------	------------------------------	------------------------	-------------------------	---------------------------------

Hip Class	Ν	Ν	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	
	Deceased	Total		5 113	5 113	7 113	10 113	
Unipolar Monoblock	25095	27698	37.0 (36.4, 37.6)	60.9 (60.3, 61.4)	76.8 (76.3, 77.4)	86.2 (85.7, 86.6)	93.2 (92.9, 93.6)	
Unipolar Modular	26336	39557	26.3 (25.9, 26.8)	47.4 (46.8, 47.9)	63.1 (62.6, 63.7)	74.4 (73.9, 74.9)	84.5 (83.9, 85.0)	
Bipolar	12426	21651	24.0 (23.4, 24.6)	43.9 (43.2, 44.7)	59.2 (58.4, 60.0)	69.9 (69.1, 70.7)	81.1 (80.2, 81.9)	
TOTAL	63857	88906						

Note: Restricted to modern prostheses

Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	1078	28419	2.9 (2.7, 3.1)	3.9 (3.7, 4.2)	4.6 (4.3, 5.0)	5.6 (5.3, 6.0)	6.4 (5.9, 6.8)	7.7 (7.1, 8.4)
Unipolar Modular	1338	40895	2.0 (1.8, 2.1)	2.7 (2.5, 2.9)	3.3 (3.1, 3.5)	4.5 (4.3, 4.8)	5.7 (5.3, 6.0)	7.5 (6.9, 8.1)
Bipolar	675	22244	2.4 (2.2, 2.6)	3.0 (2.8, 3.3)	3.5 (3.3, 3.8)	4.1 (3.8, 4.5)	4.7 (4.3, 5.2)	5.4 (4.8, 6.0)
TOTAL	3091	91558						

Note: Restricted to modern prostheses

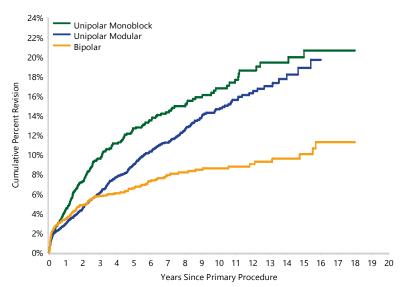
Figure HP2 Cumulative Percent Revision of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)

Entire Period: HR=1.37 (1.26, 1.49),p<0.001 Unipolar Monoblock vs Bipolar 0 - 2Wk: HR=1.59 (1.19, 2.12),p=0.001 2Wk - 3Mth: HR=0.92 (0.78, 1.08),p=0.306

Bipolar vs Unipolar Modular

0 - 1Mth: HR=1.22 (1.02, 1.45),p=0.026 1Mth - 3Mth: HR=1.28 (1.06, 1.54),p=0.010 3Mth - 2.5Yr: HR=0.84 (0.73, 0.98),p=0.022 2.5Yr+: HR=0.54 (0.43, 0.67),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	28419	17345	13514	10436	5928	3330	1404
Unipolar Modular	40895	27549	21566	16602	9484	5100	1850
Bipolar	22244	14462	10778	8125	4454	2486	1200


Note: Restricted to modern prostheses

Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	240	2466	4.4 (3.6, 5.4)	7.3 (6.2, 8.5)	9.6 (8.3, 11.1)	12.7 (11.1, 14.5)	14.3 (12.6, 16.3)	16.8 (14.7, 19.2)
Unipolar Modular	478	6003	2.9 (2.5, 3.4)	4.5 (4.0, 5.1)	6.1 (5.4, 6.8)	9.0 (8.1, 10.0)	11.2 (10.2, 12.4)	14.6 (13.2, 16.2)
Bipolar	217	3906	3.5 (2.9, 4.1)	4.8 (4.1, 5.6)	5.8 (5.0, 6.7)	6.6 (5.7, 7.6)	7.9 (6.8, 9.2)	8.6 (7.4, 10.0)
TOTAL	935	12375						

Table HP5 Cumulative Percent Revision of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF)</th>

Note: Restricted to modern prostheses

Figure HP3 Cumulative Percent Revision of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF)

HR - adjusted for age and gender Unipolar Monoblock vs Bipolar 0 - 3Mth: HR=0.82 (0.56, 1.18),p=0.281 3Mth+: HR=2.41 (1.93, 3.01),p<0.001

Unipolar Monoblock vs Unipolar Modular Entire Period: HR=1.30 (1.11, 1.52),p<0.001

Unipolar Modular vs Bipolar 0 - 3Mth: HR=0.81 (0.61, 1.08),p=0.147 3Mth - 2.5Yr: HR=1.15 (0.90, 1.47),p=0.266 2.5Yr - 3Yr: HR=1.83 (0.99, 3.39),p=0.054 3Yr+: HR=2.82 (2.15, 3.71),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	2466	1677	1388	1160	798	574	332
Unipolar Modular	6003	4511	3777	3152	2151	1450	725
Bipolar	3906	2770	2185	1802	1196	795	524

Note: Restricted to modern prostheses

More information regarding partial hip procedures is available in the 'Partial Hip Supplementary Report' available on the AOANJRR website: <u>https://aoanjrr.sahmri.com/annual-reports-2021</u>

Primary Total Hip Replacement

CLASSES OF TOTAL HIP REPLACEMENT

A total hip procedure replaces both the femoral and acetabular articular surfaces. The Registry subcategorises primary total hip replacement into two classes. These are defined by the type of femoral prosthesis used. **Total conventional** involves acetabular replacement combined with resection of the femoral head and replacement with a stemmed femoral prosthesis and femoral head prosthesis.

Total resurfacing involves acetabular replacement and the use of a femoral prosthesis that replaces the femoral articular surface without resecting the head.

Detailed demographic information on primary total hip replacement is available in the supplementary report 'Demographics of Hip, Knee & Shoulder Arthroplasty' on the AOANJRR website:

https://aoanjrr.sahmri.com/annual-reports-2021

USE OF TOTAL HIP REPLACEMENT

The Registry has recorded 556,859 primary total hip replacement procedures. Of these, total conventional is the most common class, followed by total resurfacing (Table HT1).

Table HT1	Primary Total Hip Replacement by Class
-----------	--

Total Hip Class	Number	Percent
Total Conventional	538045	96.6
Total Resurfacing	18814	3.4
TOTAL	556859	100.0

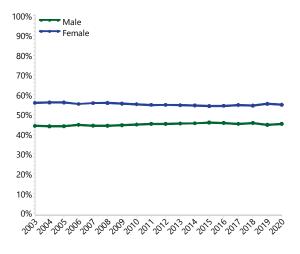
Osteoarthritis is the principal diagnosis for primary total hip replacement (88.4%).

Total conventional hip replacement (all bearing surfaces included) has a lower cumulative percent revision compared to total resurfacing at 20 years (Table HT2).

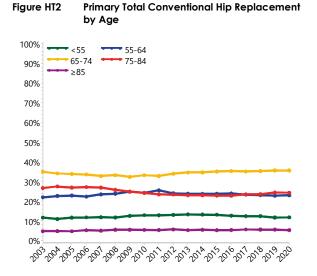
Table HT2 Cumulative Percent Revision of Primary Total Hip Replacement by Class

Total Hip Class	N Revised	N Total	1 Yr	3 \	′rs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Resurfacing	1946	18814	1.7 (1.5,	1.9) 3.1 (2.	9, 3.4)	4.8 (4.5, 5.2)	9.2 (8.7, 9.6)	12.5 (12.0, 13.1)	16.1 (14.7, 17.7)
Total Conventional	25728	538045	1.8 (1.7,	1.8) 2.8 (2.	7, 2.8)	3.7 (3.6, 3.7)	6.1 (6.0, 6.2)	9.1 (9.0, 9.3)	12.3 (11.9, 12.7)
TOTAL	27674	556859							

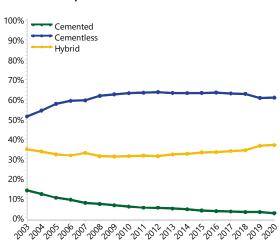
PRIMARY TOTAL CONVENTIONAL HIP REPLACEMENT


DEMOGRAPHICS

There have been 538,045 primary total conventional hip replacement procedures reported to the Registry. This is an additional 38,606 procedures compared to the previous report.


Primary total conventional hip replacement procedures decreased by 4.9% in 2020 compared to the previous year. This is the first time the number of hip replacements has decreased and is due to the cancellation of elective surgery during COVID-19 restrictions. There has been a 123.5% increase since 2003.

Primary total conventional hip replacement is more common in females. This proportion has remained stable since 2003 (Figure HT1).



The mean age of patients is 67.8 years (Table HT3). There has been minimal change in the proportion of patients aged 55-64 years (21.9% in 2003 to 23.0% in 2020) and for patients aged <55 years (11.7% in 2003 to 11.8% in 2020) (Figure HT2).

The use of cementless fixation has increased from 51.3% in 2003 to 60.8% in 2020. Hybrid fixation has increased from 34.8% to 36.8% and cemented fixation has declined from 13.9% to 2.4% (Figure HT3).

Figure HT3 Primary Total Conventional Hip Replacement by Fixation

Table HT3 Age and Gender of Primary Total Conventional Hip Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	242382	45.0%	12	102	67	66.3	11.5
Female	295663	55.0%	11	101	70	68.9	11.3
TOTAL	538045	100.0%	11	102	69	67.8	11.5

The Exeter V40, CORAIL, and Accolade II are the most used femoral stems for primary total conventional hip replacement (Table HT4). In 2020, 66.9% of primary total conventional hip replacements used stems in the 10 most used femoral component list. Six of these stems are cementless. The 10 most used cemented and cementless stems are listed in Table HT5 and Table HT6, respectively. In 2020, the 10 most used cemented stems account for 93.2% of cemented stem procedures. The 10 most used cementless stems account for 77.6% of cementless stem procedures. The Trident (Shell), PINNACLE, and Trinity are the most frequently used acetabular prostheses for primary total conventional hip replacement. In 2020, 86.0% of primary total conventional hip procedures used acetabular components from the 10 most used list (Table HT7). All of the acetabular components in this list are cementless prostheses. The 10 most used cemented and cementless acetabular prostheses are listed separately in Table HT8 and Table HT9.

	2003		2017		2018		2019		2020
N	Model	Ν	Model	Ν	N	Model	N	Model	N
3901	Exeter V40	7326	Exeter V40	7368	Exeter V40	7832	Exeter V40	7033	Exeter V40
1029	ABGII	5376	CORAIL	5321	CORAIL	4890	CORAIL	4502	CORAIL
1000	Synergy	1944	Quadra-H	2243	Polarstem	2523	Metafix	2605	Accolade II
819	Alloclassic	1928	Polarstem	2134	Metafix	2400	Accolade II	2599	Metafix
809	VerSys	1850	Accolade II	2072	Quadra-H	2330	Polarstem	2446	Polarstem
780	Spectron EF	1578	Metafix	1995	Accolade II	2020	Quadra-H	1723	Quadra-H
713	Secur-Fit Plus	1240	CPT	1185	Paragon	1288	Paragon	1310	СРТ
618	Omnifit	1028	Taperloc	1159	CPT	1276	СРТ	1231	Paragon
565	C-Stem	1022	AMIStem H	944	Taperloc	1081	Taperloc	1114	Quadra-C
485	S-Rom	872	C-Stem AMT	905	CPCS	1059	C-Stem AMT	972	CPCS
10 Most	t Used								
10719	(10) 62.8%	24164	(10) 64.7%	25326	(10) 65.3%	26699	(10) 66.5%	25535	(10) 66.9%
Remain	der								
6354	(73) 37.2%	13201	(94) 35.3%	13476	(88) 34.7%	13440	(90) 33.5%	12624	(79) 33.1%
TOTAI	L								
17073	(83) 100.0%	37365	(104) 100.0%	38802	(98) 100.0%	40139	(100) 100.0%	38159	(89) 100.0%

Table HT4 10 Most Used Femoral Components in Primary Total Conventional Hip Replacement

	2003		2017		2018		2019	2020		
Ν	Model	N	Model	Ν	Model	N	Model	N	Model	
3901	Exeter V40	7326	Exeter V40	7368	Exeter V40	7832	Exeter V40	7033	Exeter V40	
780	Spectron EF	1240	CPT	1159	CPT	1276	CPT	1310	CPT	
565 (C-Stem	872	C-Stem AMT	905	CPCS	1059	C-Stem AMT	1114	Quadra-C	
477 (СРТ	857	CPCS	885	C-Stem AMT	988	CPCS	972	CPCS	
445	Elite Plus	556	Short Exeter V40	727	Quadra-C	839	Quadra-C	775	Short Exeter V40	
358	MS 30	550	Quadra-C	681	Short Exeter V40	806	Short Exeter V40	775	Taper Fit	
338	Omnifit	442	Evolve	592	Taper Fit	788	Taper Fit	727	C-Stem AMT	
321 (Charnley	394	MS 30	394	MS 30	383	Absolut	524	Evolve	
245 (CPCS	315	Taper Fit	387	Evolve	358	Evolve	360	MS 30	
123	Exeter	235	Absolut	343	Absolut	324	MS 30	305	Absolut	
10 Most l	Used									
7553	(10) 91.7%	12787	(10) 92.9%	13441	(10) 93.3%	14653	(10) 93.3%	13895	(10) 93.2%	
Remainde	er									
680	(26) 8.3%	977	(22) 7.1%	966	(21) 6.7%	1057	(23) 6.7%	1014	(17) 6.8%	
TOTAL										
8233	(36) 100.0%	13764	(32) 100.0%	14407	(31) 100.0%	15710	(33) 100.0%	14909	(27) 100.0%	

Table HT5 10 Most Used Cemented Femoral Components in Primary Total Conventional Hip Replacement

Table HT6 10 Most Used Cementless Femoral Components in Primary Total Conventional Hip Replacement	Table HT6	10 Most Used Cementless Femoral Components in Primary Total Conventional Hip Replacement
--	-----------	--

2003		2017		2018		2019		2020
N Mod	el N	Model	N	Model	N	Model	N	Model
1029 ABGII	5376	CORAIL	5321	CORAIL	4890	CORAIL	4502	CORAIL
980 Synergy	1944	Quadra-H	2243	Polarstem	2523	Metafix	2605	Accolade II
819 Alloclassic	1928	Polarstem	2134	Metafix	2400	Accolade II	2599	Metafix
739 VerSys	1850	Accolade II	2072	Quadra-H	2327	Polarstem	2350	Polarstem
713 Secur-Fit F	Plus 1578	Metafix	1995	Accolade II	2020	Quadra-H	1723	Quadra-H
485 S-Rom	1028	Taperloc	1185	Paragon	1288	Paragon	1231	Paragon
482 Secur-Fit	1022	AMIStem H	944	Taperloc	1081	Taperloc	918	AMIStem H
376 CORAIL	797	Tri-Fit TS	860	AMIStem H	846	AMIStem H	873	Taperloc
334 Accolade I	782	Paragon	580	Anthology	598	Taperloc Microplasty	771	Taperloc Microplasty
334 Mallory-He	ead 687	Anthology	549	Tri-Fit TS	480	Anthology	475	Optimys
10 Most Used								
6291 (10) 71.29	% 16992	(10) 72.0%	17883	(10) 73.3%	18453	(10) 75.5%	18047	(10) 77.6%
Remainder								
2549 (47) 28.89	% 6609	(69) 28.0%	6512	(64) 26.7%	5976	(68) 24.5%	5203	(58) 22.4%
TOTAL								
8840 (57) 100.0)% 23601	(79) 100.0%	24395	(74) 100.0%	24429	(78) 100.0%	23250	(68) 100.0%

Table HT7 10 Most Used Acetabular Components in Primary Total Conventional Hip Replacement

					-		<u> </u>		
	2003		2017		2018		2019		2020
N	Model	Ν	Model	N	Model	Ν	Model	Ν	Model
3986	Trident (Shell)	8141	Trident (Shell)	8563	Trident (Shell)	9255	Trident (Shell)	8741	Trident (Shell)
1748	Reflection (Shell)	6590	PINNACLE	6385	PINNACLE	6122	PINNACLE	5210	PINNACLE
1524	Trilogy	3816	R3	3873	R3	4383	Trinity	4794	Trinity
955	Vitalock	2955	Trinity	3688	Trinity	3825	R3	3891	R3
907	Duraloc	2069	Versafitcup CC	1914	Mpact	2303	Mpact	2884	G7
827	ABGII	1402	Mpact	1836	Versafitcup CC	2227	G7	2762	Mpact
793	Allofit	1293	Continuum	1494	G7	1721	Versafitcup CC	1356	Versafitcup CC
729	Mallory-Head	1254	Logical G	1444	Logical G	1473	Logical G	1326	Logical G
539	Contemporary	1145	Trident/Tritanium (Shell)	1321	Acetabular Shell (Global)	1214	Acetabular Shell (Global)	1134	Trident/Tritanium (Shell)
537	PINNACLE	1051	G7	1197	Continuum	1112	Trident/Tritanium (Shell)	715	RM Cup
10 Most	Used								
12545	(10) 73.5%	29716	(10) 79.5%	31715	(10) 81.7%	33635	(10) 83.8%	32813	(10) 86.0%
Remaind	ler								
4528	(69) 26.5%	7649	(68) 20.5%	7087	(62) 18.3%	6504	(63) 16.2%	5346	(61) 14.0%
ΤΟΤΑ	L								
17073	(79) 100.0%	37365	(78) 100.0%	38802	(72) 100.0%	40139	(73) 100.0%	38159	(71) 100.0%

	2003 2017		2017		2018		2019	2020		
Ν	Model	N	Model	N	Model	N	Model	Ν	Model	
539	Contemporary	503	Exeter X3 Rimfit	532	Exeter X3 Rimfit	571	Exeter X3 Rimfit	508	Exeter X3 Rimfit	
256	Exeter	110	Marathon	105	Contemporary	91	Marathon	52	Marathon	
251	Reflection (Cup)	97	ZCA	82	Marathon	73	Contemporary	49	Reflection (Cup)	
227	Exeter Contemporary	94	Contemporary	81	ZCA	66	Novae E	42	Avantage	
199	Charnley Ogee	68	Reflection (Cup)	53	Reflection (Cup)	50	Reflection (Cup)	39	Novae E	
149	Elite Plus LPW	67	Exeter Contemporary	52	Novae E	46	Avantage	39	ZCA	
130	Low Profile Cup	47	Avantage	41	Avantage	40	ZCA	24	Apricot	
110	Elite Plus Ogee	45	Novae E	34	Apricot	35	Apricot	24	Muller	
102	Charnley	39	Muller	32	Exeter Contemporary	34	Low Profile Cup	22	Contemporary	
90	ZCA	26	Apricot	24	Muller	33	Exeter Contemporary	21	Polarcup	
10 M	ost Used									
2053	(10) 85.4%	1096	(10) 90.2%	1036	(10) 89.7%	1039	(10) 88.7%	820	(10) 88.8%	
Rema	inder									
351	(16) 14.6%	119	(19) 9.8%	119	(18) 10.3%	133	(20) 11.3%	103	(19) 11.2%	
ΤΟΤΑ	L									
2404	(26) 100.0%	1215	(29) 100.0%	1155	(28) 100.0%	1172	(30) 100.0%	923	(29) 100.0%	

Table HT8 10 Most Used Cemented Acetabular Components in Primary Total Conventional Hip Replacement

Table HT9 10 Most Used Cementless Acetabular Components in Primary Total Conventional Hip Replacement

2003	2017	2018	2019	2020
N Model	N Model	N Model	N Model	N Model
3986 Trident (Shell)	8141 Trident (Shell)	8563 Trident (Shell)	9255 Trident (Shell)	8741 Trident (Shell)
1748 Reflection (Shell)	6590 PINNACLE	6384 PINNACLE	6121 PINNACLE	5209 PINNACLE
1524 Trilogy	3816 R3	3873 R3	4383 Trinity	4794 Trinity
955 Vitalock	2955 Trinity	3688 Trinity	3824 R3	3890 R3
907 Duraloc	2069 Versafitcup CC	1913 Mpact	2303 Mpact	2884 G7
827 ABGII	1402 Mpact	1836 Versafitcup CC	2227 G7	2762 Mpact
793 Allofit	1292 Continuum	1494 G7	1721 Versafitcup CC	1356 Versafitcup CC
729 Mallory-Head	1254 Logical G	1444 Logical G	1473 Logical G	1326 Logical G
537 PINNACLE	1145 Trident/Tritanium (Shell)	1321 Acetabular Shell (Global)	1213 Acetabular Shell (Global)	1134 Trident/Tritanium (Shell)
521 Fitmore	1051 G7	1196 Continuum	1112 Trident/Tritanium (Shell)	715 RM Cup
10 Most Used				
12527 (10) 85.4%	29715 (10) 82.2%	31712 (10) 84.2%	33632 (10) 86.3%	32811 (10) 88.1%
Remainder				
2142 (43) 14.6%	6435 (48) 17.8%	5935 (43) 15.8%	5335 (44) 13.7%	4425 (39) 11.9%
TOTAL				
14669 (53) 100.0%	36150 (58) 100.0%	37647 (53) 100.0%	38967 (54) 100.0%	37236 (49) 100.0%

Note: In 2020, 2 shells in the cementless group were inserted with cement

OUTCOME FOR ALL DIAGNOSES

In 2014, the Registry excluded large head metal/metal bearing surfaces from many comparative analyses of primary total conventional hip replacement outcomes due to several factors: they are no longer used, account for an increasingly small proportion of procedures (currently 3.0%) and have a much higher rate of revision than other bearing surfaces (28.5% at 15 years). In addition, large head metal/metal bearings were preferentially used in younger patients with cementless fixation and with particular femoral stem and acetabular prosthesis combinations.

Consequently, in specific analyses metal/metal bearings have the potential to be a major confounding factor and are almost always excluded from general analyses. In prosthesisspecific analyses, prostheses with large head metal/metal bearings are identified separately. Where large head metal/metal bearings are excluded in any analysis this is clearly identified by the Registry.

Since 2019, the Registry has also excluded small head size (<32mm in diameter) metal/metal bearings from comparative analyses. Small head metal/metal bearings were not used in 2020 and form a small proportion of all primary total conventional hip replacement procedures (1.1%). The Registry recognises that hip replacement prosthesis use and availability changes with time. In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified. This has resulted in 95,696 procedures being excluded (18.5%).

In order to keep Registry data contemporaneous, only procedures using modern prostheses that have been available and used in 2020 are included in the analyses, unless clearly specified.

Osteoarthritis is the principal diagnosis, followed by fractured neck of femur, osteonecrosis, developmental dysplasia, rheumatoid arthritis, and tumour (Table HT10).

Osteoarthritis has a lower rate of revision compared to fractured neck of femur, osteonecrosis, and rheumatoid arthritis. Osteoarthritis also has a lower rate of revision compared to developmental dysplasia. However, this difference is only evident in the first month (Figure HT4).

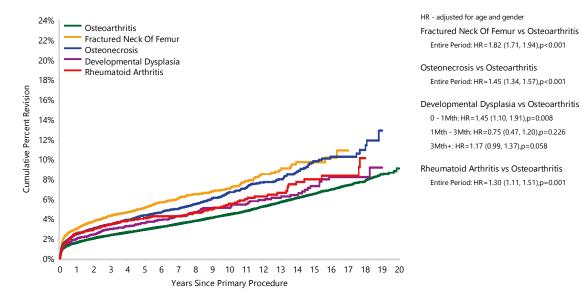

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Osteoarthritis	12028	368834	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 3.0)	4.4 (4.3, 4.5)	6.5 (6.3, 6.7)	9.0 (8.3, 9.8)
Fractured Neck Of Femur	1050	22439	3.0 (2.8, 3.2)	4.3 (4.0, 4.6)	5.1 (4.8, 5.4)	7.0 (6.5, 7.6)	9.7 (8.5, 11.0)	
Osteonecrosis	644	13451	2.4 (2.2, 2.7)	3.4 (3.1, 3.8)	4.3 (3.9, 4.7)	6.7 (6.1, 7.3)	9.8 (8.7, 11.0)	
Developmental Dysplasia	224	5468	1.9 (1.6, 2.4)	3.0 (2.5, 3.5)	3.6 (3.1, 4.1)	5.1 (4.4, 5.9)	7.3 (6.1, 8.7)	
Rheumatoid Arthritis	160	3424	2.6 (2.1, 3.2)	3.4 (2.8, 4.1)	4.0 (3.4, 4.8)	5.5 (4.6, 6.5)	8.0 (6.5, 9.8)	
Tumour	122	2351	4.7 (3.8, 5.7)	6.9 (5.6, 8.5)	8.1 (6.6, 10.0)	11.7 (8.8, 15.5)		
Other (5)	282	4275	4.0 (3.4, 4.6)	5.8 (5.1, 6.6)	6.7 (5.9, 7.6)	8.9 (7.8, 10.2)	11.4 (9.6, 13.6)	
TOTAL	14510	420242						

Table HT10 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Primary Diagnosis

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Only primary diagnoses with over 2,000 procedures have been listed

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Osteoarthritis	368834	327362	251190	182981	68326	17085	266
Fractured Neck Of Femur	22439	18018	12042	7490	1859	258	1
Osteonecrosis	13451	11675	8855	6374	2464	747	15
Developmental Dysplasia	5468	4854	3709	2793	1285	439	11
Rheumatoid Arthritis	3424	3070	2493	1947	901	286	9

Note: Only primary diagnoses with over 2,500 procedures have been listed All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

PROSTHESIS TYPES

There are 1,490 different stem and acetabular combinations for primary total conventional hip replacement recorded by the Registry. This is a decrease of 1,741 prosthesis combinations since the previous report and is due to the restriction in the analyses to modern prosthesis combinations. Prosthesis combinations using large head metal/metal bearings are listed separately.

The cumulative percent revision of the 100 prosthesis combinations with >500 procedures are listed in Table HT11 to Table HT13. Although the listed combinations are a small proportion of the possible combinations, they represent 91.5% of all primary total conventional hip replacement procedures. A large number of prosthesis combinations have been used in small numbers and have no recorded use in 2020, hence the considerable reduction in numbers compared to the previous report.

The 'Other' group consists of all prosthesis combinations with ≤500 procedures. This group accounts for 8.5% of all primary total conventional hip replacement procedures. There are 7 cemented primary total conventional stem and acetabular combinations with >500 procedures. The CPT/ZCA has the lowest 15 year cumulative percent revision of 7.2% (Table HT11).

There are 62 cementless primary total conventional stem and acetabular combinations listed. The Alloclassic/Trilogy has the lowest 15 year cumulative percent revision. At 20 years, the Secur-Fit Plus/Trident has a cumulative percent revision of 5.7% (Table HT12).

There are 31 combinations of primary total hip replacement with hybrid fixation. The Exeter V40 /Trilogy has the lowest cumulative percent revision at 15 years of 3.9% (n=606) followed by the Omnifit/Trident (n=2968) with a cumulative percent revision of 4.5% (Table HT13). The Exeter/Vitalock has previously been reported with the lowest cumulative percent revision for hybrid fixation but this combination is not a modern prosthesis.

Femoral Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
C-Stem AMT	Marathon	17	581	2.0 (1.1, 3.6)	2.4 (1.4, 4.2)	3.0 (1.8, 5.1)			
CPCS	Reflection (Cup)	87	1069	1.8 (1.1, 2.8)	2.9 (2.0, 4.2)	3.7 (2.6, 5.1)	8.3 (6.3, 10.8)	18.8 (14.9, 23.5)	
CPT	ZCA	48	1033	0.9 (0.5, 1.7)	2.2 (1.4, 3.3)	2.8 (1.9, 4.1)	5.1 (3.6, 7.0)	7.2 (5.1, 10.2)	
Exeter V40	Contemporary	356	5687	1.7 (1.4, 2.1)	2.9 (2.5, 3.4)	3.6 (3.1, 4.1)	6.2 (5.5, 7.0)	9.9 (8.7, 11.1)	
	Exeter Contemporary	187	3420	1.4 (1.1, 1.9)	2.4 (1.9, 2.9)	3.1 (2.6, 3.8)	4.9 (4.1, 5.7)	8.4 (7.1, 9.9)	
	Exeter X3 Rimfit	125	4825	1.5 (1.2, 1.9)	2.3 (1.9, 2.8)	2.8 (2.4, 3.4)			
Spectron EF	Reflection (Cup)*	134	1663	1.1 (0.7, 1.7)	1.8 (1.2, 2.5)	2.8 (2.1, 3.8)	7.1 (5.8, 8.7)	13.8 (11.4, 16.5)	
Other (255)		246	5198	2.7 (2.2, 3.2)	3.8 (3.3, 4.4)	4.5 (3.9, 5.2)	6.7 (5.7, 7.8)	11.5 (9.4, 14.0)	
TOTAL		1200	23476						

Table HT11 Cumulative Percent Revision of Primary Total Conventional Hip Replacement with Cemented Fixation by Prosthesis Combination

Note: Some cementless components have been cemented

Procedures using metal/metal prostheses have been included

Restricted to modern prostheses

*denotes prosthesis combination with no reported use in primary total conventional hip procedures in 2020 Only prostheses with over 500 procedures have been listed

Table HT12 Cumulative Percent Revision of Primary Total Conventional Hip Replacement with Cementless Fixation by Prosthesis Combination

Femoral Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
AMIStem H	Mpact	39	1675	2.0 (1.4, 2.9)	2.8 (2.0, 3.9)				
	Versafitcup CC	58	3014	1.4 (1.0, 1.9)	2.0 (1.5, 2.6)	2.6 (1.9, 3.5)			
Accolade II	Trident (Shell)	201	9228	1.8 (1.5, 2.1)	2.4 (2.1, 2.8)	2.8 (2.4, 3.2)			
	Trident/Tritanium (Shell)	64	2378	2.3 (1.7, 3.0)	3.0 (2.3, 3.8)	3.6 (2.7, 4.9)			
Alloclassic	Allofit	178	3928	1.6 (1.2, 2.0)	2.3 (1.9, 2.9)	2.9 (2.4, 3.5)	4.8 (4.1, 5.6)	6.8 (5.7, 8.1)	
	Fitmore*	53	727	4.4 (3.1, 6.2)	5.4 (4.0, 7.3)	5.8 (4.3, 7.8)	8.0 (6.1, 10.5)	8.6 (6.4, 11.5)	
	Trabecular Metal (Shell)*	52	1060	2.3 (1.5, 3.4)	2.9 (2.0, 4.1)	4.0 (3.0, 5.4)	5.1 (3.8, 6.7)	6.4 (4.6, 8.7)	
	Trilogy*	20	946	0.6 (0.3, 1.4)	0.9 (0.4, 1.7)	1.1 (0.6, 2.0)	2.5 (1.6, 3.9)	2.7 (1.7, 4.3)	
Anthology	R3	228	7621	2.0 (1.7, 2.3)	2.5 (2.1, 2.8)	2.8 (2.4, 3.2)	3.6 (3.1, 4.1)		
	Reflection (Shell)*	31	907	1.9 (1.2, 3.0)	2.2 (1.4, 3.4)	2.6 (1.7, 3.8)	3.5 (2.4, 5.0)		
Apex	Acetabular Shell (Global)	26	545	3.1 (2.0, 5.0)	4.4 (2.9, 6.6)	5.3 (3.6, 7.8)			
	Fin II*	55	984	1.9 (1.2, 3.0)	2.6 (1.7, 3.8)	3.8 (2.7, 5.2)	6.1 (4.7, 8.0)		
Avenir	Continuum	56	1705	2.6 (1.9, 3.4)	3.0 (2.2, 3.9)	3.4 (2.6, 4.5)			
	Trilogy*	12	626	1.0 (0.4, 2.1)	1.1 (0.5, 2.3)	1.3 (0.6, 2.6)	2.4 (1.2, 4.5)		
C2	Delta-TT	24	933	1.2 (0.7, 2.2)	2.1 (1.3, 3.4)	2.6 (1.7, 4.0)			
CLS	Fitmore	19	564	1.5 (0.7, 2.9)	2.6 (1.5, 4.4)	2.9 (1.7, 4.9)	4.9 (2.8, 8.4)	4.9 (2.8, 8.4)	
CORAIL	Fitmore	14	514	2.1 (1.2, 3.8)	2.4 (1.3, 4.1)	2.4 (1.3, 4.1)	3.8 (2.0, 7.1)		
	PINNACLE	1974	55417	1.7 (1.6, 1.8)	2.7 (2.5, 2.8)	3.3 (3.1, 3.4)	5.1 (4.8, 5.4)	8.1 (7.0, 9.2)	
	PINNACLE* ^{MoM}	128	966	2.2 (1.4, 3.3)	3.7 (2.6, 5.1)	5.9 (4.6, 7.6)	12.3 (10.3, 14.7)	17.2 (13.9, 21.2)	
	Trinity	12	796	1.5 (0.9, 2.8)	1.8 (1.0, 3.1)				
EVOK	C2	29	780	2.7 (1.8, 4.1)	3.1 (2.1, 4.7)	3.3 (2.3, 4.9)			
	Logical G	10	679	1.2 (0.6, 2.5)	1.7 (0.9, 3.3)				
H-Max	Delta-TT	63	1628	1.9 (1.4, 2.7)	3.3 (2.5, 4.3)	3.9 (3.0, 5.1)			
HACTIV	Logical G	45	1185	3.3 (2.4, 4.6)	4.4 (3.3, 5.9)				
M/L Taper	Allofit	21	751	1.6 (0.9, 2.8)	1.9 (1.1, 3.2)	2.2 (1.4, 3.6)	3.7 (2.2, 6.1)		
	Continuum	55	1571	2.2 (1.6, 3.1)	3.2 (2.5, 4.3)	3.5 (2.7, 4.6)			
	Trilogy	32	888	1.2 (0.7, 2.2)	1.6 (0.9, 2.7)	2.8 (1.9, 4.2)	4.1 (2.8, 5.8)	4.9 (3.4, 7.2)	
Metafix	Trinity	207		1.5 (1.3, 1.7)	2.3 (2.0, 2.7)	2.7 (2.3, 3.2)			
MiniHip	Trinity	37		2.6 (1.8, 3.8)	3.4 (2.4, 4.7)	3.5 (2.5, 4.8)			
Nanos	R3	10		0.9 (0.4, 2.0)	1.2 (0.6, 2.4)	1.2 (0.6, 2.4)	1.6 (0.8, 2.9)	74/50.00	
Omnifit	Trident (Shell)	86		1.9 (1.3, 2.8)	3.2 (2.3, 4.3)	4.1 (3.1, 5.4)	5.6 (4.4, 7.0)	7.4 (5.9, 9.2)	
Optimys	RM Cup	22		1.3 (0.8, 2.0)	1.5 (1.0, 2.4)	1.8 (1.1, 2.7)			
Origin Paragon	Logical G Acetabular Shell	50 66		1.9 (1.4, 2.6) 1.5 (1.1, 1.9)	2.9 (2.2, 3.8)	3.4 (2.4, 4.7) 2.2 (1.6, 2.9)			
	(Global)		075	10 (05 20)					
	Novae	16 20		1.0 (0.5, 2.0)	2.0 (1.2, 3.4)	2.3 (1.4, 3.8)			
Polarstem	Trinity EP-Fit Plus	20 11		2.2 (1.4, 3.5) 0.2 (0.1, 0.5)	2.8 (1.8, 4.6)	06(0212)			
rolaisteili	R3	347		2.0 (1.8, 2.3)	0.5 (0.3, 1.0) 2.6 (2.3, 2.9)	0.6 (0.3, 1.2) 3.1 (2.7, 3.4)	4.1 (3.3, 5.2)		
Profemur L	R3 Dynasty	347 84		2.0 (1.8, 2.3) 3.5 (2.7, 4.4)	2.6 (2.3, 2.9) 4.7 (3.7, 5.8)	5.3 (4.2, 6.6)	4 .1 (3.3, 3.2)		
	Procotyl L	19		1.7 (1.0, 2.9)	2.3 (1.5, 3.7)	2.7 (1.7, 4.3)			
Quadra-H	Mpact	19		2.1 (1.7, 2.6)	2.3 (1.5, 3.7) 3.4 (2.8, 4.0)	5.5 (4.3, 7.0)			
Quaula-⊓	Trident (Shell)	144							
	Versafitcup CC	298		1.5 (0.8, 2.7) 1.9 (1.6, 2.2)	2.6 (1.6, 4.2) 2.7 (2.4, 3.1)	3.0 (1.8, 5.0)	58/10 7 2		
		298 37		4.0 (2.8, 5.9)	2.7 (2.4, 3.1) 6.1 (4.4, 8.4)	3.3 (2.9, 3.7) 6.7 (4.7, 9.4)	5.8 (4.8, 7.2)		
	Versafitcup DM	37			n 1 (4 4 6 4)				

Femoral Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
SL-Plus	EP-Fit Plus	48	1210	1.6 (1.0, 2.5)	2.1 (1.4, 3.1)	2.7 (1.9, 3.8)	3.9 (2.9, 5.2)		
	R3	102	1796	2.6 (2.0, 3.5)	4.1 (3.3, 5.2)	4.5 (3.6, 5.6)	6.7 (5.5, 8.2)		
Secur-Fit	Trident (Shell)	474	10300	1.8 (1.6, 2.1)	2.8 (2.5, 3.2)	3.5 (3.2, 3.9)	4.7 (4.3, 5.2)	6.2 (5.5, 6.8)	
Secur-Fit Plus	Trident (Shell)	241	6230	1.2 (1.0, 1.6)	1.9 (1.6, 2.3)	2.4 (2.0, 2.8)	3.5 (3.0, 4.0)	4.8 (4.2, 5.5)	5.7 (4.9, 6.5)
Summit	PINNACLE	163	5492	1.5 (1.2, 1.8)	2.1 (1.8, 2.6)	2.4 (2.0, 2.9)	3.4 (2.9, 4.1)	5.0 (4.0, 6.3)	
	PINNACLE* ^{MoM}	81	784	1.5 (0.9, 2.7)	2.2 (1.4, 3.5)	3.5 (2.4, 5.1)	8.7 (6.8, 11.0)	11.5 (9.2, 14.2)	
Synergy	R3	163	5192	1.8 (1.5, 2.2)	2.4 (2.0, 2.8)	2.8 (2.4, 3.3)	3.7 (3.1, 4.3)		
	Reflection (Shell)	407	7843	1.5 (1.3, 1.8)	2.3 (2.0, 2.7)	2.7 (2.3, 3.1)	4.0 (3.6, 4.5)	5.9 (5.3, 6.6)	
Taperloc	Continuum	16	722	1.8 (1.1, 3.1)	2.4 (1.4, 3.8)				
	Exceed*	50	1973	1.4 (1.0, 2.1)	2.0 (1.5, 2.7)	2.2 (1.6, 3.0)	3.2 (2.3, 4.3)		
	G7	75	3436	1.9 (1.5, 2.5)	2.4 (1.9, 3.1)	2.6 (2.0, 3.3)			
Taperloc Microplasty	Continuum	16	547	2.8 (1.7, 4.7)	3.2 (2.0, 5.3)				
	G7	25	2118	1.2 (0.8, 1.8)	1.3 (0.9, 2.0)	1.3 (0.9, 2.0)			
Tri-Fit TS	Trinity	87	4150	1.3 (1.0, 1.7)	2.1 (1.7, 2.6)	2.3 (1.9, 2.9)			
Tri-Lock	PINNACLE	27	1027	1.5 (0.9, 2.5)	2.3 (1.5, 3.5)	2.8 (1.9, 4.1)	3.2 (2.2, 4.8)		
VerSys	Trilogy*	256	4498	2.6 (2.2, 3.1)	3.4 (2.9, 4.0)	4.0 (3.5, 4.6)	5.3 (4.7, 6.0)	6.3 (5.5, 7.1)	
twinSys (cless)	RM Cup	45	1317	2.2 (1.5, 3.2)	3.1 (2.2, 4.2)	3.3 (2.4, 4.5)			
Other (616)		937	21587	2.5 (2.3, 2.7)	3.7 (3.4, 3.9)	4.3 (4.0, 4.6)	5.9 (5.5, 6.4)	7.7 (6.9, 8.6)	
TOTAL		8395	241477						

Note: Procedures using metal/metal prostheses have been included

Restricted to modern prostheses

 $^{\rm MoM}$ denotes metal/metal prostheses with head sizes >32mm

*denotes prosthesis combination with no reported use in primary total conventional hip procedures in 2020

Only prostheses with over 500 procedures have been listed

	••••••								
Femoral Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Absolut	Acetabular Shell (Global)	21	843	1.6 (0.9, 2.7)	2.5 (1.6, 3.9)	3.3 (2.0, 5.4)			
C-Stem AMT	PINNACLE	141	5385	1.5 (1.2, 1.8)	2.4 (2.0, 2.9)	3.3 (2.7, 3.9)	4.9 (3.9, 6.3)		
CPCS	R3	246	7188	2.2 (1.9, 2.6)	3.1 (2.7, 3.5)	3.5 (3.1, 4.0)	5.5 (4.6, 6.5)		
	Reflection (Shell)	120	3098	0.9 (0.6, 1.3)	1.3 (0.9, 1.8)	1.7 (1.3, 2.3)	3.6 (3.0, 4.5)	7.1 (5.7, 8.9)	
CPT	Allofit	51	1581	1.3 (0.8, 2.0)	1.9 (1.3, 2.7)	2.9 (2.1, 4.0)	5.0 (3.7, 6.8)		
	Continuum	168	3334	2.9 (2.4, 3.5)	4.0 (3.4, 4.8)	4.7 (4.0, 5.5)	7.3 (5.9, 9.0)		
	G7	39	1393	3.0 (2.2, 4.2)	3.8 (2.7, 5.3)				
	Trabecular Metal (Shell)	123	2372	2.6 (2.0, 3.3)	3.7 (3.0, 4.5)	4.8 (3.9, 5.9)	7.0 (5.8, 8.5)		
	Trilogy	418	8655	1.9 (1.7, 2.2)	2.9 (2.5, 3.2)	3.7 (3.3, 4.1)	5.5 (5.0, 6.1)	7.1 (6.3, 8.0)	
E2	C2	22	753	1.5 (0.8, 2.6)	2.3 (1.5, 3.7)	3.1 (2.0, 4.8)			
	Logical G	11	562	1.9 (1.0, 3.4)	2.2 (1.2, 4.0)				
Evolve	Logical G	37	1867	1.6 (1.1, 2.3)	2.1 (1.5, 2.9)	2.4 (1.7, 3.3)			
Exeter V40	Fixa	24	772	1.8 (1.1, 3.1)	2.4 (1.5, 3.8)	2.8 (1.8, 4.3)			
	PINNACLE	64	2330	1.5 (1.0, 2.0)	2.0 (1.5, 2.7)	2.3 (1.8, 3.1)	4.4 (3.2, 6.0)		
	R3	84	2474	1.9 (1.4, 2.5)	2.8 (2.2, 3.6)	3.5 (2.8, 4.4)	4.2 (3.4, 5.3)		
	Trabecular Metal (Shell)	27	547	2.8 (1.7, 4.6)	3.4 (2.2, 5.4)	4.2 (2.7, 6.4)	6.1 (4.2, 8.9)		
	Trident (Shell)	2247	75347	1.3 (1.2, 1.4)	2.0 (1.9, 2.1)	2.5 (2.4, 2.7)	4.0 (3.8, 4.2)	5.7 (5.4, 6.1)	
	Trident/Tritanium (Shell)	162	5264	1.7 (1.4, 2.1)	2.6 (2.2, 3.1)	3.4 (2.9, 4.0)	4.8 (3.8, 6.1)		
	Trilogy	20	606	1.7 (0.9, 3.1)	2.4 (1.4, 4.0)	2.6 (1.5, 4.2)	3.6 (2.3, 5.6)	3.9 (2.5, 6.1)	
MS 30	Allofit*	51	1337	1.1 (0.6, 1.8)	1.6 (1.0, 2.4)	2.1 (1.4, 3.0)	3.8 (2.8, 5.2)	7.1 (5.0, 10.0)	
	Continuum	18	878	1.6 (1.0, 2.7)	1.9 (1.2, 3.1)	2.3 (1.4, 3.9)			
	Fitmore	20	600	1.5 (0.8, 2.9)	2.1 (1.2, 3.7)	3.2 (2.0, 5.3)	4.4 (2.8, 7.1)	5.5 (3.2, 9.4)	
	G7	6	573	1.2 (0.5, 2.7)	1.2 (0.5, 2.7)				
Omnifit	Trident (Shell)	103	2968	1.7 (1.3, 2.3)	2.6 (2.1, 3.3)	2.9 (2.3, 3.6)	3.6 (2.9, 4.4)	4.5 (3.6, 5.6)	
Quadra-C	Mpact	34	2496	1.2 (0.8, 1.8)	1.6 (1.1, 2.3)	2.1 (1.2, 3.6)			
	Versafitcup CC	27	1409	1.7 (1.1, 2.5)	1.9 (1.3, 2.8)	2.0 (1.4, 3.0)			
Short Exeter V40	Trident (Shell)	48	2666	1.4 (1.0, 1.9)	2.1 (1.5, 2.9)	2.8 (2.0, 4.0)			
Spectron EF	R3	87	2250	1.7 (1.3, 2.4)	2.8 (2.2, 3.6)	3.6 (2.8, 4.5)	5.5 (4.3, 7.0)		
	Reflection (Shell)*	345	5210	1.1 (0.9, 1.4)	2.0 (1.6, 2.4)	2.8 (2.4, 3.3)	5.5 (4.8, 6.2)	9.8 (8.7, 11.0) 14	.5 (11.7, 18.0)
Taper Fit	Trinity	61	2925	1.6 (1.2, 2.1)	2.6 (2.0, 3.4)	3.5 (2.6, 4.8)			
X-Acta	Versafitcup CC	7	588	0.9 (0.4, 2.1)	1.1 (0.5, 2.5)	1.5 (0.7, 3.1)			
Other (519)		348	9307	2.2 (1.9, 2.5)	3.1 (2.7, 3.5)	4.0 (3.5, 4.5)	6.2 (5.4, 7.1)	8.5 (7.2, 10.1)	
TOTAL		5180	157578						

 Table HT13
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement with Hybrid Fixation by Prosthesis

 Combination
 Combination

Note: Procedures using metal/metal prostheses have been included

Restricted to modern prostheses

 $^{\rm MoM}$ denotes metal/metal prostheses with head sizes >32mm

Only prostheses with over 500 procedures have been listed

*denotes prosthesis combination with no reported use in primary total conventional hip procedures in 2020

OUTCOME FOR OSTEOARTHRITIS - PATIENT CHARACTERISTICS

The following analyses have been undertaken excluding all procedures using metal/metal bearing surfaces. All other bearing surfaces are included in this analysis. Only procedures using prostheses that have been used in the past year have been included. The 20 year cumulative percent revision of primary total conventional hip replacement undertaken for osteoarthritis is 9.0% (Table HT14 and Figure HT5).

Reason for Revision

This year, the Registry has decided to combine dislocation and instability together for the analyses as they both reflect a similar reason for revision. The most common reasons for revision of primary total conventional hip replacement are prosthesis dislocation/instability, infection, fracture and loosening (Table HT15).

The most common reason for revision varies with time. In the first 11 years, dislocation and infection are the most frequent reasons for revision. After 11 years, loosening is the predominant reason for revision (Figure HT6). The aetiology of loosening changes with time. Loosening reported in the first few years most likely reflects failure to gain fixation. Loosening reported in later years is often due to loss of fixation secondary to lysis and bone resorption.

Loosening and lysis are reported separately. The diagnosis of loosening is used when loosening is reported either alone or in combination with lysis. The diagnosis of lysis is used for procedures that report only this diagnosis.

Type of Revision

The five most common types of revision are femoral component, head and insert, acetabular component, total hip replacement (femoral/acetabular), and head only (Table HT16).

Age and Gender

There is a difference in the rate of revision with respect to age and this varies with time. Overall, patients aged ≥75 years have a lower rate of revision than patients aged <55 years after 3 months, patients 55-64 years after 6 months, and patients 65-74 years after 4 years (Table HT17 and Figure HT7).

Males have a higher rate of revision than females after 6 months. The cumulative percent revision at 20 years is 10.1% for males and 8.2% for females (Table HT18 and Figure HT8). The Registry continues to report a difference in the rate of revision between age groups within gender.

Males aged \geq 75 years have a higher rate of revision initially, compared to the younger age groups. However, the rate of revision decreases with increasing age as time progresses (Table HT18 and Figure HT9). For females, the rate of revision decreases with increasing age. After 3 months, females aged <55 years have almost twice the rate of revision compared to females aged \geq 75 years (Table HT18 and Figure HT10).

For both males and females <75 years of age, loosening is the most common reason for revision. For patients aged ≥75 years, the most common reason for revision is fracture (Figure HT11 and Figure HT12).

ASA and BMI

ASA scores are an indication of comorbidity and have been collected since 2012. The definitions for these scores can be found in the introductory chapter. The Registry can now report on the outcome of 228,771 primary total conventional hip replacement procedures for osteoarthritis in relation to these scores. When compared to patients with an ASA score of 1, patients in all other ASA groups have a higher rate of revision (Table HT19 and Figure HT13). The difference in revision rate for each ASA score is partially due to an increase in revision for infection with increasing ASA score (Figure HT14).

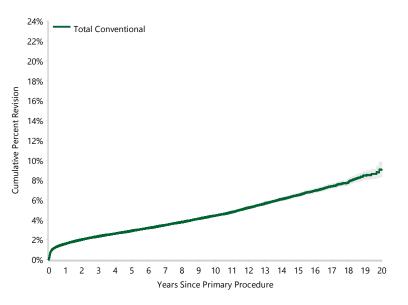

BMI data have been collected since 2015. The revision outcomes are reported for 181,595 primary total conventional hip replacement procedures for osteoarthritis. When compared to patients in the normal BMI class, there is no difference in the rate of revision for patients in the underweight or pre-obese classes. The rate of revision increases for obese class 1, obese class 2, and obese class 3 (Table HT20 and Figure HT15). The most common reasons for revision are shown in Figure HT16. There is an increasing rate of revision for infection with increasing obesity classes. At 3 years, the cumulative incidence of infection is 2.0% for obese class 3 compared to 1.3% for obese class 2 and 0.8% for obese class 1. The revision for infection for patients in obese class 3 is 6-fold compared to patients in the normal BMI class (Figure HT16).

Table HT14 Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)

Hip Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Conventional	12028	368834	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 3.0)	4.4 (4.3, 4.5)	6.5 (6.3, 6.7)	9.0 (8.3, 9.8)
TOTAL	12028	368834						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT5 Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Conventional	368834	327362	251190	182981	68326	17085	266

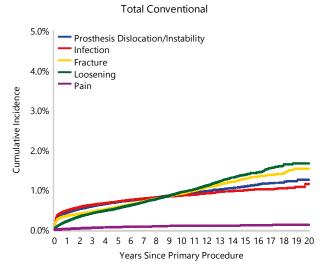
Table HT15	Primary Total Conventional Hip Replacement
	by Reason for Revision (Primary Diagnosis OA)

Reason for Revision	Number	Percent
Prosthesis Dislocation/Instability	2702	22.5
Infection	2687	22.3
Fracture	2589	21.5
Loosening	2535	21.1
Pain	245	2.0
Leg Length Discrepancy	207	1.7
Malposition	181	1.5
Lysis	154	1.3
Implant Breakage Stem	105	0.9
Implant Breakage Acetabular Insert	102	0.8
Incorrect Sizing	81	0.7
Wear Acetabular Insert	72	0.6
Metal Related Pathology	55	0.5
Implant Breakage Acetabular	46	0.4
Implant Breakage Head	23	0.2
Other	244	2.0
TOTAL	12028	100.0

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Table HT16	Primary Total Conventional Hip Replacement
	by Type of Revision (Primary Diagnosis OA)

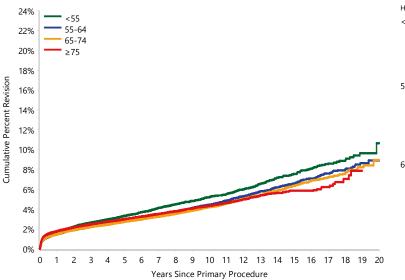

Type of Revision	Number	Percent
Femoral Component	3918	32.6
Head/Insert	2910	24.2
Acetabular Component	2332	19.4
THR (Femoral/Acetabular)	1337	11.1
Head Only	604	5.0
Cement Spacer	484	4.0
Minor Components	217	1.8
Insert Only	121	1.0
Removal of Prostheses	70	0.6
Reinsertion of Components	16	0.1
Head/Neck	6	0.0
Head/Neck/Insert	4	0.0
Total Femoral	2	0.0
Bipolar Only	2	0.0
Bipolar Head and Femoral	2	0.0
Saddle	1	0.0
Neck Only	1	0.0
Cement Only	1	0.0
TOTAL	12028	100.0

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Femoral heads are usually replaced when the acetabular component or femoral stem is revised

Figure HT6 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)



Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	1491	38579	1.6 (1.5, 1.8)	2.7 (2.5, 2.8)	3.3 (3.1, 3.5)	5.2 (4.9, 5.5)	7.6 (7.0, 8.1)	10.7 (8.6, 13.1)
55-64	2918	86889	1.5 (1.4, 1.6)	2.2 (2.1, 2.3)	2.8 (2.7, 2.9)	4.5 (4.3, 4.6)	6.6 (6.3, 6.9)	8.9 (8.1, 9.8)
65-74	4175	132629	1.5 (1.4, 1.5)	2.2 (2.1, 2.3)	2.7 (2.6, 2.8)	4.2 (4.1, 4.4)	6.4 (6.1, 6.7)	9.0 (7.7, 10.3)
≥75	3444	110737	1.8 (1.7, 1.9)	2.5 (2.4, 2.6)	3.0 (2.9, 3.1)	4.3 (4.2, 4.5)	5.9 (5.5, 6.2)	
TOTAL	12028	368834						

 Table H117
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT7 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)

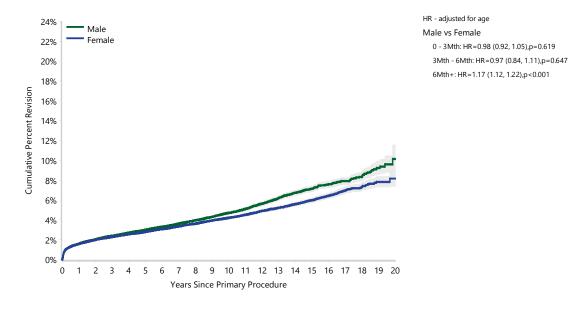
HR - adjusted for gender <55 vs ≥75 0 - 2Wk: HR=1.05 (0.86, 1.28),p=0.628 2Wk - 3Mth: HR=0.69 (0.61, 0.79),p<0.001 3Mth+: HR=1.34 (1.25, 1.44),p<0.001

55-64 vs ≥75

0 - 2Wk: HR=0.84 (0.71, 0.98),p=0.030 2Wk - 1Mth: HR=0.62 (0.54, 0.72),p<0.001 1Mth - 6Mth: HR=0.84 (0.76, 0.93),p=0.001 6Mth+: HR=1.14 (1.07, 1.21),p<0.001

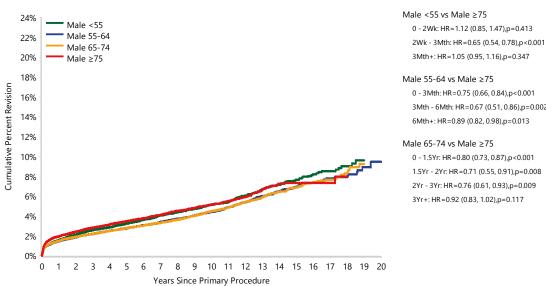
65-74 vs ≥75

0 - 1Mth: HR=0.75 (0.68, 0.82),p<0.001 1Mth - 9Mth: HR=0.86 (0.79, 0.93),p<0.001 9Mth - 1.5Yr: HR=1.16 (1.03, 1.32),p=0.015 1.5Yr - 4Yr: HR=0.98 (0.89, 1.08),p=0.649 4Yr+: HR=1.09 (1.01, 1.18),p=0.035

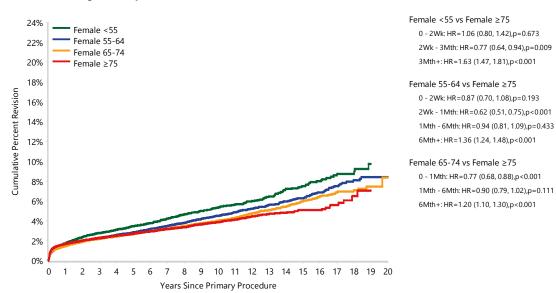

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	38579	34376	26740	19713	7713	2557	64
55-64	86889	77574	60547	44998	18557	5483	104
65-74	132629	117936	90768	66792	26456	6776	85
≥75	110737	97476	73135	51478	15600	2269	13

		agnosis e,	.,						
Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male		5694	168743	1.6 (1.5, 1.7)	2.4 (2.3, 2.5)	3.0 (2.9, 3.1)	4.7 (4.6, 4.9)	7.1 (6.9, 7.4)	10.1 (8.9, 11.5)
	< 55	804	21690	1.6 (1.4, 1.8)	2.6 (2.3, 2.8)	3.2 (3.0, 3.5)	5.1 (4.7, 5.6)	7.6 (6.9, 8.4)	
	55-64	1433	43666	1.5 (1.4, 1.6)	2.2 (2.1, 2.3)	2.8 (2.6, 2.9)	4.4 (4.1, 4.7)	6.9 (6.4, 7.5)	9.4 (8.0, 11.1)
	65-74	1938	59765	1.5 (1.4, 1.6)	2.2 (2.1, 2.3)	2.8 (2.6, 2.9)	4.5 (4.2, 4.7)	6.9 (6.4, 7.3)	
	≥75	1519	43622	1.9 (1.8, 2.1)	2.8 (2.7, 3.0)	3.5 (3.3, 3.7)	5.1 (4.8, 5.5)	7.3 (6.7, 8.1)	
Female		6334	200091	1.6 (1.5, 1.6)	2.3 (2.2, 2.4)	2.8 (2.7, 2.9)	4.2 (4.1, 4.3)	6.0 (5.8, 6.2)	8.2 (7.4, 9.0)
	< 55	687	16889	1.7 (1.5, 1.9)	2.8 (2.5, 3.1)	3.5 (3.2, 3.8)	5.3 (4.9, 5.8)	7.5 (6.8, 8.3)	
	55-64	1485	43223	1.5 (1.4, 1.6)	2.3 (2.1, 2.4)	2.8 (2.7, 3.0)	4.5 (4.3, 4.8)	6.3 (5.9, 6.7)	8.4 (7.6, 9.4)
	65-74	2237	72864	1.5 (1.4, 1.6)	2.2 (2.1, 2.3)	2.7 (2.6, 2.8)	4.0 (3.8, 4.2)	6.0 (5.6, 6.4)	8.4 (6.6, 10.5)
	≥75	1925	67115	1.7 (1.6, 1.8)	2.3 (2.2, 2.4)	2.7 (2.6, 2.9)	3.9 (3.7, 4.1)	5.1 (4.7, 5.5)	
TOTAL		12028	368834						

Table HT18 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Gender and Age (Primary Diagnosis OA)


Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	168743	149274	113338	81325	29128	7470	113
Female	200091	178088	137852	101656	39198	9615	153



0 - 3Mth: HR=0.75 (0.66, 0.84),p<0.001 3Mth - 6Mth: HR=0.67 (0.51, 0.86),p=0.002 6Mth+: HR=0.89 (0.82, 0.98),p=0.013 Male 65-74 vs Male ≥75

0 - 1.5Yr: HR=0.80 (0.73, 0.87),p<0.001 1.5Yr - 2Yr: HR=0.71 (0.55, 0.91),p=0.008 2Yr - 3Yr: HR=0.76 (0.61, 0.93),p=0.009 3Yr+: HR=0.92 (0.83, 1.02),p=0.117

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	<55	21690	19336	14892	10737	3917	1326	36
	55-64	43666	38797	29982	21922	8574	2610	40
	65-74	59765	53161	40779	29902	11575	2893	35
	≥75	43622	37980	27685	18764	5062	641	2

Figure HT10 Cumulative Percent Revision of Primary Total Conventional Hip Replacement in Females by Age (Primary Diagnosis OA)

Nu	mber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Female	<55	16889	15040	11848	8976	3796	1231	28
	55-64	43223	38777	30565	23076	9983	2873	64
	65-74	72864	64775	49989	36890	14881	3883	50
	≥75	67115	59496	45450	32714	10538	1628	11

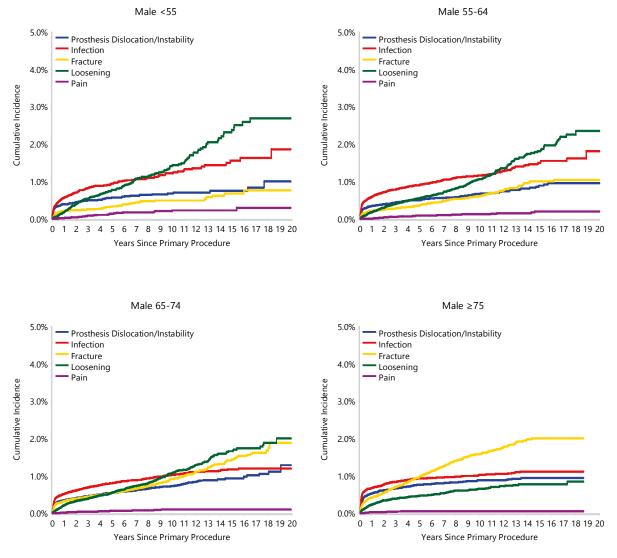
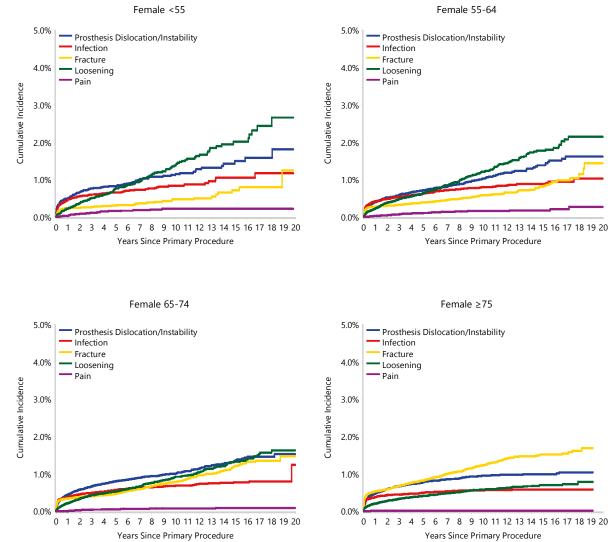



Figure HT11 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement in Males by Age (Primary Diagnosis OA)

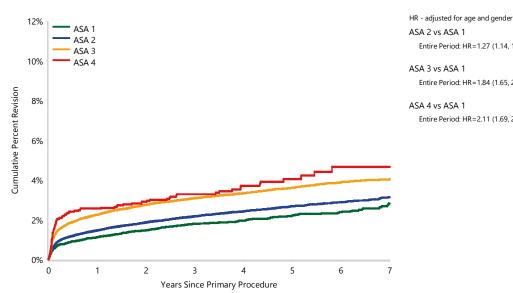
Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

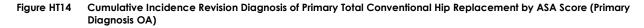
Entire Period: HR=1.27 (1.14, 1.41),p<0.001

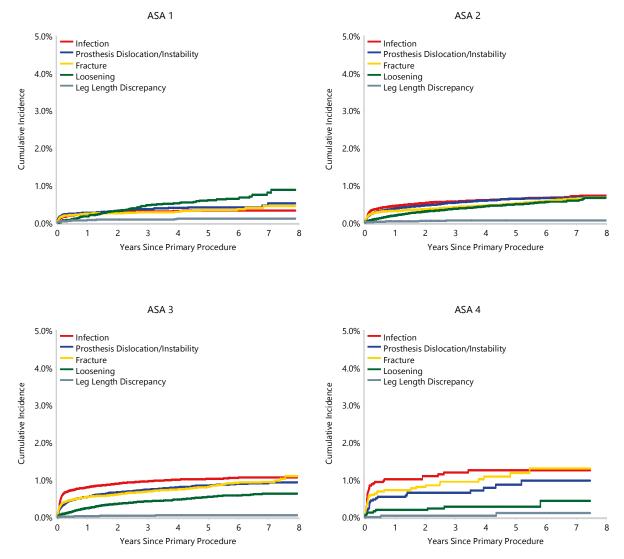
Entire Period: HR=1.84 (1.65, 2.05),p<0.001

Entire Period: HR=2.11 (1.69, 2.62),p<0.001


Table HT19	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by ASA Score (Primary Diagnosis
	OA)

ASA Score	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	7 Yrs
ASA 1	392	21028	1.1 (1.0, 1.3)	1.5 (1.3, 1.7)	1.8 (1.6, 2.0)	2.0 (1.8, 2.2)	2.2 (2.0, 2.5)	2.8 (2.5, 3.2)
ASA 2	2765	125080	1.5 (1.4, 1.5)	1.9 (1.8, 1.9)	2.2 (2.1, 2.3)	2.4 (2.3, 2.5)	2.7 (2.6, 2.8)	3.1 (3.0, 3.3)
ASA 3	2381	79421	2.3 (2.2, 2.4)	2.7 (2.6, 2.9)	3.1 (3.0, 3.2)	3.3 (3.2, 3.5)	3.6 (3.5, 3.8)	4.1 (3.9, 4.3)
ASA 4	106	3233	2.6 (2.1, 3.2)	2.9 (2.4, 3.6)	3.3 (2.7, 4.0)	3.7 (3.0, 4.5)	4.1 (3.3, 5.0)	4.7 (3.7, 5.9)
ASA 5	0	9	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	
TOTAL	5644	228771						

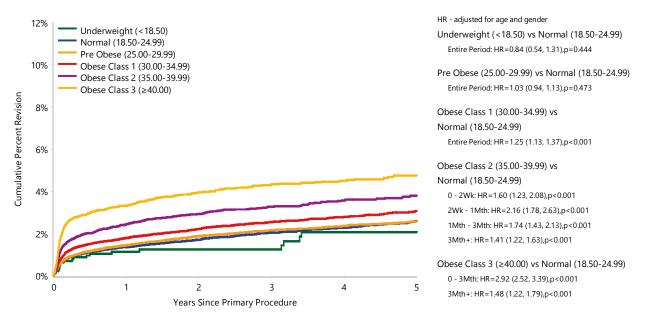

Note: All procedures using metal/metal prostheses have been excluded


Restricted to modern prostheses

Number at Risk 0 Yr 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 7 Yrs ASA 1 21028 18157 15297 12280 9316 6443 1475 ASA 2 125080 105291 86148 68095 50894 34350 7192 ASA 3 79421 64807 51080 38475 27409 17717 3412 1460 1035 ASA 4 3233 2583 2024 641 120

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

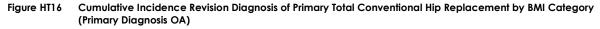
Table HT20 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by BMI Category (Primary Diagnosis OA)

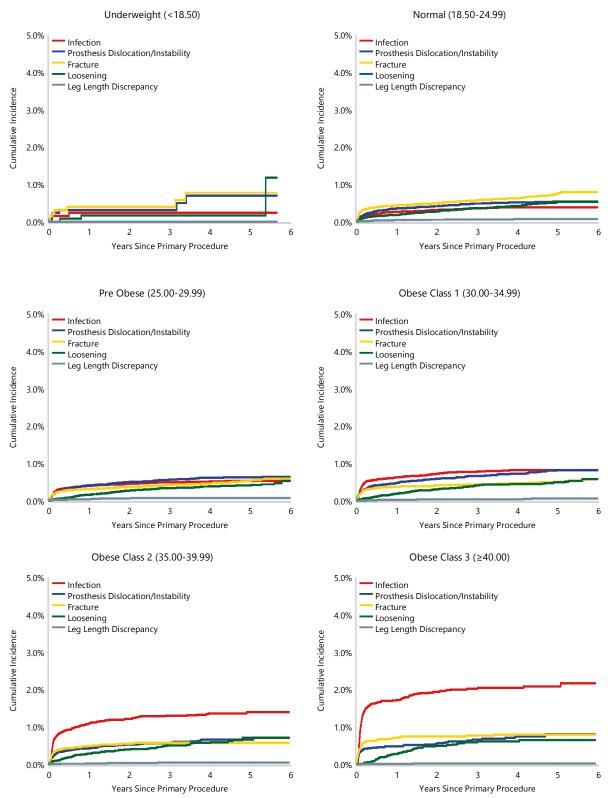

BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs
Underweight (<18.50)	20	1273	1.2 (0.7, 1.9)	1.3 (0.8, 2.1)	1.3 (0.8, 2.1)	2.1 (1.3, 3.4)	2.1 (1.3, 3.4)
Normal (18.50-24.99)	711	37592	1.4 (1.2, 1.5)	1.7 (1.6, 1.9)	2.1 (1.9, 2.2)	2.3 (2.1, 2.5)	2.6 (2.4, 2.8)
Pre Obese (25.00-29.99)	1323	67184	1.5 (1.4, 1.5)	1.9 (1.8, 2.0)	2.2 (2.0, 2.3)	2.4 (2.2, 2.5)	2.6 (2.4, 2.7)
Obese Class 1 (30.00-34.99)	1086	46185	1.8 (1.7, 1.9)	2.2 (2.1, 2.4)	2.6 (2.4, 2.7)	2.8 (2.6, 3.0)	3.1 (2.9, 3.3)
Obese Class 2 (35.00-39.99)	597	19740	2.4 (2.2, 2.7)	2.9 (2.7, 3.2)	3.3 (3.0, 3.6)	3.6 (3.3, 3.9)	3.8 (3.5, 4.1)
Obese Class 3 (≥40.00)	386	9621	3.3 (3.0, 3.7)	4.0 (3.6, 4.4)	4.3 (3.9, 4.8)	4.5 (4.1, 5.0)	4.8 (4.3, 5.3)
TOTAL	4123	181595					

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

BMI has not been presented for patients aged ≤19 years


Figure HT15 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by BMI Category (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs
Underweight (<18.50)	1273	1019	753	534	325	146
Normal (18.50-24.99)	37592	30132	22925	16229	10141	4615
Pre Obese (25.00-29.99)	67184	53982	41049	29018	18146	8184
Obese Class 1 (30.00-34.99)	46185	36900	28049	19731	12135	5418
Obese Class 2 (35.00-39.99)	19740	15624	11748	8276	5080	2223
Obese Class 3 (≥40.00)	9621	7613	5724	4019	2542	1143

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

BMI has not been presented for patients aged \leq 19 years

Restricted to modern prostheses, BMI has not been presented for patients aged ≤19 years

OUTCOME FOR OSTEOARTHRITIS - PROSTHESIS CHARACTERISTICS

The analysis of prosthesis fixation was performed for prosthesis combinations using only modern bearing surfaces with recorded use in 2020. These bearing surfaces include mixed ceramic/mixed ceramic and all femoral head materials used in conjunction with cross-linked polyethylene (XLPE).

Fixation

Modern bearing surfaces account for 96.8% of all primary total conventional hip procedures performed in 2020.

There is no difference in the rate of revision for cemented compared to hybrid fixation. Cementless fixation has a higher rate of revision than hybrid in the first 3 years and after this time there is no difference. Cementless fixation has a higher rate of revision than cemented fixation for the first month and after this time there is no difference (Table HT21 and Figure HT17).

The outcome with respect to fixation varies with age.

For patients aged <55 years, there is no difference in the rate of revision when comparing fixation methods. For patients aged 55-64 years there is a higher rate of revision in the first month for cementless fixation compared to hybrid fixation and after this time cementless fixation has a lower rate of revision. Cementless fixation has a higher rate of revision in the first 1.5 years for patients aged 65-74 years when compared to hybrid fixation. After this time, there is no difference. Cementless fixation has a higher rate of revision for patients aged ≥75 years compared to hybrid and cemented fixation for all time periods. There is no difference between cemented and hybrid fixation (Table HT22 and Figure HT18 to Figure HT21).

Mini Stems

The Registry defines a mini stem as a short cementless femoral stem where fixation is designed to be entirely metaphyseal. These stems may enable femoral neck sparing.

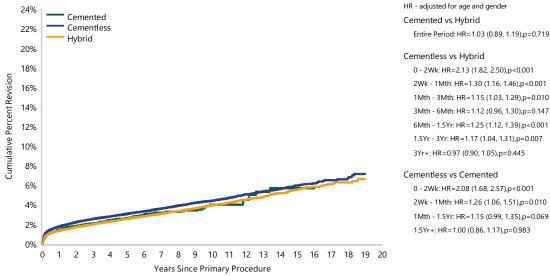
There have been 6,737 procedures using a mini stem prosthesis undertaken for osteoarthritis. This represents prosthesis. <1.9% of all primary conventional hip procedures. There were 1,347 procedures recorded in 2020 using a mini stem

prosthesis. This is an increase of 9.9% compared to 2019. The 10 year cumulative percent revision for primary total conventional hip replacement using a mini stem is 3.0% compared to 4.4% for other femoral stems. Mini stems have a reduced rate of revision after 6 months (Table HT23 and Figure HT22). There is an increased cumulative incidence of fracture and loosening for procedures using a mini stem compared to other femoral stems at 1 year (0.6% compared to 0.3%, and 0.4% compared to 0.2%, respectively) (Figure HT23). The types of revision are presented in Table HT24. The Registry has information on 7 different mini stem prostheses. Rates of revision vary depending on the type of prosthesis (Table HT25).

Femoral Stems with Exchangeable Necks

A femoral stem with an exchangeable neck has a separate neck that connects proximally to the stem. Femoral stems with exchangeable necks were introduced to enable surgeons to have increased choice with respect to determining femoral neck version, offset and length during primary total conventional hip replacement.

The Registry has recorded 1,875 primary procedures using femoral stems with exchangeable necks undertaken for osteoarthritis. There were only 34 procedures reported in 2020 which comprised 0.1% of all primary total conventional hip procedures. This is a 22.7% decrease compared to 2019. The proportion of procedures using exchangeable necks continues to decline and peaked in 2008 at 1.3% of all primary total conventional hip procedures.


The cumulative percent revision at 10 years is 6.7% for stems with exchangeable necks compared to 4.4% for fixed neck stems. Femoral stems with exchangeable necks have almost 1.5 times the rate of revision compared to fixed neck stems (Table HT26 and Figure HT24). The increase in the rate of revision is due to a higher cumulative incidence of prosthesis dislocation/instability (1.6% compared to 0.9%, respectively) (Figure HT25). Of the reasons for revision of femoral stems with exchangeable necks, 2.0% are for implant breakage of the femoral component compared to 0.9% for fixed neck stems (Table HT27). The higher rate of revision when using stems with exchangeable necks is evident for all bearing surfaces.

The Registry has information on 3 different exchangeable femoral neck prostheses that continue to be implanted and have been used in >30 procedures. The outcomes of each of these stems are detailed in Table HT28.

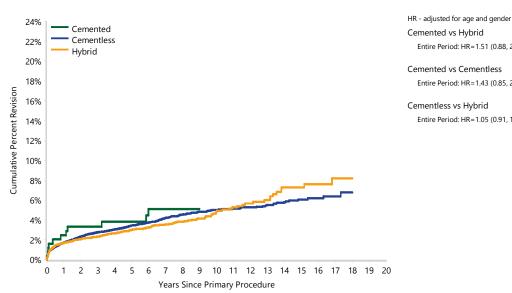
Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	191	6913	1.4 (1.2, 1.8)	2.1 (1.8, 2.5)	2.6 (2.3, 3.1)	4.0 (3.3, 4.8)	5.7 (4.3, 7.4)	
Cementless	6393	203677	1.8 (1.7, 1.8)	2.6 (2.5, 2.6)	3.1 (3.0, 3.2)	4.4 (4.3, 4.5)	6.0 (5.7, 6.2)	
Hybrid	3429	122724	1.3 (1.3, 1.4)	2.0 (1.9, 2.1)	2.6 (2.5, 2.7)	4.0 (3.8, 4.1)	5.5 (5.3, 5.8)	
TOTAL	10013	333314						

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces Restricted to modern prostheses

Cementless vs Hybrid 0 - 2Wk: HR=2.13 (1.82, 2.50),p<0.001 2Wk - 1Mth: HR=1.30 (1.16, 1.46),p<0.001 1Mth - 3Mth; HR=1.15 (1.03, 1.29),p=0.010 3Mth - 6Mth: HR=1.12 (0.96, 1.30),p=0.147 6Mth - 1.5Yr: HR=1.25 (1.12, 1.39),p<0.001 1.5Yr - 3Yr: HR = 1.17 (1.04, 1.31),p=0.007 3Yr+: HR=0.97 (0.90, 1.05),p=0.445 Cementless vs Cemented

0 - 2Wk: HR=2.08 (1.68, 2.57),p<0.001 2Wk - 1Mth: HR=1.26 (1.06, 1.51),p=0.010 1Mth - 1.5Yr: HR=1.15 (0.99, 1.35),p=0.069 1.5Yr+: HR=1.00 (0.86, 1.17),p=0.983

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	6913	6268	4885	3602	644	136	0
Cementless	203677	178603	132762	91648	28365	5333	22
Hybrid	122724	108808	83275	60942	21785	4649	33

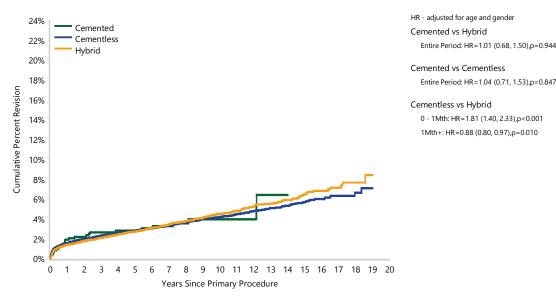

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces Restricted to modern prostheses

Age	Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55		1169	33961	1.7 (1.6, 1.9)	2.7 (2.5, 2.9)	3.4 (3.2, 3.6)	5.0 (4.7, 5.3)	6.4 (5.9, 7.1)	
	Cemented	14	249	2.5 (1.1, 5.4)	3.3 (1.7, 6.5)	3.8 (2.0, 7.2)			
	Cementless	942	27348	1.7 (1.6, 1.9)	2.8 (2.6, 3.0)	3.4 (3.2, 3.7)	5.0 (4.6, 5.4)	6.1 (5.5, 6.7)	
	Hybrid	213	6364	1.7 (1.4, 2.0)	2.3 (2.0, 2.8)	3.0 (2.6, 3.5)	4.8 (4.1, 5.7)	7.3 (5.9, 8.9)	
55-64		2351	77493	1.5 (1.4, 1.6)	2.3 (2.2, 2.4)	2.8 (2.7, 2.9)	4.3 (4.1, 4.5)	6.0 (5.6, 6.4)	
	Cemented	26	744	1.9 (1.1, 3.2)	2.7 (1.7, 4.1)	2.8 (1.8, 4.4)	4.0 (2.6, 6.0)		
	Cementless	1702	57503	1.6 (1.5, 1.7)	2.3 (2.2, 2.4)	2.8 (2.7, 3.0)	4.2 (4.0, 4.5)	5.7 (5.3, 6.2)	
	Hybrid	623	19246	1.4 (1.2, 1.6)	2.1 (1.9, 2.3)	2.7 (2.5, 3.0)	4.5 (4.1, 4.9)	6.5 (5.8, 7.2)	
65-74		3445	120945	1.5 (1.4, 1.5)	2.2 (2.1, 2.3)	2.7 (2.6, 2.8)	4.0 (3.8, 4.1)	5.5 (5.2, 5.8)	
	Cemented	61	2127	1.2 (0.8, 1.8)	1.9 (1.4, 2.6)	2.5 (1.9, 3.3)	4.2 (3.1, 5.8)	6.3 (4.1, 9.6)	
	Cementless	2173	75046	1.6 (1.6, 1.7)	2.4 (2.2, 2.5)	2.8 (2.7, 3.0)	4.0 (3.8, 4.3)	5.5 (5.1, 6.0)	
	Hybrid	1211	43772	1.2 (1.1, 1.3)	1.9 (1.7, 2.0)	2.4 (2.3, 2.6)	3.8 (3.6, 4.1)	5.3 (4.9, 5.8)	
≥75		3048	100915	1.8 (1.7, 1.9)	2.5 (2.4, 2.6)	3.0 (2.9, 3.1)	4.3 (4.1, 4.4)	5.8 (5.4, 6.2)	
	Cemented	90	3793	1.4 (1.1, 1.8)	2.0 (1.6, 2.5)	2.6 (2.1, 3.3)	3.1 (2.5, 3.9)		
	Cementless	1576	43780	2.3 (2.2, 2.5)	3.1 (2.9, 3.2)	3.6 (3.4, 3.8)	5.0 (4.7, 5.3)	7.2 (6.5, 8.0)	
	Hybrid	1382	53342	1.4 (1.3, 1.5)	2.0 (1.9, 2.2)	2.6 (2.4, 2.7)	3.7 (3.5, 4.0)	4.9 (4.5, 5.4)	
TOTAL		10013	333314						

Table HT22 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age and Fixation (Primary Diagnosis OA)

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces Restricted to modern prostheses

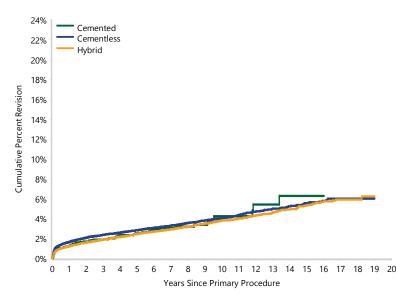
Cemented vs Hybrid Entire Period: HR=1.51 (0.88, 2.59),p=0.136


Cemented vs Cementless Entire Period: HR=1.43 (0.85, 2.43),p=0.180

Cementless vs Hybrid Entire Period: HR=1.05 (0.91, 1.22),p=0.505

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	249	230	193	163	29	9	0
Cementless	27348	24091	18159	12687	4007	882	2
Hybrid	6364	5634	4311	3129	1019	293	3

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces Restricted to modern prostheses



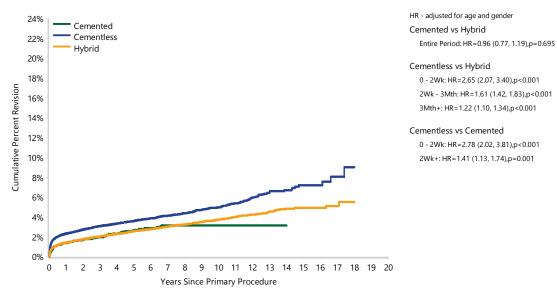
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	744	702	600	492	106	36	0
Cementless	57503	50691	38191	26831	8851	1855	10
Hybrid	19246	17144	13389	10006	3969	1076	9

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces Restricted to modern prostheses

HR - adjusted for age and gender Cemented vs Hybrid Entire Period: HR=1.06 (0.82, 1.38),p=0.635

Cementless vs Hybrid

0 - 2Wk: HR=2.16 (1.62, 2.88),p<0.001 2Wk - 3Mth: HR=1.31 (1.14, 1.50),p<0.001 3Mth - 1.5Yr: HR=1.20 (1.03, 1.39),p=0.016 1.5Yr+: HR=0.94 (0.85, 1.05),p=0.259


Cementless vs Cemented

0 - 1Mth: HR=1.49 (1.11, 1.99),p=0.008 1Mth+: HR=1.00 (0.77, 1.29),p=0.996

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	2127	1964	1617	1232	247	63	0
Cementless	75046	65798	48706	33645	10715	2030	10
Hybrid	43772	39071	30412	22977	9400	2285	18

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	3793	3372	2475	1715	262	28	0
Cementless	43780	38023	27706	18485	4792	566	0
Hybrid	53342	46959	35163	24830	7397	995	3

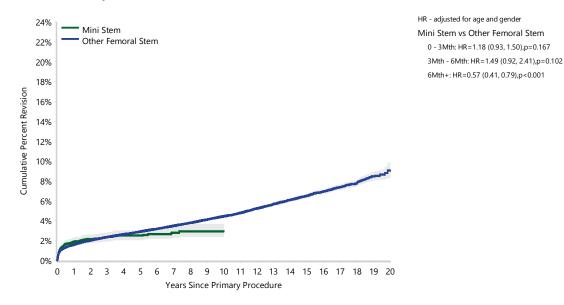

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces Restricted to modern prostheses

Table HT23 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)

Stem Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Mini Stem	121	5442	1.9 (1.5, 2.3)	2.3 (1.9, 2.8)	2.5 (2.1, 3.0)	2.9 (2.4, 3.6)		
Other Femoral Stem	11907	363392	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 3.0)	4.4 (4.3, 4.5)	6.5 (6.3, 6.7)	9.0 (8.3, 9.8)
TOTAL	12028	368834						

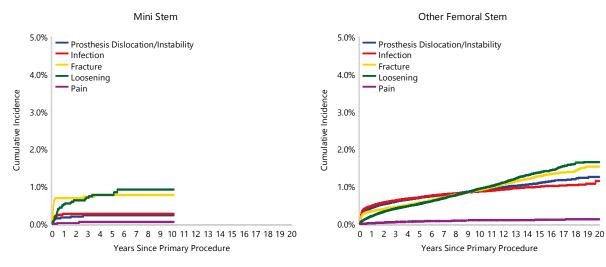

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT22 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Mini Stem	5442	4296	2496	1430	64	0	0
Other Femoral Stem	363392	323066	248694	181551	68262	17085	266

Figure HT23 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

		Mini Stem			Other Femoral Sten	า
Type of Revision	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions
Femoral Component	59	1.1	48.8	3859	1.1	32.4
Head/Insert	17	0.3	14.0	2893	0.8	24.3
Acetabular Component	22	0.4	18.2	2310	0.6	19.4
THR (Femoral/Acetabular)	8	0.1	6.6	1329	0.4	11.2
Head Only	9	0.2	7.4	595	0.2	5.0
Cement Spacer	3	0.1	2.5	481	0.1	4.0
Minor Components	1	0.0	0.8	216	0.1	1.8
Other	2	0.0	1.7	224	0.1	1.9
N Revision	121	2.2	100.0	11907	3.3	100.0
N Primary	5442			363392		

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Table HT25 Cumulative Percent Revision of Primary Total Conventional Hip Replacement using a Mini Stem by Femoral Component (Primary Diagnosis OA)

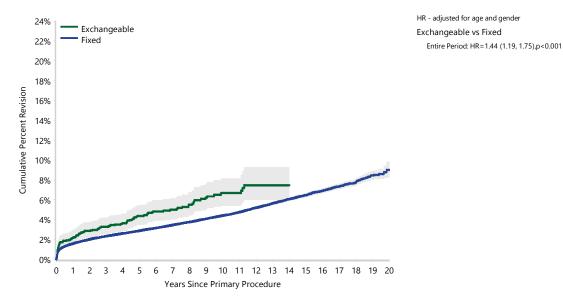
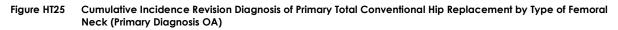

Femoral Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Collo-MIS	0	12	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)			
Metha	2	32	3.1 (0.4, 20.2)	6.4 (1.6, 23.1)	6.4 (1.6, 23.1)			
MiniHip	41	1202	2.5 (1.7, 3.5)	3.2 (2.3, 4.4)	3.6 (2.6, 5.0)			
MiniMax	19	361	4.5 (2.8, 7.3)					
Nanos	10	671	0.9 (0.4, 2.0)	1.2 (0.6, 2.4)	1.2 (0.6, 2.4)	1.6 (0.8, 2.9)		
Optimys	8	630	1.0 (0.4, 2.2)	1.2 (0.6, 2.5)	1.6 (0.8, 3.2)			
Taperloc Microplasty	41	2534	1.6 (1.2, 2.2)	1.9 (1.4, 2.6)	1.9 (1.4, 2.6)			
TOTAL	121	5442						

Table HT26 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Type of Femoral Neck (Primary Diagnosis OA)


Femoral Neck	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Exchangeable	102	1875	2.2 (1.6, 3.0)	3.3 (2.5, 4.2)	4.4 (3.5, 5.4)	6.7 (5.4, 8.2)		
Fixed	11926	366959	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 2.9)	4.4 (4.3, 4.5)	6.5 (6.3, 6.7)	9.0 (8.3, 9.8)
TOTAL	12028	368834						

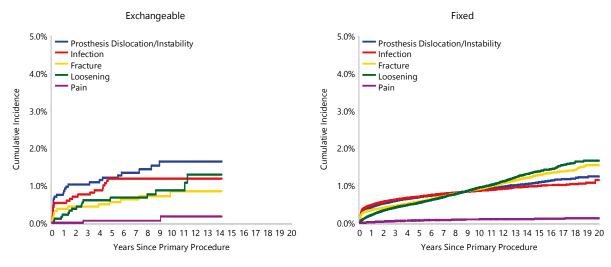

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT24 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Type of Femoral Neck (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Exchangeable	1875	1791	1629	1350	544	2	0
Fixed	366959	325571	249561	181631	67782	17083	266

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Revision Diagnosis	Number	Exchangeable % Primaries Revised	% Revisions	Number	Fixed % Primaries Revised	% Revisions
Prosthesis Dislocation/Instability	27	1.4	26.5	2675	0.7	22.4
Infection	21	1.1	20.6	2666	0.7	22.4
Fracture	13	0.7	12.7	2576	0.7	21.6
Loosening	16	0.9	15.7	2519	0.7	21.1
Pain	2	0.1	2.0	243	0.1	2.0
Leg Length Discrepancy	4	0.2	3.9	203	0.1	1.7
Malposition	4	0.2	3.9	177	0.0	1.5
Lysis	2	0.1	2.0	152	0.0	1.3
Implant Breakage Stem	2	0.1	2.0	103	0.0	0.9
Implant Breakage Acetabular Insert	3	0.2	2.9	99	0.0	0.8
Incorrect Sizing	1	0.1	1.0	80	0.0	0.7
Wear Acetabular Insert				72	0.0	0.6
Metal Related Pathology	2	0.1	2.0	53	0.0	0.4
Implant Breakage Acetabular	3	0.2	2.9	43	0.0	0.4
Wear Head	2	0.1	2.0	39	0.0	0.3
Implant Breakage Head				23	0.0	0.2
Heterotopic Bone				20	0.0	0.2
Tumour				13	0.0	0.1
Wear Acetabulum				7	0.0	0.1
Synovitis				1	0.0	0.0
Other				162	0.0	1.4
N Revision	102	5.4	100.0	11926	3.2	100.0
N Primary	1875			366959		

Table HT27 Primary Total Conventional Hip Replacement by Reason for Revision and Type of Femoral Neck (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Table HT28 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Prosthesis Type (Primary Diagnosis OA)

Prosthesis Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Apex	98	1789	2.2 (1.6, 3.0)	3.3 (2.6, 4.2)	4.4 (3.5, 5.5)	6.6 (5.4, 8.1)		
Modula	1	36	0.0 (0.0, 0.0)	4.8 (0.7, 29.3)				
Profemur	3	49	2.1 (0.3, 14.2)	2.1 (0.3, 14.2)	4.7 (1.2, 17.6)	7.8 (2.5, 22.5)		
Other (1)	0	1						
TOTAL	102	1875						

Note: Restricted to modern prostheses

All procedures using metal/metal prostheses have been excluded Only prostheses with over 30 procedures have been listed

Bearing Surface

Bearing surface is a combination of the material used for the femoral head and acetabular insert or cup. For this analysis, the Registry has identified 3 types of femoral head (metal, ceramic, and ceramicised metal) and 4 types of acetabular articular surface (XLPE, non XLPE, ceramic, and metal). Metal/metal bearing surface includes large head sizes >32mm and head sizes \leq 32mm. The following analyses comprises all prosthesis combinations including those with no recorded use in 2020.

XLPE is classified as ultra high molecular weight polyethylene that has been irradiated by high dose (≥50kGy) gamma or electron beam radiation.

Comparison of Bearing Surfaces

Ceramic/Non XLPE

Metal/Metal >32mm

Metal/Metal ≤32mm

Ceramicised Metal/Non XLPE

Ceramicised Metal/XLPE

Ceramic/XLPE

Ceramic/Metal

Metal/Non XLPE

Metal/XLPE

TOTAL

This year, the Registry is reporting on 10 bearing surfaces, 8 of which have been used in >5,000 procedures.

622

2903

3546

436

2926

6317

55

829

21905 473901

28

Comparing the rates of revision for these bearings, ceramicised metal/XLPE has the lowest rate of revision at 10 years. As in previous years, the Registry urges caution in the interpretation of this result. This bearing is a single company product, used with a small number of femoral stem and acetabular component combinations. This may have a confounding effect on the outcome, making it unclear if the lower rate of revision is an effect of the bearing surface or reflects the limited combinations of femoral and acetabular prostheses.

Ceramic/XLPE has a lower rate of revision compared to metal/XLPE after 2 weeks (Table HT29 and Figure HT26). The Registry acknowledges that there may be prosthesisspecific factors that are confounders in the analysis of bearing surface.

Detailed information on the analysis of metal/metal and metal/ceramic bearing surfaces are available in the supplementary reports 'Metal/Metal Bearing Surface in Total Conventional Hip Arthroplasty' and 'Prosthesis Types No Longer Used' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2021

4.2 (4.0, 4.4)

8.3 (5.7, 12.2)

4.6 (4.4, 4.7)

3.8 (3.5, 4.1)

12.7 (9.1, 17.5) 22.3 (17.2, 28.7)

Diagnosis O						eni by beaning	Solidee (Fillindi	у
Bearing Surface	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Ceramic/Ceramic	4243	98889	1.5 (1.4, 1.6)	2.4 (2.3, 2.5)	3.1 (3.0, 3.2)	4.9 (4.8, 5.1)	7.0 (6.8, 7.3)	9.3 (8.8, 9.9)

3.8 (3.3, 4.2)

3.0 (2.8, 3.1)

4.4 (2.6, 7.4)

4.4 (3.9, 5.0)

3.5 (3.3, 3.7)

3.0 (2.9, 3.1)

4.1 (2.3, 7.1)

2.7 (2.5, 2.9)

14422 1.7 (1.5, 1.9) 5.7 (5.3, 6.1) 11.8 (11.3, 12.3) 22.6 (21.9, 23.3) 28.6 (27.7, 29.5)

Table HT29	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Bearing Surface (Primary
	Diagnosis OA)

8641 1.9 (1.6, 2.2) 3.2 (2.8, 3.6)

299 1.7 (0.7, 4.0) 3.7 (2.1, 6.6)

5143 1.6 (1.3, 2.0) 3.3 (2.9, 3.8)

35389 1.4 (1.3, 1.6) 2.5 (2.3, 2.7)

175872 1.6 (1.6, 1.7) 2.4 (2.3, 2.5)

28180 1.8 (1.7, 2.0) 2.3 (2.2, 2.5)

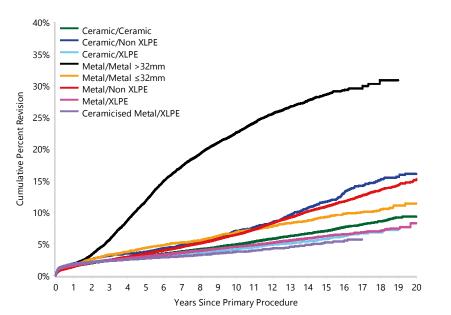
302 1.7 (0.7, 4.0) 3.7 (2.1, 6.6)

106764 1.7 (1.6, 1.7) 2.5 (2.4, 2.6)

Note: Excludes 225 procedures with unknown bearing surfaces, 1 procedure with ceramicised metal/ceramic bearing surface, 8 procedures
with metal/ceramic bearing surface

8.3 (7.0, 9.7)

7.1 (6.4, 7.8) 11.7 (10.7, 12.7) 16.1 (14.6, 17.6) 5.8 (5.3, 6.2)

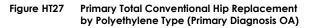

6.8 (6.1, 7.6) 9.3 (8.4, 10.2) 11.4 (10.1, 12.8)

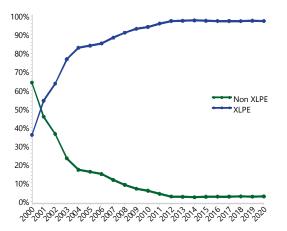
6.4 (6.2, 6.7) 10.9 (10.5, 11.3) 15.2 (14.4, 16.1)

6.2 (6.0, 6.5)

5.3 (4.7, 5.9)

Figure HT26 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Bearing Surface (Primary Diagnosis OA)


HR adjusted for Age and Gender			
Ceramic/Ceramic vs Metal/XLPE	Entire Period: HR=1.01 (0.97, 1.05),p=0.613	Metal/Metal ≤32mm vs Metal/XLPE	Entire Period: HR=1.36 (1.23, 1.50),p<0.001
Ceramic/XLPE vs Metal/XLPE	0 - 2Wk: HR=1.08 (0.95, 1.23),p=0.238	Ceramicised Metal/XLPE vs Metal/XLPE	0 - 3Mth: HR=1.20 (1.07, 1.33),p=0.001
	2Wk+: HR=0.93 (0.89, 0.98),p=0.003		3Mth+: HR=0.69 (0.63, 0.76),p<0.001
Metal/Metal >32mm vs Metal/XLPE	0 - 2Wk: HR=1.29 (0.97, 1.71),p=0.080	Metal/Non XLPE vs Metal/XLPE	0 - 1Mth: HR=0.73 (0.62, 0.86),p<0.001
	2Wk - 1Mth: HR=0.46 (0.31, 0.67),p<0.001		1Mth - 6Mth: HR=0.88 (0.76, 1.02),p=0.086
	1Mth - 3Mth: HR=0.79 (0.60, 1.05),p=0.104		6Mth - 1.5Yr: HR=1.41 (1.24, 1.61),p<0.001
	3Mth - 9Mth: HR=1.10 (0.86, 1.40),p=0.471		1.5Yr - 3Yr: HR=1.24 (1.08, 1.42),p=0.002
	9Mth - 1.5Yr: HR=2.64 (2.23, 3.12),p<0.001		3Yr - 10Yr: HR=1.83 (1.70, 1.96),p<0.001
	1.5Yr - 2Yr: HR=4.23 (3.51, 5.09),p<0.001		10Yr+: HR=2.44 (2.24, 2.66),p<0.001
	2Yr - 3Yr: HR=6.53 (5.78, 7.39),p<0.001		
	3Yr - 6Yr: HR=10.77 (10.03, 11.56),p<0.001	Ceramic/Non XLPE vs Metal/XLPE	
	6Yr - 9.5Yr: HR=6.68 (6.15, 7.26),p<0.001		0 - 3Mth: HR=1.03 (0.84, 1.26),p=0.771
	9.5Yr - 11.5Yr: HR=5.35 (4.72, 6.06),p<0.001		3Mth - 2Yr: HR=1.42 (1.18, 1.72),p<0.001
	11.5Yr+: HR=3.24 (2.81, 3.73),p<0.001		2Yr - 2.5Yr: HR=2.05 (1.40, 3.02),p<0.001
			2.5Yr+: HR=2.00 (1.80, 2.22),p<0.001


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Ceramic/Ceramic	98889	92925	80939	67064	30413	9999	216
Ceramic/Non XLPE	8641	7761	6343	5193	3281	1915	243
Ceramic/XLPE	106764	89324	58797	36094	9528	1771	14
Metal/Metal >32mm	14422	14061	13215	11979	9079	1676	16
Metal/Metal ≤32mm	5143	5021	4840	4654	3845	2110	73
Metal/Non XLPE	35389	34103	31670	28889	20320	10086	615
Metal/XLPE	175872	161073	132622	103437	41261	9766	60
Ceramicised Metal/XLPE	28180	24746	19367	14785	5277	1090	0

Note: Only bearing surfaces with over 5,000 procedures have been listed

Cross-linked Polyethylene (XLPE)

XLPE has been used in 280,745 procedures reported to the Registry. This includes 25,126 procedures that have XLPE with the addition of an antioxidant. In 2020, when polyethylene was used as a bearing surface in primary total conventional hip procedures, the proportion of XLPE was 97.3% (Figure HT27).

XLPE has a lower rate of revision compared to non XLPE after 9 months (Table HT30 and Figure HT28). The difference increases with time and at 20 years the cumulative percent revision is 7.8% and 18.2%, respectively. The cumulative incidence of loosening and prosthesis dislocation/instability at 20 years is 1.1% and 1.3% for XLPE, compared to 4.8% and 1.5% for non XLPE bearings, respectively (Figure HT29).

For non XLPE, there is no difference in the rate of revision between head sizes <32mm, 32mm and >32mm (Figure HT30 and Figure HT31).

The use of XLPE has been associated with an increased use of larger head sizes when compared to non XLPE. Head sizes ≥32mm have been used in 82.5% of XLPE procedures and in only 21.2% of non XLPE procedures. The Registry has previously shown that this increased use of larger head sizes with XLPE is the reason for a reduction in revision for dislocation (Figure HT32).

XLPE and non XLPE are combined with three different femoral head bearing surfaces: ceramic, metal, and ceramicised metal. Within each bearing surface, XLPE has a lower rate of revision than non XLPE (Figure HT33).

At 20 years, the cumulative percent revision of total conventional hip replacement with XLPE is 7.8%.

Prosthesis Specific

Further analysis has been undertaken for specific acetabular prostheses that have both XLPE and non XLPE bearing options and ≥500 procedures in each group. Two prostheses fulfil these criteria. Both have a reduced rate of revision when XLPE is used.

The Reflection (Cup) has a 16 year follow-up for both types of polyethylene. XLPE has been used in 55.0% of Reflection (Cup) primary total conventional hip procedures. After 2 years, XLPE has a lower rate of revision than non XLPE (Table HT31 and Figure HT34).

The Reflection (Shell) has a 19 year follow-up with an insert using both types of polyethylene. XLPE is used in 84.3% of Reflection (Shell) primary total conventional hip procedures. XLPE has a lower rate of revision after 3 months compared to non XLPE (Table HT31 and Figure HT35).

Prosthesis Specific (Antioxidant)

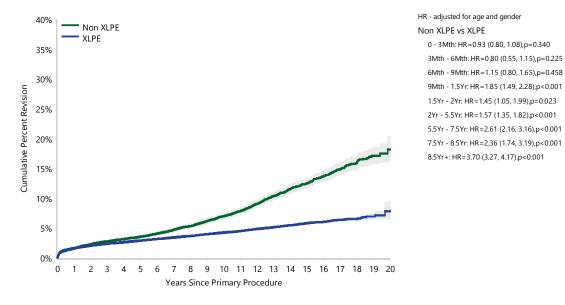
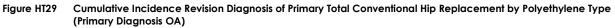
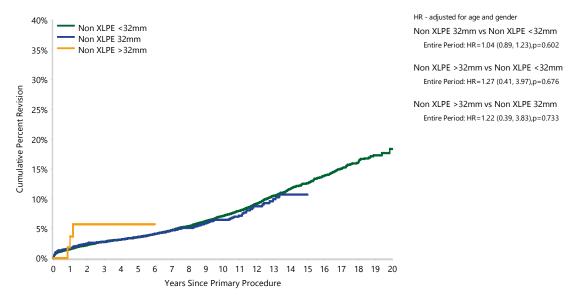
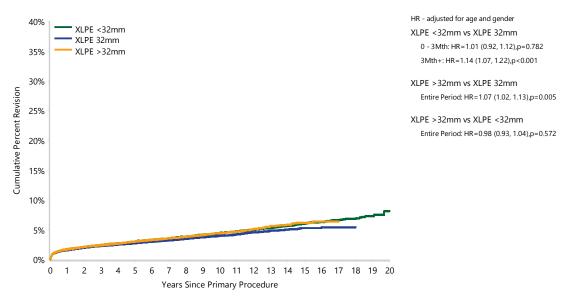

The Registry has performed a separate analysis of acetabular components that have both XLPE and XLPE with antioxidant. There has been a 19.2% increase in procedures using antioxidant compared to 2019. There were 2 components that had both types of polyethylene: Ringloc and Trinity inserts. There was no difference when comparing the rate of revision between XLPE and XLPE with antioxidant within these prostheses (Table HT32).

Table HT30 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Polyethylene Type and Head Size (Primary Diagnosis OA)

Polyethylene Type	e Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Non XLPE		1194	16935	1.6 (1.4, 1.8)	2.8 (2.5, 3.0)	3.6 (3.3, 3.9)	7.0 (6.5, 7.5)	12.5 (11.7, 13.3)	18.2 (16.3, 20.4)
	<32mm	1013	13338	1.5 (1.3, 1.8)	2.7 (2.5, 3.1)	3.6 (3.2, 3.9)	7.1 (6.6, 7.6)	12.6 (11.8, 13.5)	18.4 (16.4, 20.5)
	32mm	178	3532	1.7 (1.3, 2.1)	2.8 (2.3, 3.4)	3.5 (2.9, 4.2)	6.4 (5.4, 7.6)	10.7 (8.7, 13.1)	
	>32mm	3	65	3.6 (0.9, 13.8)	5.7 (1.9, 16.8)	5.7 (1.9, 16.8)			
XLPE		8495	280745	1.6 (1.6, 1.7)	2.4 (2.3, 2.4)	2.9 (2.8, 3.0)	4.3 (4.2, 4.4)	5.8 (5.6, 6.0)	7.8 (6.5, 9.4)
	<32mm	1981	49091	1.6 (1.5, 1.7)	2.4 (2.3, 2.6)	3.0 (2.8, 3.2)	4.4 (4.2, 4.7)	6.0 (5.7, 6.3)	8.1 (6.8, 9.7)
	32mm	3339	118623	1.6 (1.5, 1.7)	2.3 (2.2, 2.4)	2.8 (2.7, 2.9)	4.0 (3.8, 4.2)	5.3 (4.9, 5.7)	
	>32mm	3175	113031	1.7 (1.6, 1.8)	2.4 (2.3, 2.5)	3.0 (2.9, 3.1)	4.4 (4.2, 4.6)	6.2 (5.6, 6.8)	
TOTAL		9689	297680						


Note: Restricted to modern prostheses


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Non XLPE	16935	15599	13209	11070	6628	2484	95
XLPE	280745	245964	183218	129601	44113	9776	55


Note: Restricted to modern prostheses

Num	ber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Non XLPE	<32mm	13338	12237	10429	8842	5831	2407	95
	32mm	3532	3309	2757	2209	796	77	0
	>32mm	65	53	23	19	1	0	0

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
XLPE	<32mm	49091	44505	37881	32760	19245	7642	54
	32mm	118623	106065	80235	55249	14659	1493	1
	>32mm	113031	95394	65102	41592	10209	641	0

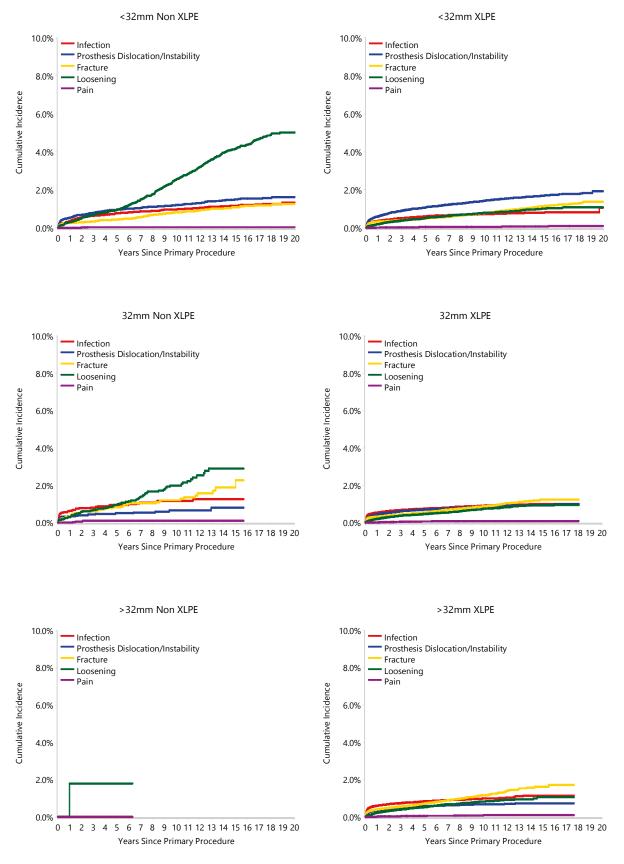



Figure HT32 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement by Head Size and Polyethylene Type (Primary Diagnosis OA)

Figure HT33 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Surface and Polyethylene Type (Primary Diagnosis OA)

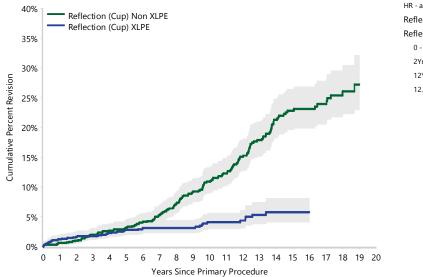
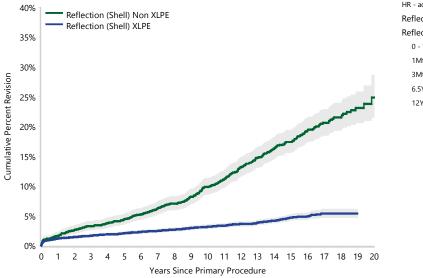

Note: Restricted to modern prostheses

Table HT31 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Prosthesis Type and Polyethylene Type (Primary Diagnosis OA)

Prosthesis Type	Polyethylene Type	N Revised	N Total	5 Yrs	10 Yrs	12 Yrs	15 Yrs	16 Yrs
Reflection (Cup)		202	2284	3.0 (2.4, 3.8)	7.6 (6.4, 9.0)	10.2 (8.7, 12.0)	16.0 (13.8, 18.4)	16.2 (14.0, 18.7)
	Non XLPE	157	1027	3.2 (2.3, 4.6)	10.9 (8.9, 13.3)	15.1 (12.7, 17.9)	22.8 (19.6, 26.5)	23.1 (19.9, 26.8)
	XLPE	45	1257	2.8 (2.0, 4.0)	4.1 (3.0, 5.6)	4.4 (3.2, 6.0)	5.8 (4.1, 8.1)	5.8 (4.1, 8.1)
Reflection (Shell)	738	14203	2.4 (2.2, 2.7)	4.3 (3.9, 4.7)	5.3 (4.9, 5.8)	7.1 (6.6, 7.7)	7.9 (7.3, 8.6)
	Non XLPE	328	2225	4.4 (3.6, 5.4)	9.8 (8.6, 11.3)	13.2 (11.7, 14.9)	17.4 (15.6, 19.4)	19.3 (17.4, 21.5)
	XLPE	410	11978	2.1 (1.8, 2.3)	3.2 (2.9, 3.5)	3.6 (3.3, 4.0)	4.7 (4.2, 5.3)	4.9 (4.4, 5.5)
TOTAL		940	16487					

Note: Restricted to modern prostheses


Figure HT34 Cumulative Percent Revision of Reflection (Cup) Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)

HR - adjusted for age and gender Reflection (Cup) Non XLPE vs Reflection (Cup) XLPE 0 - 2Yr: HR=0.58 (0.27, 1.24),p=0.158 2Yr - 12Yr: HR=4.67 (2.92, 7.47),p<0.001 12Yr - 12.5Yr: HR=3.84 (0.85, 17.34),p=0.079 12.5Yr+: HR=7.61 (1.81, 32.02),p=0.005

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Reflection (Cup) Non XLPE	1027	1001	929	856	585	257	16
XLPE	1257	1186	1073	927	477	114	0

Figure HT35 Cumulative Percent Revision of Reflection (Shell) Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)

HR - adjusted for age and gender Reflection (Shell) Non XLPE vs Reflection (Shell) XLPE 0 - 1Mth: HR=1.62 (0.97, 2.70),p=0.066 1Mth - 3Mth: HR=0.56 (0.20, 1.56),p=0.267 3Mth - 6.5Yr: HR=3.02 (2.35, 3.88),p<0.001 6.5Yr - 12Yr: HR=6.62 (5.03, 8.73),p<0.001 12Yr+: HR=5.78 (4.02, 8.31),p<0.001

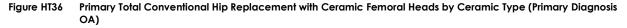
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Reflection (Shell) Non XLPE	2225	2147	2028	1881	1408	801	56
XLPE	11978	11619	10946	10151	6692	2112	5

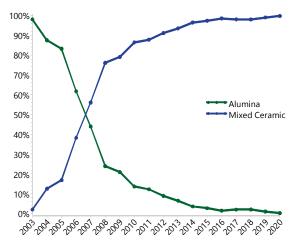
Note: Restricted to modern prostheses

	(
Prosthesis Type	Polyethylene Type	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Ringloc		49	1952	1.4 (1.0, 2.0)	1.7 (1.3, 2.4)	2.0 (1.5, 2.7)	2.2 (1.7, 3.0)	2.4 (1.8, 3.2)	3.1 (2.2, 4.2)
	XLPE	29	1164	1.3 (0.8, 2.1)	1.7 (1.1, 2.7)	1.8 (1.2, 2.8)	2.1 (1.4, 3.1)	2.2 (1.5, 3.2)	3.0 (2.1, 4.5)
	XLPE + Antioxidant	20	788	1.5 (0.9, 2.7)	1.8 (1.1, 3.0)	2.3 (1.5, 3.6)	2.5 (1.6, 3.9)	2.8 (1.8, 4.3)	2.8 (1.8, 4.3)
Trinity		270	14207	1.5 (1.3, 1.7)	1.9 (1.7, 2.2)	2.3 (2.1, 2.7)	2.6 (2.2, 3.0)	3.0 (2.5, 3.6)	
	XLPE	36	1587	1.3 (0.8, 2.0)	1.9 (1.3, 2.7)	2.3 (1.7, 3.2)	2.4 (1.7, 3.4)	2.8 (1.9, 4.0)	
	XLPE + Antioxidant	234	12620	1.6 (1.3, 1.8)	1.9 (1.7, 2.2)	2.3 (2.0, 2.7)	2.6 (2.2, 3.1)	3.0 (2.5, 3.7)	
TOTAL		319	16159						

 Table HT32
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Prosthesis Type and XLPE Type (Primary Diagnosis OA)

Ceramic/Ceramic Bearings

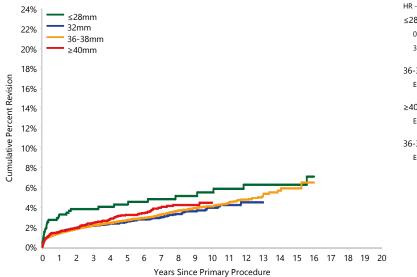

Ceramic/ceramic bearings have been used in 70,697 primary total conventional hip replacement procedures undertaken for osteoarthritis. This is the second most common bearing reported to the Registry.


This analysis has been restricted to procedures with mixed ceramic femoral head and mixed ceramic acetabular bearing surfaces. In 2020, mixed ceramic accounted for 99.7% of all procedures with a ceramic/ceramic bearing surface (Figure HT36).

Head Size

To evaluate the effect of head size, an analysis was undertaken comparing four head size groups (≤ 28 mm, 32mm, 36-38mm, and ≥ 40 mm). Head sizes 36mm and 38mm have been combined in this analysis. Mixed ceramic heads with head sizes ≤ 28 mm have a higher rate of revision than 32mm heads in the first 3 months. When compared to 32mm head sizes, there is no difference in the rate of revision for 36-38mm and ≥ 40 mm head sizes over the entire period. There is no difference in the rate of revision between 36-38mm and ≥ 40 mm head sizes (Table HT33 and Figure HT37).

At 1 year, the cumulative incidence of prosthesis dislocation/instability is 1.7% for head sizes ≤28mm compared to 0.4% for 32mm, 0.3% for 36-38mm, and 0.2% for head sizes ≥40mm (Figure HT38).

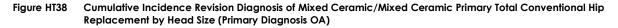


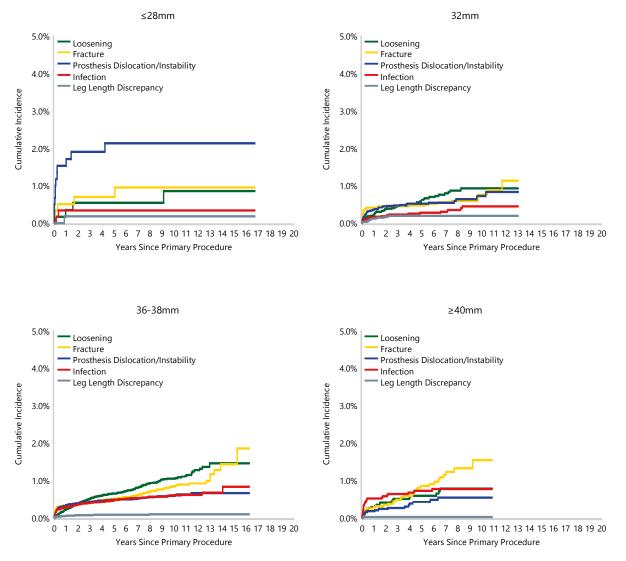
Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
≤28mm	31	594	3.3 (2.1, 5.1)	3.8 (2.5, 5.8)	4.3 (2.9, 6.4)	5.5 (3.8, 8.0)	6.3 (4.3, 9.0)	
32mm	240	9193	1.5 (1.3, 1.8)	2.2 (1.9, 2.5)	2.6 (2.2, 2.9)	4.0 (3.4, 4.6)		
36-38mm	1124	38812	1.4 (1.3, 1.5)	2.2 (2.0, 2.3)	2.7 (2.5, 2.9)	4.1 (3.8, 4.4)	5.9 (5.1, 6.8)	
≥40mm	123	3970	1.5 (1.2, 2.0)	2.4 (2.0, 3.0)	3.3 (2.7, 3.9)	4.5 (3.6, 5.5)		
TOTAL	1518	52569						

Table HT33 Cumulative Percent Revision of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA)

Note: Restricted to modern prostheses

Figure HT37 Cumulative Percent Revision of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA)


HR - adjusted for age and gender ≤28mm vs 32mm 0 - 3Mth: HR=2.74 (1.59, 4.72),p<0.001 3Mth+: HR=0.98 (0.59, 1.63),p=0.942


36-38mm vs 32mm Entire Period: HR=1.02 (0.87, 1.18),p=0.842

≥40mm vs 32mm Entire Period: HR=1.17 (0.93, 1.47),p=0.188

36-38mm vs ≥40mm Entire Period: HR=0.87 (0.72, 1.05),p=0.143

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
≤28mm	594	531	442	384	256	129	0
32mm	9193	8193	6318	4227	904	0	0
36-38mm	38812	35590	28294	19980	5307	213	0
≥40mm	3970	3401	2650	2000	214	0	0

Note: Restricted to modern prostheses

Constrained Acetabular Prostheses

Constrained acetabular prostheses have a mechanism to lock the femoral head into the acetabular component. Although often considered 'revision' components, there have been 803 procedures using constrained acetabular prostheses for primary total conventional hip replacement. Of these, 649 procedures were constrained acetabular inserts and 154 procedures were constrained cups. There were 92 procedures reported in 2020. This is an increase of 12.2% compared to 2019. The commonly used constrained prostheses are presented in Table HT34.

Constrained acetabular prostheses are proportionally used more frequently for

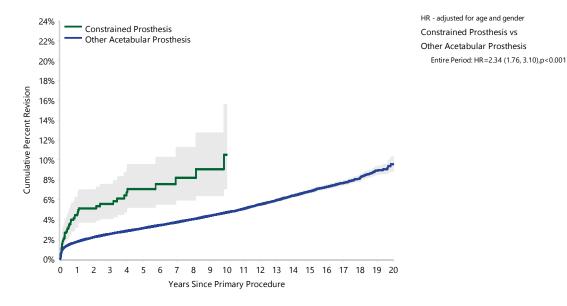
fractured neck of femur, tumour, failed internal fixation, and fracture/dislocation compared to all other acetabular components (Table HT35).

When all diagnoses are included, and when used only for osteoarthritis, constrained acetabular prostheses have a higher rate of revision compared to other acetabular prostheses (Table HT36, Figure HT39, Table HT37, and Figure HT40). Gender and age <70 years and ≥70 years are not risk factors for revision (Table HT38, Figure HT41, Table HT39 and Figure HT42). The small number of cemented acetabular constrained prostheses and the low number of revisions make it difficult to compare outcomes of these devices based on fixation (Table HT40 and Table HT41).

Table HT34 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Component (All Diagnoses)

Constrained Prosthesis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
G7/G7	3	77	4.8 (1.6, 14.2)	4.8 (1.6, 14.2)				
PINNACLE/PINNACLE	6	122	2.6 (0.9, 7.9)	4.6 (1.9, 10.8)				
Trabecular Metal (Shell)/Longevity	7	101	2.1 (0.5, 8.1)	5.7 (2.4, 13.3)	7.5 (3.4, 16.3)			
Trident (Cup)	7	130	5.3 (2.4, 11.5)					
Trident (Shell)/Trident	14	204	4.3 (2.2, 8.4)	5.0 (2.6, 9.5)	6.8 (3.8, 12.1)			
Other Constrained Prosthesis	11	169	6.8 (3.7, 12.2)	6.8 (3.7, 12.2)	8.1 (4.5, 14.6)			
TOTAL	48	803						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses


Table HT35 Primary Total Conventional Hip Replacement by Primary Diagnosis and Acetabular Type

	Constraine	d Prosthesis	Other Acetabul	ar Prosthesis
Primary Diagnosis	N	Col%	Ν	Col%
Osteoarthritis	311	38.7	368523	87.9
Fractured Neck Of Femur	223	27.8	22216	5.3
Osteonecrosis	29	3.6	13422	3.2
Developmental Dysplasia	21	2.6	5447	1.3
Rheumatoid Arthritis	6	0.7	3418	0.8
Tumour	89	11.1	2262	0.5
Failed Internal Fixation	90	11.2	1729	0.4
Other Inflammatory Arthritis	6	0.7	1713	0.4
Fracture/Dislocation	20	2.5	542	0.1
Arthrodesis Takedown	4	0.5	88	0.0
Other	4	0.5	79	0.0
TOTAL	803	100.0	419439	100.0

Table HT36 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (All Diagnoses)

Acetabular Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	48	803	4.4 (3.2, 6.2)	5.5 (4.0, 7.6)	7.1 (5.2, 9.6)	10.5 (7.0, 15.6)		
Other Acetabular Prosthesis	14462	419439	1.7 (1.7, 1.8)	2.5 (2.5, 2.6)	3.1 (3.1, 3.2)	4.7 (4.6, 4.8)	6.8 (6.7, 7.0)	9.6 (8.8, 10.3)
TOTAL	14510	420242						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

rigule his? Complaine recent kevision of rinnary fold Conventional hip kepiacement by Aceiabola type (All bidghose	Figure HT39	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (All Diagnoses)
--	-------------	--

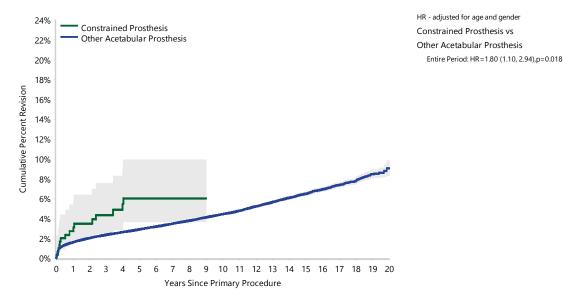

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	803	578	363	228	57	12	0
Other Acetabular Prosthesis	419439	369136	281029	203427	75504	19000	307

Table HT37 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis OA)

Acetabular Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	16	311	2.7 (1.4, 5.4)	4.3 (2.5, 7.6)	6.0 (3.6, 9.9)			
Other Acetabular Prosthesis	12012	368523	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 3.0)	4.4 (4.3, 4.5)	6.5 (6.3, 6.7)	9.0 (8.3, 9.8)
TOTAL	12028	368834						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT40 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis OA)

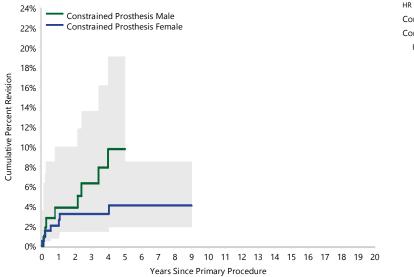

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	311	259	194	135	38	9	0
Other Acetabular Prosthesis	368523	327103	250996	182846	68288	17076	266

Table HT38 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)

Acetabular Type	Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	Male	8	112	3.9 (1.5, 10.0)	6.3 (2.9, 13.6)	9.8 (4.9, 19.1)			
	Female	8	199	2.1 (0.8, 5.4)	3.2 (1.5, 7.1)	4.1 (1.9, 8.5)			
TOTAL		16	311						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT41 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)

HR - adjusted for age Constrained Prosthesis Female vs Constrained Prosthesis Male Entire Period: HR=0.45 (0.17, 1.24),p=0.122

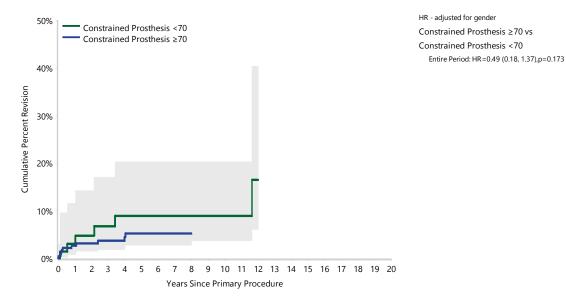

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	Male	112	90	64	41	7	1	0
	Female	199	169	130	94	31	8	0

Table HT39 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)

Acetabular Type	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	<70	6	71	3.0 (0.8, 11.6)	6.7 (2.6, 17.1)	8.9 (3.8, 20.3)	8.9 (3.8, 20.3)		
	≥70	10	240	2.6 (1.2, 5.8)	3.7 (1.9, 7.3)	5.2 (2.8, 9.7)			
TOTAL		16	311						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT42 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis <70	71	55	45	35	16	6	0
≥70	240	204	149	100	22	3	0

Table HT40 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Acetabular Fixation (Primary Diagnosis OA)

Acetabular Type	Acetabular Fixation			1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	Cementless	16	279	3.0 (1.5, 6.0)	4.8 (2.8, 8.4)	6.6 (4.0, 10.8)			
	Cemented	0	32	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)			
TOTAL		16	311						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Table HT41 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement with Cemented Femoral Fixation by Acetabular Fixation (Primary Diagnosis OA)

Acetabular Type	Acetabular Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	Cementless	4	183	1.2 (0.3, 4.5)	1.8 (0.6, 5.4)	2.6 (1.0, 6.9)			
	Cemented	0	28	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)			
TOTAL		4	211						

Dual Mobility Acetabular Prostheses

Dual mobility prostheses have a femoral head which moves within a polyethylene component, which also moves within a fixed acetabular shell.

The commonly used dual mobility prostheses are presented in Table HT42.

There has been an increasing use of these prostheses for primary hip replacement. The Registry has recorded 15,777 primary total conventional hip replacement procedures using dual mobility prostheses; an increase of 19.6% since 2019. Compared to other acetabular prostheses, dual mobility acetabular prostheses are proportionally used more frequently for fractured neck of femur, tumour, and failed internal fixation (Table HT43).

When all diagnoses are included, dual mobility prostheses have a higher rate of revision compared to other acetabular prostheses (Table HT44 and Figure HT43). For the diagnosis of osteoarthritis, there is no difference in the overall rate of revision when dual mobility prostheses are used (Table HT45 and Figure HT44). Dual mobility prostheses have a lower rate of revision for dislocation compared to all other acetabular prostheses (Table HT46 and Figure HT45).

Males have a higher risk of revision than females when used for a diagnosis of osteoarthritis, but age is not a risk factor for revision (Table HT47, Figure HT46, Table HT48 and Figure HT47).

The majority of dual mobility prostheses are inserted with cementless acetabular fixation. However, there is no difference in the rate of revision when acetabular fixation is compared (Table HT49 and Figure HT48). There are not enough dual mobility prostheses recorded with a cemented acetabular component to perform a comparative analysis with regards to the type of femoral fixation.

Acetabular Component	Dual Mobility Insert	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Avantage	Avantage	10	277	3.2 (1.6, 6.2)	3.8 (2.0, 7.3)				
Delta-TT	2M	10	311	2.4 (1.2, 5.1)	3.3 (1.6, 6.7)	4.8 (2.2, 10.4)			
G7	Active Articulation	63	2755	2.4 (1.9, 3.1)	3.3 (2.4, 4.6)				
Novae	Novae E	19	1184	0.8 (0.4, 1.5)	1.8 (1.1, 2.9)	2.0 (1.2, 3.2)			
Novae E	Novae E	8	265	1.9 (0.8, 4.6)	3.5 (1.6, 7.8)	3.5 (1.6, 7.8)			
Polarcup	Polarcup	41	865	2.6 (1.7, 4.0)	4.5 (3.2, 6.3)	5.7 (4.1, 8.1)	8.3 (5.6, 12.2)		
Restoration	Restoration	4	247	0.8 (0.2, 3.2)	1.4 (0.4, 4.2)	1.4 (0.4, 4.2)			
Saturne	Saturne	19	832	1.7 (1.0, 2.8)	2.7 (1.7, 4.4)	3.2 (1.9, 5.1)			
Trident (Shell)	MDM (Dual Mobility)	27	1093	1.8 (1.1, 2.8)	3.0 (2.0, 4.4)	3.7 (2.4, 5.7)			
	Restoration	69	2763	1.9 (1.5, 2.5)	2.7 (2.0, 3.4)	3.7 (2.8, 5.0)			
Trident/Tritanium (Shell)	MDM (Dual Mobility)	17	898	1.4 (0.8, 2.5)	2.1 (1.3, 3.4)	2.1 (1.3, 3.4)			
	Restoration	39	917	3.5 (2.5, 5.0)	4.9 (3.6, 6.8)	5.4 (3.9, 7.6)			
Trinity	Trinity	22	1858	1.2 (0.8, 1.8)					
Versafitcup DM	Versafit	48	1126	3.4 (2.5, 4.7)	4.9 (3.7, 6.6)	5.5 (4.0, 7.5)			
Other (25)		16	386	2.5 (1.3, 4.7)	4.1 (2.3, 7.0)	5.9 (3.3, 10.5)			
TOTAL		412	15777						

Table HT42 Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Component (All Diagnoses)

Note: All procedures using metal/metal prostheses have been excluded Only prostheses with over 100 procedures have been listed. Restricted to modern prostheses

Table HT43 Primary Total Conventional Hip Replacement by Primary Diagnosis and Acetabular Mobility

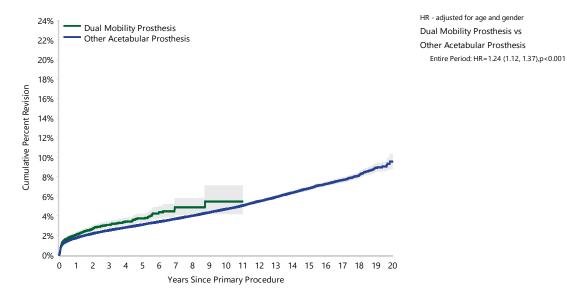

	Dual Mobilit	y Prosthesis	Other Acetabu	lar Prosthesis
Primary Diagnosis	Ν	Col%	Ν	Col%
Osteoarthritis	10763	68.2	358071	88.5
Fractured Neck Of Femur	3139	19.9	19300	4.8
Osteonecrosis	615	3.9	12836	3.2
Developmental Dysplasia	298	1.9	5170	1.3
Rheumatoid Arthritis	94	0.6	3330	0.8
Tumour	412	2.6	1939	0.5
Failed Internal Fixation	259	1.6	1560	0.4
Other Inflammatory Arthritis	78	0.5	1641	0.4
Fracture/Dislocation	97	0.6	465	0.1
Arthrodesis Takedown	12	0.1	80	0.0
Other	10	0.1	73	0.0
TOTAL	15777	100.0	404465	100.0

Table HT44 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Diagnoses)

Acetabular Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	412	15777	2.1 (1.8, 2.3)	3.1 (2.8, 3.4)	3.7 (3.3, 4.2)	5.5 (4.2, 7.1)		
Other Acetabular Prosthesis	14098	404465	1.7 (1.7, 1.8)	2.5 (2.5, 2.6)	3.1 (3.0, 3.2)	4.7 (4.6, 4.8)	6.8 (6.6, 7.0)	9.5 (8.8, 10.3)
TOTAL	14510	420242						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT43 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Diagnoses)

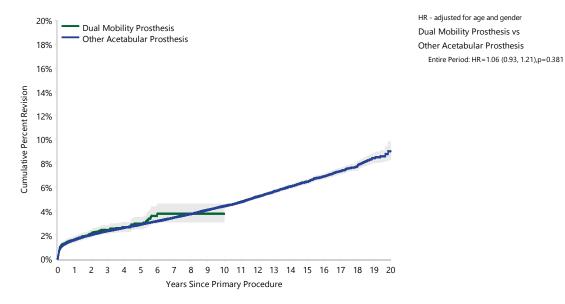

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	15777	10724	4487	1671	69	0	0
Other Acetabular Prosthesis	404465	358990	276905	201984	75492	19012	307

Table HT45 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA)

Acetabular Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	223	10763	1.6 (1.4, 1.9)	2.5 (2.1, 2.8)	3.0 (2.5, 3.5)	3.8 (3.1, 4.6)		
Other Acetabular Prosthesis	11805	358071	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 3.0)	4.4 (4.3, 4.5)	6.5 (6.3, 6.7)	9.0 (8.3, 9.8)
TOTAL	12028	368834						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT44 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA)

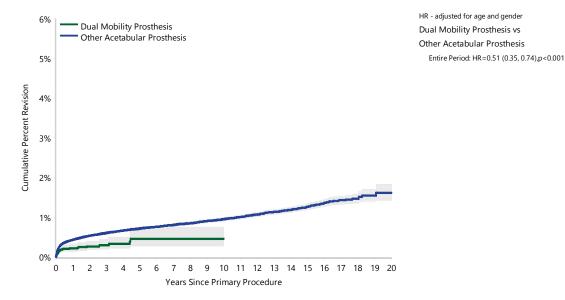

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	10763	7379	3036	1116	40	0	0
Other Acetabular Prosthesis	358071	319983	248154	181865	68286	17085	266

Table HT46 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA, Revision for Prosthesis Dislocation/Instability)

Acetabular Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	29	10763	0.2 (0.1, 0.3)	0.3 (0.2, 0.4)	0.5 (0.3, 0.7)	0.5 (0.3, 0.7)		
Other Acetabular Prosthesis	2673	358071	0.4 (0.4, 0.5)	0.6 (0.6, 0.6)	0.7 (0.7, 0.7)	1.0 (0.9, 1.0)	1.3 (1.2, 1.3)	1.6 (1.4, 1.8)
TOTAL	2702	368834						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT45 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA, Revision for Prosthesis Dislocation/Instability)

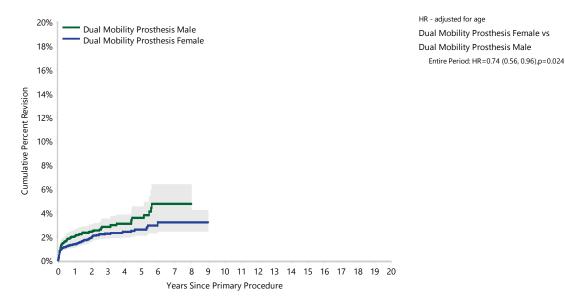

Number at Risk 5 Yrs 0 Yr 3 Yrs 10 Yrs 15 Yrs 20 Yrs 1 Yr **Dual Mobility Prosthesis** 10763 7379 1116 40 0 0 3036 Other Acetabular Prosthesis 358071 319983 248154 181865 68286 17085 266

Table HT47 Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)

Acetabular Mobility	Gender	N Revised	N 1 Yr Total	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	Male	100	4005 2.0 (1.6, 2.5)	2.8 (2.3, 3.5)	3.6 (2.8, 4.5)			
	Female	123	6758 1.4 (1.1, 1.7)	2.2 (1.9, 2.7)	2.6 (2.1, 3.2)			
TOTAL		223	10763					

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT46 Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)

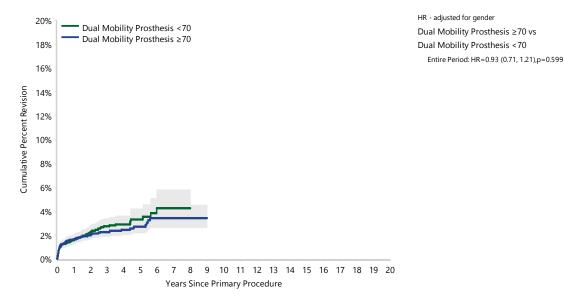

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	Male	4005	2745	1162	434	8	0	0
	Female	6758	4634	1874	682	32	0	0

Table HT48 Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)

Acetabular Mobility	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	<70	100	4507	1.6 (1.2, 2.0)	2.7 (2.2, 3.4)	3.3 (2.6, 4.2)			
	≥70	123	6256	1.6 (1.3, 2.0)	2.2 (1.8, 2.7)	2.7 (2.2, 3.3)			
TOTAL		223	10763						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT47 Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)

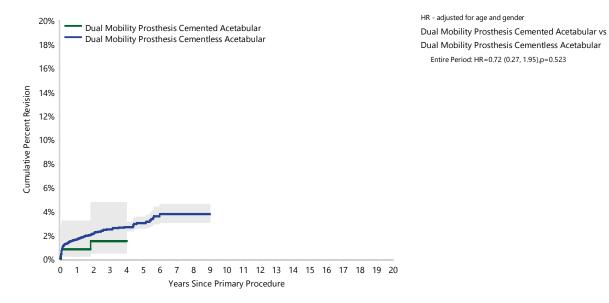

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis <70	4507	3140	1341	471	15	0	0
≥70	6256	4239	1695	645	25	0	0

Table HT49 Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Acetabular Fixation (Primary Diagnosis OA)

Acetabular Mobility	Acetabular Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	Cementless	219	10513	1.6 (1.4, 1.9)	2.5 (2.1, 2.9)	3.0 (2.6, 3.5)			
	Cemented	4	250	0.8 (0.2, 3.2)	1.5 (0.5, 4.7)				
TOTAL		223	10763						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT48 Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Acetabular Fixation (Primary Diagnosis OA)

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	Cemented Acetabular	250	190	102	32	4	0	0
	Cementless Acetabular	10513	7189	2934	1084	36	0	0

SURGICAL APPROACH

The Registry commenced collection of surgical approach in 2015 and can now report on the outcome of 51,226 anterior, 31,468 lateral, and 103,353 posterior total conventional hip replacement procedures for osteoarthritis.

The anterior approach is used more often in younger patients than the posterior and lateral approaches, and in a higher proportion of patients with lower BMI and ASA scores (Table HT50 to Table HT52).

The following analyses were performed with hazard ratios adjusted for age, gender, ASA score, BMI category, femoral fixation, and head size. There is no difference in the overall rate of revision when surgical approach is compared (Table HT53 and Figure HT49). However, there are differences in the types of revision and reasons for revision between the approaches.

There is a higher rate of major revisions with the anterior approach compared to other approaches. There is no difference between the posterior and lateral approaches (Table HT54 and Figure HT50). The most common reasons for revision of primary total hip replacement in the first 6 years include loosening, fracture, infection, and dislocation (Figure HT51). There is a higher rate of revision for loosening with the anterior approach compared to both the posterior and lateral approaches (Table HT55 and Figure HT52).

The anterior approach also has a higher rate of revision for fracture in the first 3 months when compared to both the lateral approach and to the posterior approach and after this time a lower rate of revision for fracture (Table HT56 and Figure HT53). There is no difference when the posterior approach is compared to the lateral approach.

There is a lower rate of revision for infection for the anterior approach compared to both the posterior approach and lateral approach. There is no difference between the posterior and lateral approaches (Table HT57 and Figure HT54).

The anterior approach has a lower rate of revision for dislocation compared to both the posterior approach and the lateral approach. There is no difference when the posterior is compared to the lateral approach (Table HT58 and Figure HT55).

Age	Ante	erior	Lat	eral	Posterior		
	N	Col%	Ν	Col%	Ν	Col%	
<55	6445	12.6	3211	10.2	10916	10.6	
55-64	13373	26.1	7278	23.1	24161	23.4	
65-74	18749	36.6	11519	36.6	37619	36.4	
≥75	12659	24.7	9460	30.1	30657	29.7	
TOTAL	51226	100.0	31468	100.0	103353	100.0	

Table HT50 Primary Total Conventional Hip Replacement by Age and Surgical Approach (Primary Diagnosis OA)

Table HT51 Primary Total Conventional Hip Replacement by BMI Category and Surgical Approach (Primary Diagnosis OA)

BMI Category	Ante	erior	Lat	eral	Posterior	
	N	Col%	Ν	Col%	Ν	Col%
Underweight (<18.50)	383	0.8	214	0.7	663	0.7
Normal (18.50-24.99)	11971	24.0	5821	19.5	19267	19.5
Pre Obese (25.00-29.99)	19918	39.9	10669	35.7	35554	35.9
Obese Class 1 (30.00-34.99)	11780	23.6	7964	26.6	25716	26.0
Obese Class 2 (35.00-39.99)	4173	8.4	3522	11.8	11730	11.8
Obese Class 3 (≥40.00)	1649	3.3	1711	5.7	6127	6.2
TOTAL	49874	100.0	29901	100.0	99057	100.0

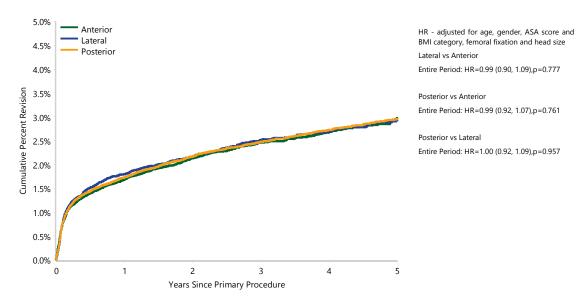
Note: All procedures using metal/metal prostheses have been excluded BMI has not been presented for patients aged ≤19 years

Restricted to modern prostheses

Table HT52 Primary Total Conventional Hip Replacement by ASA Score and Surgical Approach (Primary Diagnosis OA)

ASA Score	Ante	erior	Late	eral	Posterior		
	N	Col%	N	Col%	Ν	Col%	
ASA 1	6150	12.0	2525	8.0	8072	7.8	
ASA 2	28898	56.5	16654	53.1	55303	53.6	
ASA 3	15587	30.5	11749	37.4	38179	37.0	
ASA 4	511	1.0	453	1.4	1612	1.6	
ASA 5			1	0.0	3	0.0	
TOTAL	51146	100.0	31382	100.0	103169	100.0	

	Diagnos	is OA)						
Surgical Approach	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	1106	49818	1.7 (1.6, 1.8)	2.1 (2.0, 2.3)	2.5 (2.3, 2.6)	2.7 (2.5, 2.9)	3.0 (2.8, 3.2)	
Lateral	719	29835	1.8 (1.7, 2.0)	2.2 (2.0, 2.3)	2.5 (2.3, 2.7)	2.7 (2.5, 2.9)	2.9 (2.7, 3.2)	
Posterior	2219	98932	1.7 (1.7, 1.8)	2.2 (2.1, 2.3)	2.5 (2.4, 2.6)	2.7 (2.6, 2.8)	3.0 (2.8, 3.1)	
TOTAL	4044	178585						


Table HT53 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Excludes procedures with unknown ASA Score, BMI category or head size

Figure HT49 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	49818	39112	29098	19843	11868	5075	15
Lateral	29835	25254	20590	15544	10308	4811	14
Posterior	98932	78021	57859	39888	23873	10348	24

Note: All procedures using metal/metal prostheses have been excluded

Excludes procedures with unknown ASA score, BMI category or head size

Due to low numbers, ASA score 1-2 and 3-5 were combined

Due to low numbers BMI categories underweight and normal were combined

1.7 (1.5, 1.9)

1.7 (1.6, 1.9)

	Diagnosis OA, Major Revisions)										
Surgical Approach	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs			
Anterior	791	49818	1.1 (1.0, 1.2)	1.5 (1.4, 1.6)	1.8 (1.7, 1.9)	2.0 (1.8, 2.1)	2.2 (2.0, 2.4)				

1.4 (1.3, 1.6)

1.4 (1.3, 1.5)

1.5 (1.4, 1.7)

1.6 (1.5, 1.7)

1.2 (1.1, 1.3)

1.2 (1.2, 1.3)

Table HT54 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Suraical Approach (Primary

Note: All procedures using metal/metal prostheses have been excluded

29835

98932

178585

Restricted to modern prostheses

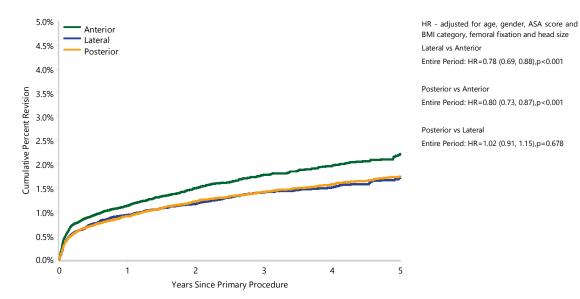
401

1246

2438

Lateral

TOTAL

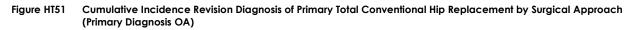

Posterior

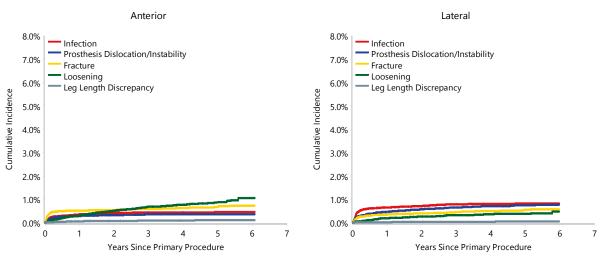
Excludes procedures with unknown ASA Score, BMI category or head size

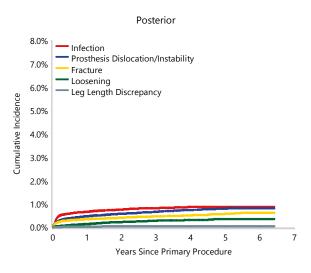
0.9 (0.8, 1.1)

0.9 (0.9, 1.0)

Figure HT50 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary Diagnosis OA, Major Revisions)

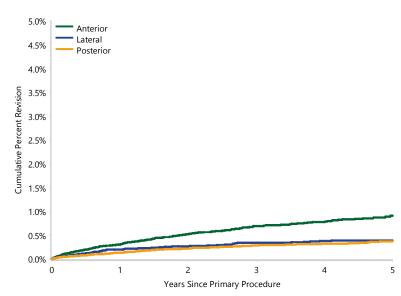

Number at Risk 6 Yrs 5 Yrs 1 Yr 0 Yr 2 Yrs 3 Yrs 4 Yrs 49818 Anterior 39112 29098 19843 11868 5075 15 29835 Lateral 25254 20590 15544 10308 4811 14 98932 Posterior 78021 57859 39888 23873 10348 24


Note: All procedures using metal/metal prostheses have been excluded


Restricted to modern prostheses

Excludes procedures with unknown ASA Score, BMI category or head size

Due to low numbers ASA score 1-2 and 3-5 were combined


Table HT55 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary Diagnosis OA, Revision for Loosening)

Surgical Approach	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	286	49818	0.3 (0.3, 0.4)	0.5 (0.5, 0.6)	0.7 (0.6, 0.8)	0.8 (0.7, 0.9)	0.9 (0.8, 1.0)	
Lateral	93	29835	0.2 (0.2, 0.3)	0.3 (0.2, 0.3)	0.3 (0.3, 0.4)	0.4 (0.3, 0.5)	0.4 (0.3, 0.5)	
Posterior	233	98932	0.1 (0.1, 0.2)	0.2 (0.2, 0.3)	0.3 (0.3, 0.3)	0.3 (0.3, 0.4)	0.4 (0.3, 0.4)	
TOTAL	612	178585						

Note: All procedures using metal/metal prostheses have been excluded

Excludes procedures with unknown ASA score, BMI category or head size Restricted to modern prostheses

Figure HT52 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary Diagnosis OA, Revision for Loosening)

HR - adjusted for age, gender, ASA score and BMI category, femoral fixation and head size Lateral vs Posterior Entire Period: HR=1.17 (0.92, 1.49),p=0.192

Anterior vs Posterior Entire Period: HR=2.25 (1.88, 2.70),p<0.001

Anterior vs Lateral Entire Period: HR=1.92 (1.51, 2.44),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	49818	39112	29098	19843	11868	5075	15
Lateral	29835	25254	20590	15544	10308	4811	14
Posterior	98932	78021	57859	39888	23873	10348	24

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Excludes procedures with unknown ASA score, BMI category or head size

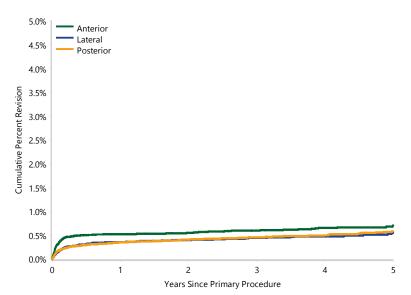

Due to low numbers, ASA scores 1-2 and 3-5 were combined

Table HT56	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary
	Diagnosis OA, Revision for Fracture)

Surgical Approach	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	289	49818	0.5 (0.5, 0.6)	0.5 (0.5, 0.6)	0.6 (0.5, 0.7)	0.7 (0.6, 0.7)	0.7 (0.6, 0.8)	
Lateral	131	29835	0.4 (0.3, 0.4)	0.4 (0.3, 0.5)	0.5 (0.4, 0.5)	0.5 (0.4, 0.6)	0.5 (0.5, 0.7)	
Posterior	424	98932	0.3 (0.3, 0.4)	0.4 (0.4, 0.5)	0.5 (0.4, 0.5)	0.5 (0.5, 0.6)	0.6 (0.5, 0.7)	
ΤΟΤΑΙ	844	178585						

Excludes procedures with unknown ASA score, BMI category or head size

Figure HT53 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary Diagnosis OA, Revision for Fracture)

HR - adjusted for age, gender, ASA score and BMI category, femoral fixation and head size Posterior vs Lateral Entire Period: HR=1.07 (0.88, 1.30),p=0.525

Anterior vs Lateral 0-3Mth: HR=1.87 (1.49, 2.36),p<0.001 3Mth+: HR=0.70 (0.50, 0.97),p=0.029

Anterior vs Posterior 0-3Mth: HR=1.76 (1.47, 2.10),p<0.001 3Mth+: HR=0.65 (0.49, 0.88),p=0.004

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	49818	39112	29098	19843	11868	5075	15
Lateral	29835	25254	20590	15544	10308	4811	14
Posterior	98932	78021	57859	39888	23873	10348	24

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Excludes procedures with unknown ASA score, BMI category or head size

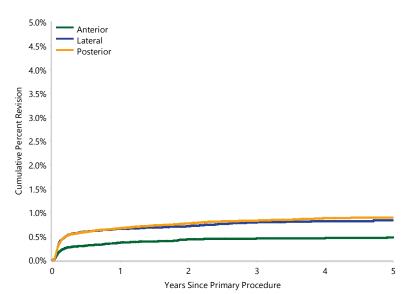

Due to low numbers, ASA scores 1-2, and 3-5 were combined

Table HT57	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary
	Diagnosis OA, Revision for Infection)

Surgical Approach	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	202	49818	0.4 (0.3, 0.4)	0.4 (0.4, 0.5)	0.5 (0.4, 0.5)	0.5 (0.4, 0.5)	0.5 (0.4, 0.6)	
Lateral	222	29835	0.7 (0.6, 0.8)	0.7 (0.6, 0.8)	0.8 (0.7, 0.9)	0.8 (0.7, 0.9)	0.8 (0.7, 1.0)	
Posterior	751	98932	0.7 (0.6, 0.7)	0.8 (0.7, 0.8)	0.8 (0.8, 0.9)	0.9 (0.8, 1.0)	0.9 (0.8, 1.0)	
TOTAL	1175	178585						

Excludes procedures with unknown ASA score, BMI category or head size

Figure HT54 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary Diagnosis OA, Revision for Infection)

HR - adjusted for age, gender, ASA score and BMI category, femoral fixation and head size Lateral vs Anterior Entire Period: HR=1.47 (1.21, 1.79),p<0.001

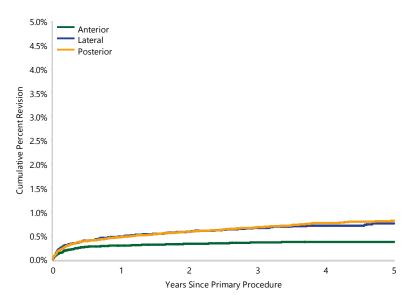
Posterior vs Anterior Entire Period: HR=1.54 (1.31, 1.81),p<0.001

Posterior vs Lateral Entire Period: HR=1.05 (0.90, 1.22),p=0.550

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	49818	39112	29098	19843	11868	5075	15
Lateral	29835	25254	20590	15544	10308	4811	14
Posterior	98932	78021	57859	39888	23873	10348	24

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses


Excludes procedures with unknown ASA score, BMI category or head size

Due to low numbers, ASA scores 1-2 and 3-5 were combined

Table HT58	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary
	Diagnosis OA, Revision for Dislocation/Instability)

Surgical Approach	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	162	49818	0.3 (0.3, 0.4)	0.3 (0.3, 0.4)	0.4 (0.3, 0.4)	0.4 (0.3, 0.4)	0.4 (0.3, 0.4)	
Lateral	188	29835	0.5 (0.4, 0.6)	0.6 (0.5, 0.7)	0.7 (0.6, 0.8)	0.7 (0.6, 0.8)	0.8 (0.6, 0.9)	
Posterior	604	98932	0.5 (0.4, 0.5)	0.6 (0.5, 0.6)	0.7 (0.6, 0.7)	0.8 (0.7, 0.8)	0.8 (0.7, 0.9)	
TOTAL	954	178585						

Figure HT55 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (Primary Diagnosis OA, Revision for Dislocation/Instability)

HR - adjusted for age, gender, ASA score and BMI category, femoral fixation and head size Lateral vs Anterior 0-2wk: HR=1.48 (0.97, 2.25),p=0.066 2wk-1Mth: HR=1.96 (1.28, 2.99),p=0.001

1Mth-6Mth: HR=1.31 (0.93, 1.82),p=0.118 6Mth+: HR=2.77 (1.90, 4.04),p<0.001

Posterior vs Anterior

0-3Mth: HR=1.49 (1.19, 1.85),p<0.001 3Mth-9Mth: HR=1.54 (1.10, 2.16),p=0.011 9Mth+: HR=3.67 (2.55, 5.29),p<0.001

Posterior vs Lateral Entire Period: HR=1.05 (0.89, 1.24),p=0.551

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Anterior	49818	39112	29098	19843	11868	5075	15
Lateral	29835	25254	20590	15544	10308	4811	14
Posterior	98932	78021	57859	39888	23873	10348	24

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Excludes procedures with unknown ASA score, BMI category or head size

Due to low numbers, ASA scores 1-2 and 3-5 were combined

OUTCOME FOR FRACTURED NECK OF FEMUR

There have been 22,439 primary total conventional hip replacement procedures recorded by the Registry with a diagnosis of fractured neck of femur.

The cumulative percent revision of primary total conventional hip replacement for

fractured neck of femur is 9.7% at 15 years (Table HT59 and Figure HT56).

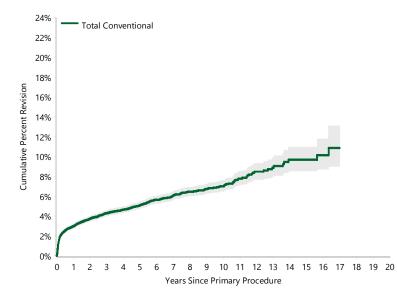

At 15 years, the cumulative percent survival of patients is 29.5% (Table HT60 and Figure HT57).

Table HT59	Cumulative Percent Revision of Primary	V Total Conventional Hi	n Renlacement (Prin	ary Diagnosis Fractured NOF)

Hip Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Conventional	1050	22439	3.0 (2.8, 3.2)	4.3 (4.0, 4.6)	5.1 (4.8, 5.4)	7.0 (6.5, 7.6)	9.7 (8.5, 11.0)	
TOTAL	1050	22439						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT56 Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)

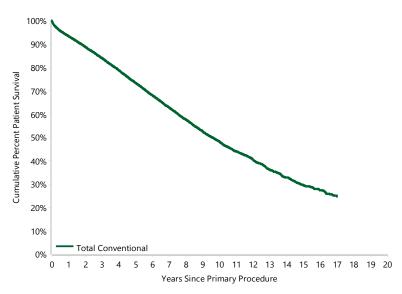

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Conventional	22439	18018	12042	7490	1859	258	1

Table HT60 Cumulative Percent Survival of Patients with Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)

Hip Class	N Deceased	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Conventional	6427	22439	93.2 (92.9, 93.6)	83.8 (83.3, 84.4)	73.2 (72.4, 73.9) 4	8.0 (46.9, 49.1)	29.5 (27.7, 31.3)	
TOTAL	6427	22439						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT57 Cumulative Percent Survival of Patients with Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Conventional	22439	18018	12042	7490	1859	258	1

Reasons for Revision

Prosthesis dislocation/instability is the most common reason for revision, followed by fracture, infection, and loosening (Table HT61 and Figure HT58).

Table HT61 Primary Total Conventional Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)

Reason for Revision	Number	Percent
Prosthesis Dislocation/Instability	353	33.6
Fracture	294	28.0
Infection	188	17.9
Loosening	147	14.0
Leg Length Discrepancy	9	0.9
Pain	9	0.9
Implant Breakage Stem	7	0.7
Malposition	7	0.7
Lysis	7	0.7
Implant Breakage Acetabular Insert	6	0.6
Implant Breakage Acetabular	5	0.5
Tumour	3	0.3
Heterotopic Bone	2	0.2
Metal Related Pathology	2	0.2
Incorrect Sizing	1	0.1
Progression Of Disease	1	0.1
Other	9	0.9
TOTAL	1050	100.0

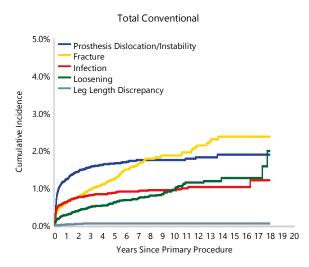
Type of Revision

Replacement of the femoral component only is the most common type of revision, followed by head and insert, acetabular only, and total hip replacement (femoral/acetabular) (Table HT62).

Table HT62 Primary Total Conventional Hip Replacement by Type of Revision (Primary Diagnosis Fractured NOF)

Type of Revision	Number	Percent
Femoral Component	368	35.0
Head/Insert	263	25.0
Acetabular Component	184	17.5
THR (Femoral/Acetabular)	106	10.1
Head Only	47	4.5
Cement Spacer	34	3.2
Minor Components	22	2.1
Insert Only	15	1.4
Removal of Prostheses	6	0.6
Total Femoral	2	0.2
Neck Only	1	0.1
Head/Neck	1	0.1
Reinsertion of Components	1	0.1
TOTAL	1050	100.0

Note: All procedures using metal/metal prostheses have been excluded


Restricted to modern prostheses

Femoral heads are usually replaced when the acetabular component or femoral stem is revised

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Figure HT58 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)

ASA and BMI

ASA scores are an indication of comorbidity and have been collected since 2012. The definitions for these scores can be found in the introductory chapter. The Registry can now report on the early outcome of 15,106 primary total conventional hip replacement procedures for fractured neck of femur in relation to these scores.

When compared to patients with an ASA score of 1, there is no difference in the rate of revision for patients with an ASA score of 2, whereas patients with ASA scores of 3 and 4 have a higher rate of revision (Table HT63 and Figure HT59). The most common reasons for revision for each ASA score are shown in Figure HT60. The difference in the rate of revision is partially due to an increase in revision for dislocation and infection with increasing ASA score. There is a larger proportion of fractured neck of femur patients with an ASA score of 3 or above than patients with osteoarthritis (Table HT64).

BMI data have been collected since 2015. The early revision outcomes are reported for 8,575 primary total conventional hip replacement procedures for fractured neck of femur. Patients in obese class 2 and obese class 3 have a higher rate of revision compared to patients in the normal BMI class (Table HT65 and Figure HT61). The most common reasons for revision are shown in Figure HT62.

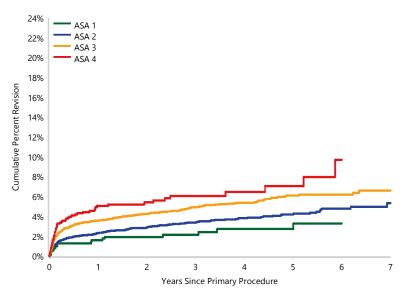

ASA Score 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 7 Yrs Revised Total ASA 1 717 1.6 (0.9, 2.9) 1.9 (1.1, 3.3) 2.2 (1.3, 3.6) 2.7 (1.6, 4.5) 2.7 (1.6, 4.5) 18 ASA 2 192 2.3 (1.9, 2.7) 2.9 (2.5, 3.4) 3.4 (2.9, 3.9) 3.8 (3.3, 4.5) 4.2 (3.6, 4.9) 5.3 (4.3, 6.6) 5626 ASA 3 338 7542 3.6 (3.2, 4.0) 4.2 (3.8, 4.8) 4.9 (4.4, 5.5) 5.4 (4.8, 6.0) 6.1 (5.4, 6.9) 6.6 (5.7, 7.6) ASA 4 5.4 (4.1, 7.0) 6.1 (4.7, 7.9) 6.5 (4.9, 8.5) 7.1 (5.2, 9.5) 62 1213 5.1 (3.9, 6.6) ASA 5 0 8 0.0 (0.0, 0.0) TOTAL 610 15106

Table HT63 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by ASA Score (Primary Diagnosis Fractured NOF)

Note: Restricted to modern prostheses

All procedures using metal/metal prostheses have been excluded

Figure HT59 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by ASA Score (Primary Diagnosis Fractured NOF)

HR - adjusted for age and gender ASA 2 vs ASA 1 Entire Period: HR=1.54 (0.95, 2.51),p=0.080

ASA 3 vs ASA 1 Entire Period: HR=2.27 (1.40, 3.66),p<0.001

ASA 4 vs ASA 1 Entire Period: HR=3.01 (1.76, 5.13),p<0.001

Note: Restricted	to modern	prostheses

Number at Risk

ASA 1

ASA 2

ASA 3

ASA 4

All procedures using metal/metal prostheses have been excluded

0 Yr

717

5626

7542

1213

1 Yr

594

4627

5560

726

2 Yrs

470

3684

4105

488

3 Yrs

378

2769

2916

332

4 Yrs

276

1930

1892

198

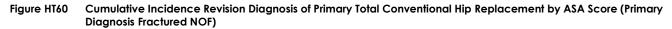
5 Yrs

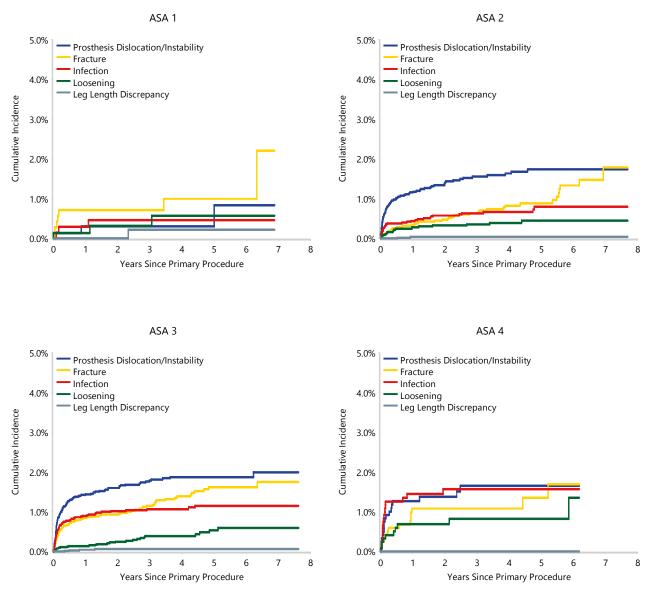
178

1235

1161

109


7 Yrs


34

223

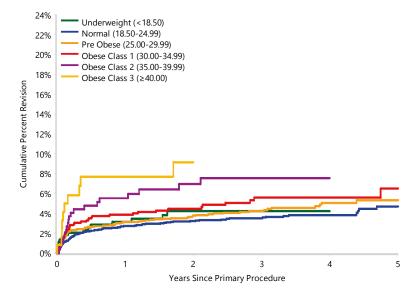
177

11

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

ASA Score	Fractured Ne	eck Of Femur	Osteoa	rthritis	TOTAL	
	N	Col%	N	Col%	N	Col%
ASA 1	717	4.7	21028	9.2	21745	8.9
ASA 2	5626	37.2	125080	54.7	130706	53.6
ASA 3	7542	49.9	79421	34.7	86963	35.7
ASA 4	1213	8.0	3233	1.4	4446	1.8
ASA 5	8	0.1	9	0.0	17	0.0
TOTAL	15106	100.0	228771	100.0	243877	100.0

Table HT65 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by BMI Category (Primary Diagnosis Fractured NOF)


BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Underweight (<18.50)	16	449	3.1 (1.8, 5.4)	4.2 (2.6, 6.9)	4.2 (2.6, 6.9)	4.2 (2.6, 6.9)		
Normal (18.50-24.99)	122	3758	2.7 (2.2, 3.3)	3.2 (2.7, 3.9)	3.5 (2.9, 4.2)	3.8 (3.2, 4.7)	4.7 (3.7, 6.0)	
Pre Obese (25.00-29.99)	110	2929	3.2 (2.6, 3.9)	3.8 (3.1, 4.6)	4.2 (3.5, 5.2)	5.1 (4.1, 6.2)	5.3 (4.3, 6.6)	
Obese Class 1 (30.00-34.99)	47	1012	3.9 (2.8, 5.3)	4.5 (3.3, 6.0)	5.6 (4.1, 7.5)	5.6 (4.1, 7.5)	6.5 (4.5, 9.4)	
Obese Class 2 (35.00-39.99)	21	305	5.5 (3.4, 8.9)	7.0 (4.5, 10.7)	7.6 (4.9, 11.6)	7.6 (4.9, 11.6)		
Obese Class 3 (≥40.00)	10	122	7.7 (4.1, 14.3)	9.1 (5.0, 16.6)				
TOTAL	326	8575						

Note: All procedures using metal/metal prostheses have been excluded

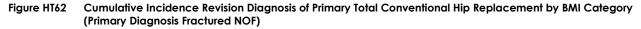
Restricted to modern prostheses

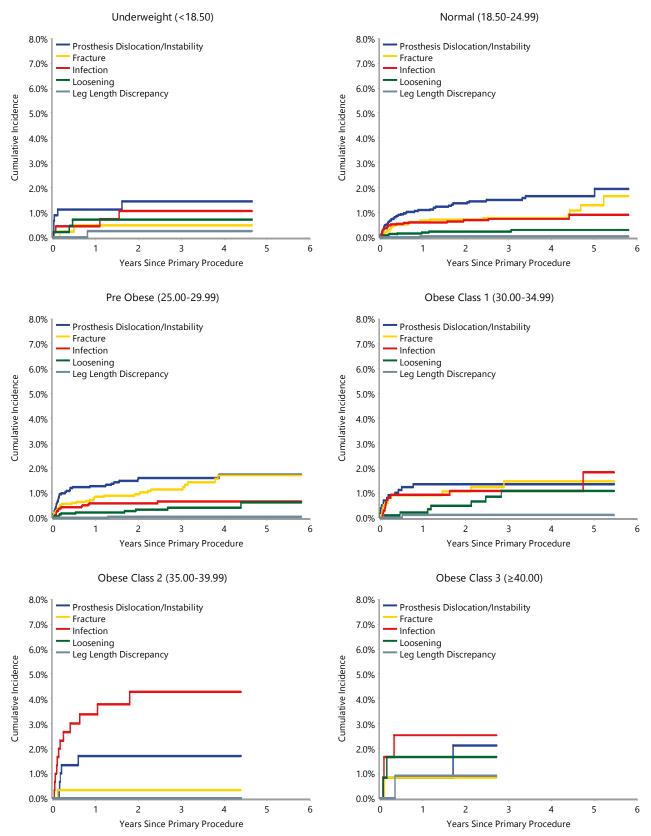
BMI has not been presented for patients aged ≤19 years

Figure HT61 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by BMI Category (Primary Diagnosis Fractured NOF)

HR - adjusted for age and gender Underweight (<18.50) vs Normal (18.50-24.99) Entire Period: HR=1.18 (0.70, 1.98),p=0.544

Pre Obese (25.00-29.99) vs Normal (18.50-24.99) Entire Period: HR=1.13 (0.88, 1.47),p=0.342


Obese Class 1 (30.00-34.99) vs Normal (18.50-24.99) Entire Period: HR=1.38 (0.98, 1.93),p=0.063


Obese Class 2 (35.00-39.99) vs Normal (18.50-24.99) Entire Period: HR=2.03 (1.28, 3.24),p=0.002

Obese Class 3 (≥40.00) vs Normal (18.50-24.99) Entire Period: HR=2.59 (1.36, 4.95),p=0.004

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Underweight (<18.50)	449	317	220	158	73	23	0
Normal (18.50-24.99)	3758	2725	1929	1255	692	258	3
Pre Obese (25.00-29.99)	2929	2096	1465	949	507	207	4
Obese Class 1 (30.00-34.99)	1012	726	513	355	197	83	0
Obese Class 2 (35.00-39.99)	305	226	162	103	56	26	0
Obese Class 3 (≥40.00)	122	80	57	32	12	4	0

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses BMI has not been presented for patients aged ≤19 years

BMI has not been presented for patients aged \leq 19 years

Fixation

The analysis for fractured neck of femur and fixation has been performed for modern prostheses with modern bearing surfaces and restricted to mixed ceramic/mixed ceramic and all femoral head materials used in combination with XLPE.

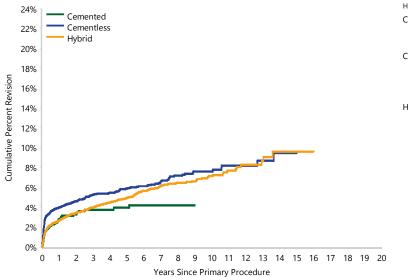

The Registry has recorded 1,344 procedures with cemented fixation, 5,718 with cementless fixation and 13,252 with hybrid fixation. Cemented fixation has a lower rate of revision compared to cementless fixation, but there is no difference compared to hybrid fixation. Cementless fixation has a higher rate of revision than hybrid fixation for the first 3 months only, with no difference after this time (Table HT66 and Figure HT63). There are differences in outcome with respect to fixation and age. For patients aged <70 years, there is no difference in the rate of revision between cemented and cementless fixation. For the first month only, cementless fixation has a higher rate of revision than hybrid fixation for this age group (Table HT67 and Figure HT64). However, for patients aged ≥70 years, cementless fixation has a higher rate of revision than cemented fixation over the entire period, and for the first 3 months compared to hybrid fixation. There is no difference in the rate of revision when hybrid fixation is compared to cemented fixation (Table HT67 and Figure HT65).

Table HT66 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis Fractured NOF)

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	45	1344	2.8 (2.0, 3.8)	3.7 (2.8, 5.0)	3.9 (2.9, 5.3)			
Cementless	320	5718	4.0 (3.5, 4.5)	5.3 (4.7, 5.9)	5.9 (5.2, 6.6)	7.6 (6.7, 8.6)	9.5 (7.5, 11.9)	
Hybrid	573	13252	2.7 (2.4, 3.0)	4.0 (3.6, 4.4)	4.9 (4.5, 5.4)	7.1 (6.4, 8.0)	9.6 (7.9, 11.7)	
TOTAL	938	20314						

Note: Includes mixed ceramic/mixed ceramic and cross-linked polyethylene (XLPE) bearing surfaces. Restricted to modern prostheses

Figure HT63 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis Fractured NOF)

HR - adjusted for age and gender Cementless vs Cemented Entire Period: HR=1.39 (1.01, 1.90),p=0.040

Cementless vs Hybrid 0 - 3Mth: HR=1.74 (1.43, 2.12),p<0.001 3Mth+: HR=0.83 (0.68, 1.01),p=0.062

Hybrid vs Cemented Entire Period: HR=1.18 (0.87, 1.60),p=0.283

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	1344	1030	672	379	25	1	0
Cementless	5718	4694	3328	2188	551	66	1
Hybrid	13252	10568	6789	4002	850	79	0

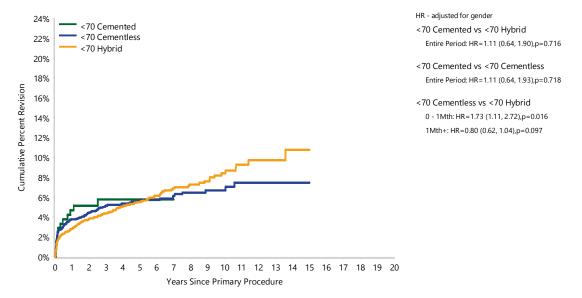
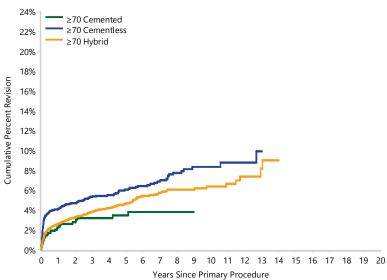

Note: Includes mixed ceramic/mixed ceramic and XLPE bearing surfaces Restricted to modern prostheses

Table HT67 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age and Fixation (Primary Diagnosis Fractured NOF)

Age	Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<70		346	6631	3.2 (2.8, 3.7)	4.7 (4.2, 5.3)	5.6 (5.0, 6.2)	7.6 (6.7, 8.7)	9.2 (7.7, 11.1)	
	Cemented	14	287	4.7 (2.7, 8.1)	5.8 (3.4, 9.7)	5.8 (3.4, 9.7)			
	Cementless	123	2293	3.8 (3.1, 4.6)	5.2 (4.3, 6.2)	5.7 (4.7, 6.8)	6.7 (5.5, 8.1)	7.5 (6.0, 9.3)	
	Hybrid	209	4051	2.8 (2.3, 3.4)	4.4 (3.8, 5.1)	5.5 (4.8, 6.4)	8.4 (7.1, 10.0)	10.8 (8.3, 13.9)	
≥70		592	13683	3.0 (2.7, 3.3)	4.1 (3.8, 4.5)	4.9 (4.5, 5.4)	6.8 (6.1, 7.5)	9.7 (7.6, 12.5)	
	Cemented	31	1057	2.3 (1.5, 3.4)	3.2 (2.2, 4.6)	3.5 (2.4, 5.0)			
	Cementless	197	3425	4.1 (3.5, 4.9)	5.3 (4.6, 6.2)	6.1 (5.2, 7.0)	8.3 (7.0, 9.9)		
	Hybrid	364	9201	2.6 (2.3, 2.9)	3.8 (3.4, 4.2)	4.7 (4.2, 5.2)	6.4 (5.6, 7.3)		
TOTAL		938	20314						

Note: Includes mixed ceramic/mixed ceramic and XLPE bearing surfaces Restricted to modern prostheses



Nur	nber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<70	Cemented	287	204	139	83	7	1	0
	Cementless	2293	1946	1426	982	275	42	1
	Hybrid	4051	3325	2227	1393	382	43	0

Note: Includes mixed ceramic/mixed ceramic and XLPE bearing surfaces Restricted to modern prostheses

Figure HT65 Cumulative Percent Revision of Primary Total Conventional Hip Replacement in Patients Aged ≥70 Years by Fixation (Primary Diagnosis Fractured NOF)

0 - 3Mth: HR=2.00 (1.57, 2.55),p<0.001 3Mth+: HR=0.92 (0.71, 1.18),p=0.519 ≥70 Hybrid vs ≥70 Cemented

 \geq 70 Cementless vs \geq 70 Hybrid

≥70 Cementless vs ≥70 Cemented

Entire Period: HR=1.73 (1.19, 2.53),p=0.004

Entire Period: HR=1.29 (0.89, 1.86),p=0.179

HR - adjusted for gender

Nur	nber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
≥70	Cemented	1057	826	533	296	18	0	0
	Cementless	3425	2748	1902	1206	276	24	0
	Hybrid	9201	7243	4562	2609	468	36	0

Note: Includes mixed ceramic/mixed ceramic and XLPE bearing surfaces Restricted to modern prostheses

Head Size

When used for fractured neck of femur, there is no difference in the rate of revision between head sizes 32mm, <32mm, and >32mm (Table HT68 and Figure HT66).

There is high rate of revision for prosthesis dislocation/instability for <32mm and 32mm when compared to >32mm. Head size 32mm have a lower rate of revision for prosthesis dislocation/instability compared to <32mm after 6 months (Table HT69 and Figure HT67).

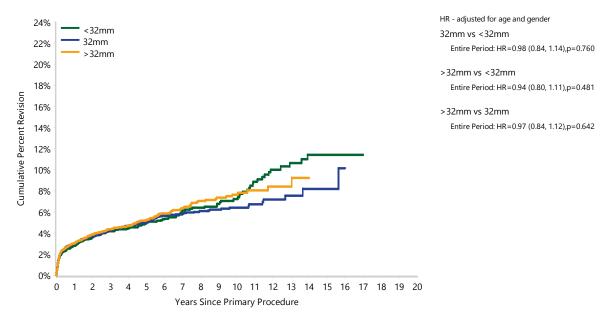
Constrained Acetabular Prostheses

When used for fractured neck of femur, there is no difference in the rate of revision for constrained prostheses compared to other acetabular prostheses (Table HT70 and Figure HT68).

Dual Mobility

There is no difference in the rate of revision when dual mobility prostheses are used (Table HT71 and Figure HT69).

Table HT68 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF)


Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<32mm	261	5655	2.8 (2.4, 3.3)	4.2 (3.7, 4.8)	5.0 (4.3, 5.7)	7.2 (6.2, 8.5)	11.4 (9.4, 13.9)	
32mm	426	9118	3.1 (2.7, 3.4)	4.3 (3.9, 4.8)	5.0 (4.5, 5.6)	6.4 (5.7, 7.2)	8.2 (6.6, 10.2)	
>32mm	362	7640	3.0 (2.7, 3.5)	4.4 (3.9, 4.9)	5.2 (4.7, 5.9)	7.6 (6.7, 8.7)		
TOTAL	1049	22413						

Note: All procedures using metal/metal prostheses have been excluded

Restricted to modern prostheses

Excludes 26 procedures with unknown head sizes

Figure HT66 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF)

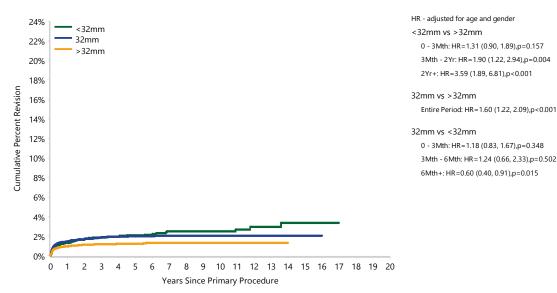

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<32mm	5655	4317	2684	1677	551	157	1
32mm	9118	7616	5379	3368	757	70	0
>32mm	7640	6065	3963	2432	549	31	0

Table HT69 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF, Revision for Prosthesis Dislocation/Instability)

Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<32mm	103	5655	1.3 (1.1, 1.7)	1.9 (1.5, 2.3)	2.1 (1.7, 2.6)	2.5 (2.0, 3.1)	3.4 (2.4, 4.8)	
32mm	164	9118	1.5 (1.2, 1.8)	1.9 (1.6, 2.2)	2.0 (1.7, 2.3)	2.1 (1.8, 2.4)	2.1 (1.8, 2.4)	
>32mm	85	7640	1.0 (0.8, 1.2)	1.2 (0.9, 1.5)	1.2 (1.0, 1.5)	1.3 (1.1, 1.7)		
TOTAL	352	22413						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT67 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF, Revision for Prosthesis Dislocation/Instability)

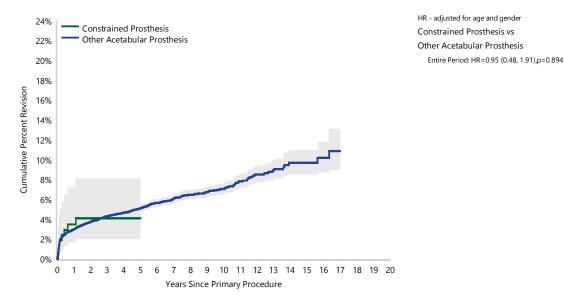

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<32mm	5655	4317	2684	1677	551	157	1
32mm	9118	7616	5379	3368	757	70	0
>32mm	7640	6065	3963	2432	549	31	0

Table HT70 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis Fractured NOF)

Acetabular Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	8	223	3.5 (1.7, 7.2)	4.1 (2.1, 8.1)	4.1 (2.1, 8.1)			
Other Acetabular Prosthesis	1042	22216	3.0 (2.8, 3.2)	4.3 (4.0, 4.6)	5.1 (4.8, 5.4)	7.0 (6.5, 7.6)	9.7 (8.6, 11.0)	
TOTAL	1050	22439						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT68 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis Fractured NOF)

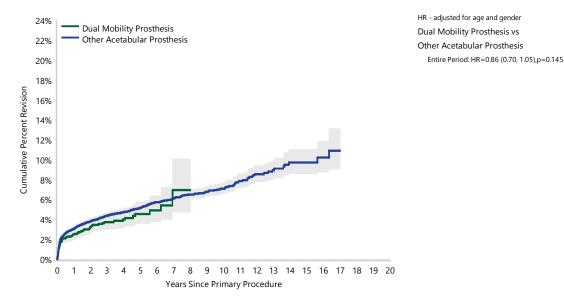

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Constrained Prosthesis	223	155	75	45	8	0	0
Other Acetabular Prosthesis	22216	17863	11967	7445	1851	258	1

Table HT71 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis Fractured NOF)

Acetabular Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	101	3139	2.5 (2.0, 3.1)	3.7 (3.0, 4.6)	4.6 (3.6, 5.8)			
Other Acetabular Prosthesis	949	19300	3.1 (2.8, 3.3)	4.4 (4.1, 4.7)	5.2 (4.8, 5.5)	7.1 (6.6, 7.7)	9.7 (8.6, 11.0)	
TOTAL	1050	22439						

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT69 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Dual Mobility Prosthesis	3139	2164	954	368	18	0	0
Other Acetabular Prosthesis	19300	15854	11088	7122	1841	258	1

OUTCOME OF TOTAL CONVENTIONAL COMPARED TO PARTIAL HIP REPLACEMENT

The rate of revision for fractured neck of femur in primary total conventional hip replacement and in primary unipolar monoblock, primary unipolar modular, and primary bipolar hip replacement procedures were compared.

Unipolar monoblock hip replacement has a higher rate of revision than total conventional hip replacement after 3 months. Unipolar modular hip replacement has a lower rate of revision than total conventional hip replacement for the first month. From 1 month to 1.5 years there is no difference, but after this time unipolar modular has a higher rate of revision. There is no difference in the rate of revision when comparing bipolar to total conventional hip replacement (Table HT72 and Figure HT70).

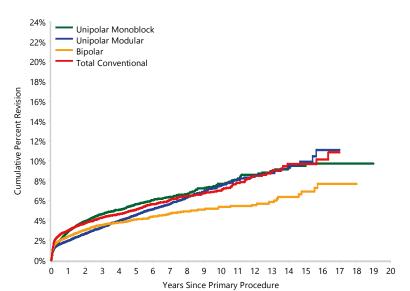

The rates of revision for each type of hip replacement for patients aged <70 years and ≥70 years are provided in Table HT73, Figure HT71 and Figure HT72.

Table HT72	Cumulative Percent Revision of Primary Hip Replacement by Class (Primary Diagnosis Fractured NOF)
------------	---

Hip Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Unipolar Monoblock	1078	28419	2.9 (2.7, 3.1)	4.6 (4.3, 5.0)	5.6 (5.3, 6.0)	7.7 (7.1, 8.4)	9.5 (8.5, 10.6)	
Unipolar Modular	1338	40895	2.0 (1.8, 2.1)	3.3 (3.1, 3.5)	4.5 (4.3, 4.8)	7.5 (6.9, 8.1)	9.9 (8.6, 11.5)	
Bipolar	675	22244	2.4 (2.2, 2.6)	3.5 (3.3, 3.8)	4.1 (3.8, 4.5)	5.4 (4.8, 6.0)	6.9 (5.8, 8.2)	
Total Conventional	1050	22439	3.0 (2.8, 3.2)	4.3 (4.0, 4.6)	5.1 (4.8, 5.4)	7.0 (6.5, 7.6)	9.7 (8.5, 11.0)	
TOTAL	4141	113997						

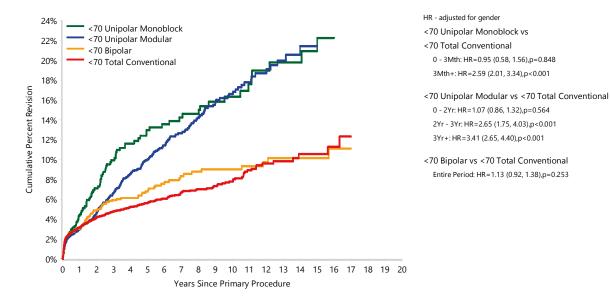
Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT70 Cumulative Percent Revision of Primary Hip Replacement by Class (Primary Diagnosis Fractured NOF)

HR - adjusted for age and gender Unipolar Monoblock vs Total Conventional 0 - 3Mth: HR=1.00 (0.86, 1.15),p=0.960 3Mth+: HR=1.86 (1.66, 2.09),p<0.001

Unipolar Modular vs Total Conventional 0 - 1Mth: HR=0.75 (0.64, 0.89),p<0.001 1Mth - 3Mth: HR=0.96 (0.81, 1.14),p=0.656 3Mth - 1.5Yr: HR=0.90 (0.77, 1.04),p=0.155 1.5Yr - 3Yr: HR=1.36 (1.13, 1.64),p=0.001 3Yr+: HR=2.06 (1.76, 2.41),p<0.001

Bipolar vs Total Conventional 0 - 3Mth: HR=1.01 (0.88, 1.17),p=0.889 3Mth+: HR=0.99 (0.86, 1.13),p=0.833


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Unipolar Monoblock	28419	17345	10436	5928	1404	396	19
Unipolar Modular	40895	27549	16602	9484	1850	188	2
Bipolar	22244	14462	8125	4454	1200	310	5
Total Conventional	22439	18018	12042	7490	1859	258	1

Age	Hip Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<70		878	13094	3.2 (2.9, 3.5)	5.6 (5.2, 6.1)	7.2 (6.7, 7.8)	10.6 (9.8, 11.4)	13.7 (12.4, 15.0)	
	Unipolar Monoblock	94	922	4.3 (3.1, 6.0)	9.9 (7.8, 12.5)	12.9 (10.4, 16.0)	16.3 (13.2, 20.1)	20.9 (16.5, 26.4)	
	Unipolar Modular	269	2930	3.0 (2.4, 3.7)	6.6 (5.6, 7.7)	10.0 (8.7, 11.5)	16.6 (14.6, 18.9)	21.4 (18.2, 25.2)	
	Bipolar	119	2065	3.1 (2.4, 3.9)	5.9 (4.8, 7.2)	6.8 (5.6, 8.3)	9.0 (7.4, 11.0)	10.1 (8.2, 12.6)	
	Total Conventional	396	7177	3.2 (2.8, 3.6)	4.8 (4.3, 5.3)	5.6 (5.0, 6.3)	7.8 (6.9, 8.8)	10.5 (8.9, 12.4)	
≥70		3263	100903	2.4 (2.3, 2.5)	3.6 (3.4, 3.7)	4.4 (4.3, 4.6)	6.3 (6.0, 6.6)	8.0 (7.3, 8.7)	
	Unipolar Monoblock	984	27497	2.8 (2.6, 3.1)	4.4 (4.1, 4.7)	5.3 (5.0, 5.7)	7.2 (6.6, 7.9)	8.6 (7.6, 9.7)	
	Unipolar Modular	1069	37965	1.9 (1.7, 2.0)	3.0 (2.8, 3.2)	4.0 (3.7, 4.2)	6.2 (5.6, 6.8)	7.7 (6.3, 9.4)	
	Bipolar	556	20179	2.3 (2.1, 2.6)	3.3 (3.0, 3.6)	3.8 (3.4, 4.1)	4.9 (4.3, 5.5)	6.7 (5.2, 8.5)	
	Total Conventional	654	15262	2.9 (2.7, 3.2)	4.0 (3.7, 4.4)	4.8 (4.4, 5.2)	6.6 (6.0, 7.2)	9.2 (7.6, 11.2)	
TOTAL		4141	113997						

Table HT73 Cumulative Percent Revision of Primary Hip Replacement by Age and Class (Primary Diagnosis Fractured NOF)

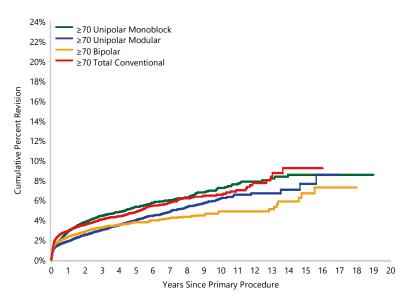
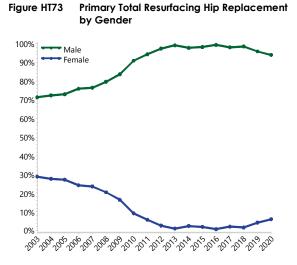

Note: All procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Figure HT71 Cumulative Percent Revision of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fractured NOF)

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<70	Unipolar Monoblock	922	622	445	310	153	60	3
	Unipolar Modular	2930	2197	1575	1104	396	59	1
	Bipolar	2065	1476	986	655	299	110	3
	Total Conventional	7177	5940	4178	2781	864	157	1

Figure HT72 Cumulative Percent Revision of Primary Hip Replacement in Patients Aged ≥70 Years by Class (Primary Diagnosis Fractured NOF)

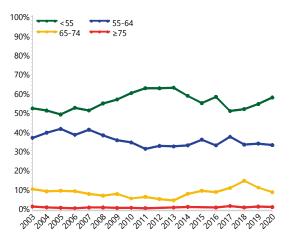
- HR adjusted for gender ≥70 Unipolar Monoblock vs ≥70 Total Conventional 0 - 2Wk: HR=1.06 (0.81, 1.38),p=0.671 2Wk - 1Mth: HR=0.69 (0.55, 0.85),p<0.001 1Mth - 3Mth: HR=0.60 (0.49, 0.74),p<0.001 3Mth+: HR=1.36 (1.20, 1.53),p<0.001
- ≥70 Unipolar Modular vs ≥70 Total Conventional 0 - 3Mth: HR=0.62 (0.54, 0.71),p<0.001 3Mth - 1.5Yr: HR=0.67 (0.57, 0.79),p<0.001 1.5Yr - 3.5Yr: HR=1.02 (0.84, 1.24),p=0.825 3.5Yr+: HR=1.35 (1.11, 1.66),p=0.003
- ≥70 Bipolar vs ≥70 Total Conventional Entire Period: HR=0.76 (0.68, 0.85),p<0.001


	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
≥70	Unipolar Monoblock	27497	16723	9991	5618	1251	336	16
	Unipolar Modular	37965	25352	15027	8380	1454	129	1
	Bipolar	20179	12986	7139	3799	901	200	2
	Total Conventional	15262	12078	7864	4709	995	101	0

PRIMARY TOTAL RESURFACING HIP REPLACEMENT

DEMOGRAPHICS

There have been 18,814 primary total resurfacing hip replacement procedures reported to the Registry. This is an additional 564 procedures compared to the last report.


In 2020, the number of primary total resurfacing procedures is 6.9% more than in 2019, and 69.5% less than in 2005. Primary total resurfacing hip replacement represents 1.2% of all hip replacements performed in 2020. In 2020, 93.9% of primary total resurfacing hip replacements were undertaken in males (Table HT74 and Figure HT73).

resurfacing hip replacement for each age group in 2020 are provided in Figure HT74.

The changes in usage of primary total

Figure HT74 Primary Total Resurfacing Hip Replacement by Age

There were only three types of resurfacing prostheses used in 2020, with the Adept the most commonly used. The ReCerf resurfacing head was used for the first time in 2018 (Table HT75).

Table HI74 Age and Gender of Primary Total Resurfacing Hip Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	15170	80.6%	13	82	54	53.4	9.1
Female	3644	19.4%	14	81	53	51.6	8.6
TOTAL	18814	100.0%	13	82	54	53.0	9.0

Table HT75 Most Used Resurfacing Heads in Primary Total Resurfacing Hip Replacement

	2003		2017		2018		2019		2020
N	Model	Ν	Model	Ν	Model	Ν	Model	Ν	Model
1359	BHR	268	Adept	247	Adept	297	Adept	316	Adept
58	Durom	126	BHR	132	BHR	145	BHR	152	BHR
43	ASR			3	ReCerf	82	ReCerf	92	ReCerf
42	Cormet								
38	Cormet 2000 HAP								
7	Conserve Plus								
Most Us	Most Used								
1547	(6) 100.0%	394	(2) 100.0%	382	(3) 100.0%	524	(3) 100.0%	560	(3) 100.0%

OUTCOME FOR ALL DIAGNOSES

Primary Diagnosis

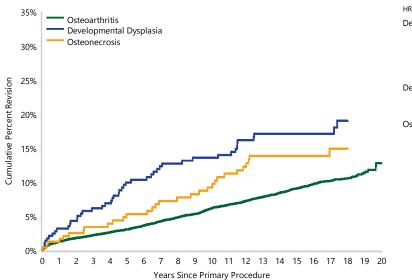

Again, this analysis is restricted to modern resurfacing prostheses in current use. The principal diagnosis for primary total resurfacing hip replacement is osteoarthritis (95.5%), followed by developmental dysplasia (2.0%), and osteonecrosis (1.7%). Primary total resurfacing hip replacement for osteoarthritis has a lower rate of revision compared to developmental dysplasia from 6 months up to 5 years. There is a higher rate of revision for osteonecrosis compared to osteoarthritis (Table HT76 and Figure HT75).

Table HT76 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Primary Diagnosis

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Osteoarthritis	989	13804	1.3 (1.1, 1.5)	2.2 (2.0, 2.5)	3.1 (2.8, 3.4)	6.2 (5.7, 6.6)	9.1 (8.5, 9.7)	12.8 (11.2, 14.6)
Developmental Dysplasia	47	287	3.2 (1.7, 6.0)	6.2 (3.9, 9.7)	10.0 (7.0, 14.2)	13.6 (10.0, 18.3)	17.1 (13.0, 22.4)	
Osteonecrosis	30	243	1.2 (0.4, 3.8)	3.4 (1.7, 6.7)	5.3 (3.1, 9.2)	9.2 (6.0, 14.0)	13.9 (9.8, 19.4)	
Other (6)	16	115	2.6 (0.8, 7.9)	3.6 (1.3, 9.2)	6.6 (3.2, 13.3)	13.5 (8.0, 22.3)	16.3 (10.1, 25.8)	
TOTAL	1082	14449						

Note: Only primary diagnoses with >100 procedures have been listed Restricted to modern prostheses

HR - adjusted for age and gender Developmental Dysplasia vs Osteoarthritis 0 - 6Mth: HR=1.34 (0.59, 3.04),p=0.487 6Mth - 5Yr: HR=2.31 (1.47, 3.62),p<0.001 5Yr+: HR=0.86 (0.55, 1.36),p=0.527

Developmental Dysplasia vs Osteonecrosis Entire Period: HR=0.84 (0.53, 1.33),p=0.452

Osteonecrosis vs Osteoarthritis Entire Period: HR=1.53 (1.05, 2.21),p=0.025

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Osteoarthritis	13804	13079	12037	11084	8625	4483	71
Developmental Dysplasia	287	267	249	233	203	130	4
Osteonecrosis	243	233	212	198	181	128	6

Note: Only primary diagnoses with >100 procedures have been listed Restricted to modern prostheses

Prosthesis Types

The cumulative percent revision of different primary total resurfacing hip prosthesis combinations with >100 procedures is listed in Table HT77.

Table HT77	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Prosthesis Combination (All
	Diagnoses)

Head Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Adept	Adept	63	2334	0.9 (0.6, 1.4)	1.6 (1.2, 2.3)	2.3 (1.7, 3.1)	5.7 (4.2, 7.7)		
BHR	BHR	1018	11936	1.4 (1.2, 1.6)	2.5 (2.2, 2.8)	3.4 (3.1, 3.8)	6.6 (6.1, 7.1)	9.6 (9.0, 10.2)	13.2 (11.7, 14.9)
ReCerf	ReCerf	1	177	0.6 (0.1, 4.2)					
Other (2)		0	2	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
TOTAL		1082	14449						

Note: Only combinations with over 100 procedures have been listed Restricted to modern prostheses

OUTCOME FOR OSTEOARTHRITIS

The cumulative percent revision at 20 years for primary total resurfacing hip replacement undertaken for osteoarthritis is 12.8% (Table HT78 and Figure HT76).

Reasons for Revision

The main reasons for revision of primary total resurfacing hip replacement are loosening, metal related pathology, and fracture (Table HT79).

Loosening is the most common reason for revision after 7 years.

The five most common reasons for revision are shown in Figure HT77. The cumulative incidence of fracture increases rapidly in the first year. After this time, the incidence increases at a slower rate. The cumulative incidence of loosening continues to increase and becomes the most common reason for revision after 7 years.

Type of Revision

The most common type of revision for total resurfacing hip replacement is revision of both the femoral and acetabular components. Femoral only revision is much less common and acetabular only revision is rarely undertaken (Table HT80).

Age and Gender

In the first 6 months, patients aged \geq 65 years have a higher rate of revision compared to patients aged <55 years and patients aged 55-64 years. After 6 months there is no difference in the rate of revision for patients aged \geq 65 years compared to 55-64 years (Table HT81 and Figure HT78). Females have a higher rate of revision compared to males (Table HT82 and Figure HT79). Males aged \geq 65 years have a higher rate of revision compared to males aged <55 years and 55-64 years, for the first 6 months only. After this time, there is no difference (Figure HT80). There is no difference in the rate of revision for females aged \geq 65 years compared to \leq 55 years (Figure HT81).

Head Size

The rate of revision decreases as the femoral component head size increases. Femoral head sizes \leq 44mm and 45-49mm, have over twice the rate of revision compared to head sizes \geq 55mm. There is no difference for head sizes 50-54mm compared to \geq 55mm (Table HT83 and Figure HT82).

The reason for revision varies with head size. Head sizes <50mm have a higher cumulative incidence of metal related pathology, loosening, fracture, pain, and lysis compared to head sizes ≥50mm (Figure HT83).

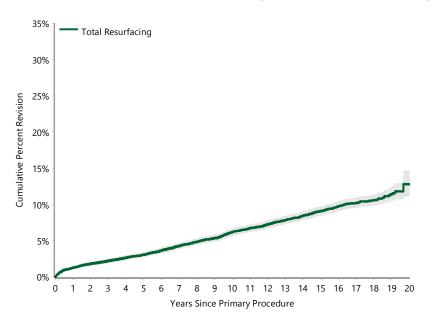

This effect of femoral component head size is evident in both males and females (Table HT84 and Figure HT84).

Table HT78	Cumulative Percent Revision	n of Primary Total Resurfacing	g Hip Replacement (Primar	y Diagnosis OA)
------------	-----------------------------	--------------------------------	---------------------------	-----------------

Нір Туре	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Resurfacing	989	13804	1.3 (1.1, 1.5)	2.2 (2.0, 2.5)	3.1 (2.8, 3.4)	6.2 (5.7, 6.6)	9.1 (8.5, 9.7)	12.8 (11.2, 14.6)
TOTAL	989	13804						

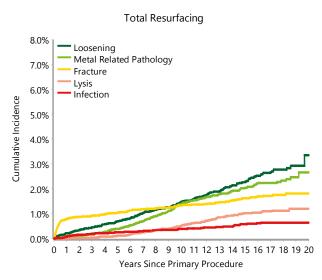
Note: Restricted to modern prostheses

Figure HT76 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Resurfacing	13804	13079	12037	11084	8625	4483	71

Note: Restricted to modern prostheses

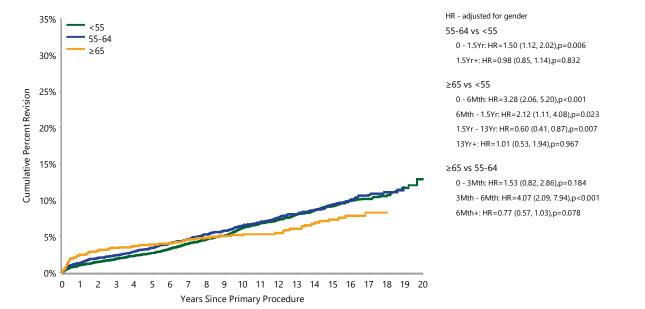
Table HT79 Primary Total Resurfacing Hip Replacement by Reason for Revision (Primary Diagnosis OA)


Reason for Revision	Number	Percent
Loosening	256	25.9
Metal Related Pathology	217	21.9
Fracture	197	19.9
Lysis	100	10.1
Infection	63	6.4
Pain	59	6.0
Osteonecrosis	25	2.5
Prosthesis Dislocation/Instability	23	2.3
Other (10)	49	5.0
TOTAL	989	100.0

Note: Restricted to modern prostheses

Table HT80 Primary Total Resurfacing Hip Replacement by Type of Revision (Primary Diagnosis OA)

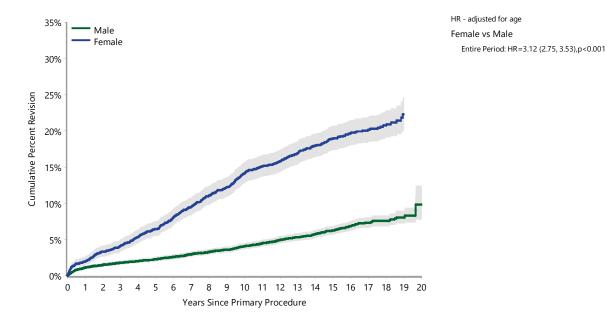
Type of Revision	Number	Percent
THR (Femoral/Acetabular)	687	69.5
Femoral Component	241	24.4
Acetabular Component	30	3.0
Cement Spacer	25	2.5
Removal of Prostheses	6	0.6
TOTAL	989	100.0


Figure HT77 Cumulative Incidence Revision Diagnosis of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	517	7287	1.0 (0.8, 1.3)	1.9 (1.6, 2.2)	2.7 (2.3, 3.1)	6.1 (5.5, 6.8)	9.2 (8.4, 10.0)	12.9 (10.9, 15.3)
55-64	396	5205	1.3 (1.0, 1.7)	2.4 (2.0, 2.8)	3.4 (2.9, 4.0)	6.4 (5.8, 7.2)	9.4 (8.5, 10.4)	
≥65	76	1312	2.5 (1.8, 3.5)	3.4 (2.5, 4.6)	3.9 (2.9, 5.1)	5.2 (4.0, 6.6)	7.3 (5.8, 9.2)	
TOTAL	989	13804						

Table HT81 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Age (Primary Diagnosis OA)

Note: Restricted to modern prostheses


Figure HT78 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Age (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	7287	6908	6374	5873	4473	2327	48
55-64	5205	4946	4576	4224	3378	1760	20
≥65	1312	1225	1087	987	774	396	3

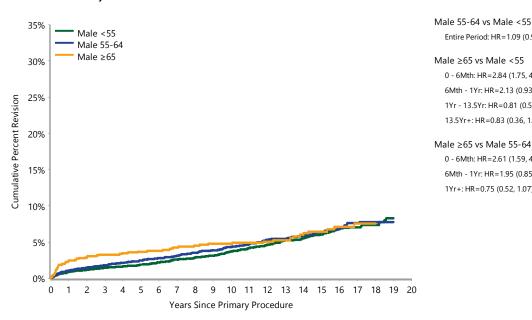
Table HT82	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender and Age (Primary Diagnosis
	OA)

Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male		541	11383	1.1 (0.9, 1.3)	1.8 (1.6, 2.1)	2.3 (2.0, 2.6)	4.1 (3.7, 4.5)	6.2 (5.7, 6.8)	9.8 (7.7, 12.4)
	<55	264	5911	0.9 (0.7, 1.2)	1.5 (1.2, 1.8)	1.9 (1.6, 2.3)	3.7 (3.2, 4.3)	6.1 (5.3, 6.9)	
	55-64	214	4264	1.1 (0.8, 1.4)	1.8 (1.4, 2.3)	2.5 (2.0, 3.0)	4.3 (3.7, 5.1)	6.4 (5.6, 7.4)	
	≥65	63	1208	2.4 (1.7, 3.5)	3.3 (2.4, 4.5)	3.7 (2.7, 5.0)	4.8 (3.6, 6.2)	6.5 (5.0, 8.4)	
Female		448	2421	1.9 (1.5, 2.6)	4.1 (3.4, 5.0)	6.4 (5.5, 7.5)	14.1 (12.7, 15.6)	18.9 (17.3, 20.6)	
	<55	253	1376	1.5 (1.0, 2.3)	3.6 (2.7, 4.7)	5.8 (4.7, 7.2)	14.3 (12.5, 16.3)	18.9 (16.8, 21.2)	
	55-64	182	941	2.4 (1.6, 3.7)	4.8 (3.6, 6.4)	7.4 (5.9, 9.3)	14.4 (12.3, 16.8)	19.4 (16.9, 22.2)	
	≥65	13	104	2.9 (0.9, 8.7)	4.8 (2.0, 11.2)	5.8 (2.6, 12.4)	8.8 (4.7, 16.3)	14.2 (8.4, 23.4)	
TOTAL		989	13804						

Note: Restricted to modern prostheses

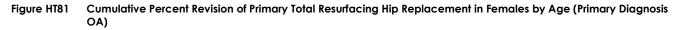
Figure HT79 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender (Primary Diagnosis OA)

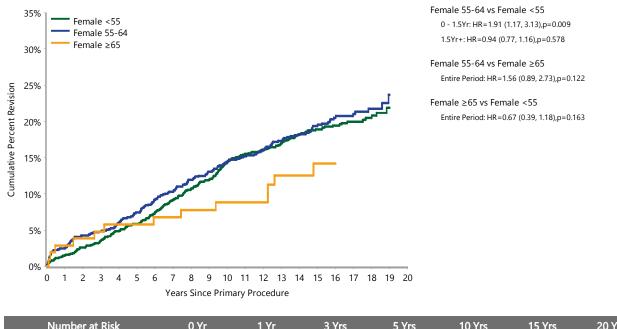
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	11383	10737	9775	8895	6695	3280	50
Female	2421	2342	2262	2189	1930	1203	21


Entire Period: HR=1.09 (0.91, 1.31),p=0.342

0 - 6Mth: HR=2.84 (1.75, 4.63),p<0.001 6Mth - 1Yr: HR=2.13 (0.93, 4.88),p=0.074

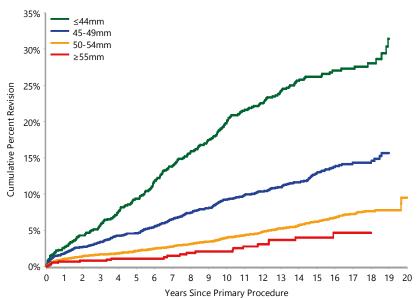
0 - 6Mth: HR=2.61 (1.59, 4.26),p<0.001


6Mth - 1Yr: HR=1.95 (0.85, 4.48),p=0.115 1Yr+: HR=0.75 (0.52, 1.07),p=0.114


1Yr - 13.5Yr: HR=0.81 (0.55, 1.20),p=0.298 13.5Yr+: HR=0.83 (0.36, 1.92),p=0.659

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	<55	5911	5579	5089	4631	3380	1658	32
	55-64	4264	4034	3696	3373	2625	1276	15
	≥65	1208	1124	990	891	690	346	3

Note: Restricted to modern prostheses


Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Female	<55	1376	1329	1285	1242	1093	669	16
	55-64	941	912	880	851	753	484	5
	≥65	104	101	97	96	84	50	0

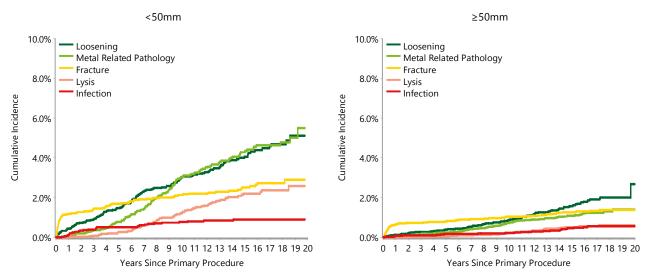
Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
≤44mm	225	873	2.6 (1.8, 4.0)	5.7 (4.3, 7.5)	9.4 (7.6, 11.5)	19.8 (17.2, 22.6)	26.2 (23.3, 29.4)	
45-49mm	294	2783	1.8 (1.3, 2.3)	3.4 (2.8, 4.1)	4.6 (3.9, 5.5)	9.3 (8.2, 10.5)	12.9 (11.5, 14.4)	
50-54mm	448	9373	1.0 (0.9, 1.3)	1.6 (1.4, 1.9)	2.1 (1.9, 2.5)	4.0 (3.5, 4.4)	6.2 (5.6, 6.8)	9.5 (7.3, 12.4)
≥55mm	22	775	0.7 (0.3, 1.6)	0.8 (0.4, 1.8)	1.1 (0.6, 2.2)	2.0 (1.2, 3.5)	4.0 (2.5, 6.3)	
TOTAL	989	13804						

Table HT83 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)

Note: Restricted to modern prostheses

Figure HT82 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)

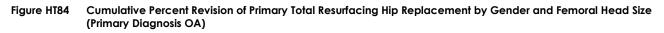
HR - adjusted for age and gender ≤44mm vs ≥55mm


Entire Period: HR=4.40 (2.74, 7.07),p<0.001

45-49mm vs ≥55mm Entire Period: HR=2.47 (1.57, 3.87),p<0.001

50-54mm vs ≥55mm Entire Period: HR=1.53 (1.00, 2.35),p=0.050

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
≤44mm	873	836	799	765	655	379	7
45-49mm	2783	2640	2452	2297	1814	908	12
50-54mm	9373	8867	8115	7410	5724	2997	47
≥55mm	775	736	671	612	432	199	5


Note: Restricted to modern prostheses

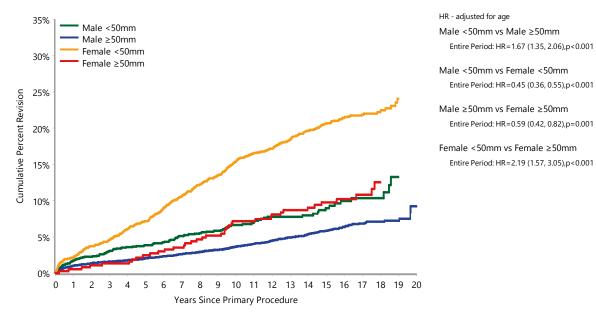

Femoral

Table HT84	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender and Femoral Head Size
	(Primary Diagnosis OA)

Gender	Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male		541	11383	1.1 (0.9, 1.3)	1.8 (1.6, 2.1)	2.3 (2.0, 2.6)	4.1 (3.7, 4.5)	6.2 (5.7, 6.8)	9.8 (7.7, 12.4)
	<50mm	109	1607	1.7 (1.2, 2.5)	3.1 (2.3, 4.1)	3.8 (3.0, 4.9)	6.6 (5.4, 8.2)	9.0 (7.3, 11.0)	
	≥50mm	432	9776	1.0 (0.8, 1.3)	1.6 (1.4, 1.9)	2.0 (1.8, 2.4)	3.6 (3.3, 4.1)	5.8 (5.3, 6.4)	9.2 (7.0, 12.1)
Female		448	2421	1.9 (1.5, 2.6)	4.1 (3.4, 5.0)	6.4 (5.5, 7.5)	14.1 (12.7, 15.6)	18.9 (17.3, 20.6)	
	<50mm	410	2049	2.2 (1.7, 2.9)	4.6 (3.8, 5.6)	7.2 (6.1, 8.4)	15.4 (13.8, 17.0)	20.6 (18.8, 22.5)	
	≥50mm	38	372	0.5 (0.1, 2.1)	1.3 (0.6, 3.2)	2.4 (1.3, 4.6)	7.2 (4.9, 10.4)	9.8 (7.1, 13.4)	
TOTAL		989	13804						

Note: Restricted to modern prostheses

Numb	er at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	<50mm	1607	1504	1350	1230	864	320	2
	≥50mm	9776	9233	8425	7665	5831	2960	48
Female	<50mm	2049	1972	1901	1832	1605	967	17
	≥50mm	372	370	361	357	325	236	4

OUTCOME OF PRIMARY TOTAL RESURFACING COMPARED TO PRIMARY TOTAL CONVENTIONAL HIP REPLACEMENT

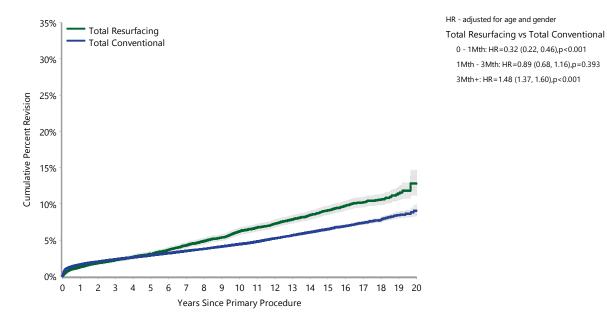

The rate of revision for osteoarthritis in primary total resurfacing and primary total conventional hip replacement was compared using only modern prostheses. Primary total resurfacing has a lower rate of revision than primary total conventional hip replacement in the first month. After 3 months, primary total resurfacing has a higher rate of revision (Table HT85 and Figure HT85).

Table HT85 Cumulative Percent Revision of Primary Total Hip Replacement by Class (Primary Diagnosis OA)

Total Hip Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Resurfacing	989	13804	1.3 (1.1, 1.5)	2.2 (2.0, 2.5)	3.1 (2.8, 3.4)	6.2 (5.7, 6.6)	9.1 (8.5, 9.7)	12.8 (11.2, 14.6)
Total Conventional	12028	368834	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 3.0)	4.4 (4.3, 4.5)	6.5 (6.3, 6.7)	9.0 (8.3, 9.8)
TOTAL	13017	382638						

Note: All primary total conventional procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

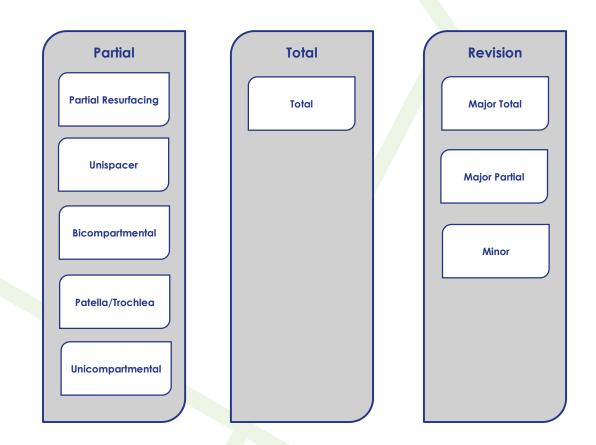
Figure HT85 Cumulative Percent Revision of Primary Total Hip Replacement by Class (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Resurfacing	13804	13079	12037	11084	8625	4483	71
Total Conventional	368834	327362	251190	182981	68326	17085	266

Note: All primary total conventional procedures using metal/metal prostheses have been excluded Restricted to modern prostheses

Knee Replacement

CATEGORIES OF KNEE REPLACEMENT


The Registry groups knee replacement into three broad categories: primary partial, primary total and revision knee replacement.

A primary replacement is an initial replacement procedure undertaken on a joint and involves replacing either part (partial) or all (total) of the articular surface.

Primary partial knees are subcategorised into classes depending on the type of prosthesis used. The classes of primary partial knee replacement are: partial resurfacing, unispacer, bicompartmental, patella/trochlea and unicompartmental. These are defined in the subsequent sections. Revision knee replacements are re-operations of previous knee replacements where one or more of the prosthetic components are replaced, removed, or one or more components are added. Revisions include reoperations of primary partial, primary total or previous revision procedures. Knee revisions are subcategorised into three classes: major total, major partial, and minor revisions.

Detailed demographic information on knee replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2021

KNEE REPLACEMENT

USE OF KNEE REPLACEMENT

This report analyses 911,953 knee replacements with a procedure date up to and including 31 December 2020. This is an additional 62,624 knee procedures compared to the number reported last year. The relative frequency of each type of knee replacement procedure is provided in Table K1.

Table K1	Number of Knee Replacements
	interinger er innee nepideennenne

Knee Category	Number	Percent
Partial	68956	7.6
Total	769798	84.4
Revision	73199	8.0
TOTAL	911953	100.0

In 2020, the number of knee replacements undertaken has decreased by 4,527 (6.8%) compared to 2019. During the last year, primary partial knee replacement decreased by 5.2% and primary total knee replacement decreased by 6.1%. Revision knee replacement decreased by 15.8%.

This is the first time the number of knee replacements has decreased since the Registry began and this is due to the cancellation of elective surgery during COVID-19 restrictions. In 2020, primary total knee replacement accounts for 86.5% of all knee replacement procedures. Primary partial knee replacement increased to 6.2%, and the proportion of revision knee procedures has declined to 7.3%. This equates to 915 fewer revision procedures in 2020 than would have been expected if the proportion of revision procedures had remained at the level reported in 2003 (Figure K1).

Figure K1 Proportion of Knee Replacements

ASA SCORE AND BMI IN KNEE REPLACEMENT

Data are reported on knee replacement procedures for both the American Society of Anaesthesiologists Physical Status Classification (ASA score) and Body Mass Index (BMI). The Registry commenced collecting ASA score in 2012 and BMI data in 2015.

ASA score and BMI are both known to impact the outcome of knee replacement surgery.

There are ASA score data on 463,968 and BMI data on 354,660 knee replacement procedures. Since its initial collection, ASA score has been recorded for 96.3% of procedures. BMI has been recorded for 94.2% of procedures since collection commenced.

In 2020, ASA score is reported in 99.8% of knee replacement procedures and BMI data are reported in 98.6% of procedures.

BMI data are reported for 99.2% of primary partial knees, 99.0% of primary total knees and 93.7% of revision knee replacement procedures.

ASA Score

There are five ASA score classifications.⁵

- 1. A normal healthy patient
- 2. A patient with mild systemic disease
- 3. A patient with severe systemic disease
- 4. A patient with severe systemic disease that is a constant threat to life
- 5. A moribund patient who is not expected to survive without the operation

Overall, in 92.7% of procedures, patients have an ASA score of 2 or 3, 6.1% have a score of 1 and 1.3% have a score of 4. Very few procedures are recorded where patients have an ASA score of 5.

There is a difference in ASA score depending on the class of knee replacement. There are more patients undergoing partial knee replacement procedures with ASA scores 1 or 2, than those having primary total knee replacement procedures. For patients undergoing revision knee replacement surgery, there are a lower proportion with ASA scores of 1 or 2 (Table K2).

BMI

BMI for adults is classified by the World Health Organisation into six main categories.⁶

1.	Underweight	<18.50
2.	Normal	18.50 - 24.99
3.	Pre-obese	25.00 - 29.99
4.	Obese Class 1	30.00 - 34.99
5.	Obese Class 2	35.00 - 39.99
6.	Obese Class 3	≥40.00

For all knee replacements, the majority of procedures are undertaken in patients that are either pre-obese or obese class 1. There is almost no difference in BMI for patients when primary total and revision knee replacement are compared. However, for partial knee replacement, patients generally have a lower BMI (Table K3).

⁵https://www.asahq.org/resources/clinical-information/asa-physicalstatus-classification-system

Table K2 ASA Score for Knee Replacement

ASA Score	Partial		То	Total Re		ision	on TOTAL	
	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%
ASA 1	3342	12.7	23426	5.8	1320	3.7	28088	6.1
ASA 2	16121	61.2	220244	54.8	15240	42.7	251605	54.2
ASA 3	6739	25.6	153887	38.3	17651	49.5	178277	38.4
ASA 4	126	0.5	4378	1.1	1470	4.1	5974	1.3
ASA 5			11	0.0	13	0.0	24	0.0
TOTAL	26328	100.0	401946	100.0	35694	100.0	463968	100.0

Table K3 BMI Category for Knee Replacement

BMI Category	Partial		Тс	Total Rev		sion	TOTAL	
	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%
Underweight	39	0.2	611	0.2	91	0.4	741	0.2
Normal	3116	14.7	32188	10.5	2836	11.0	38140	10.8
Pre Obese	8606	40.5	95909	31.2	7779	30.2	112294	31.7
Obese Class 1	6492	30.5	94707	30.8	7815	30.3	109014	30.7
Obese Class 2	2212	10.4	52168	17.0	4424	17.2	58804	16.6
Obese Class 3	804	3.8	32051	10.4	2812	10.9	35667	10.1
TOTAL	21269	100.0	307634	100.0	25757	100.0	354660	100.0

Note: BMI has not been presented for patients aged ≤19 years

Primary Partial Knee Replacement Summary

INTRODUCTION

This section provides summary information on partial knee replacement. Previously, detailed information on partial knees was included in the Annual Report. Since 2019, it has been provided as a separate supplementary report with the aim of streamlining the Annual Report. The Partial Knee Arthroplasty Supplementary Report is one of 15 supplementary reports that complete the AOANJRR Annual Report for 2021 and is available on the AOANJRR website.

CLASSES OF PARTIAL KNEE REPLACEMENT

The Registry subcategorises partial knee replacement into five classes. These are defined by the types of prostheses used.

Partial resurfacing involves the use of one or more button prostheses to replace part of the natural articulating surface on one or more sides of the joint, in one or more articular compartments of the knee.

Unispacer involves the use of a medial or lateral femorotibial compartment articular spacer.

Bicompartmental involves the replacement of the medial femoral and trochlear articular surface of the knee with a single femoral prosthesis, as well as the medial tibial articular surface with a unicompartmental tibial prosthesis. It may also include the use of a patellar prosthesis.

Patella/trochlea involves the use of a trochlear prosthesis to replace the femoral trochlear articular surface and, on most occasions, a patellar prosthesis.

Unicompartmental involves the replacement of the femoral and tibial articular surface of either the medial or lateral femorotibial compartment using unicompartmental femoral and tibial prostheses.

USE OF PARTIAL KNEE REPLACEMENT

Unicompartmental knee replacement remains the most common class of primary partial knee replacement, accounting for 92.8% of all partial knee replacement procedures. The second most common class is patella/trochlear replacement (6.6%). Within the remaining three classes (partial resurfacing, unispacer and bicompartmental knee replacement) only small numbers of procedures have been reported (Table KP1).

Partial Knee Class	Number	Percent
Partial Resurfacing	245	0.4
Unispacer	40	0.1
Bicompartmental	165	0.2
Patella/Trochlea	4529	6.6
Unicompartmental	63977	92.8
TOTAL	68956	100.0

The unispacer procedure has not been used since 2005 and has the highest revision rate of any class of partial knee replacement. Bicompartmental knee replacement has not been used since 2012. Partial resurfacing has not been recorded in 2020. These classes of partial knee replacement are not presented in detail in this report.

Detailed information on unispacer, bicompartmental and partial resurfacing knee replacement is available in the supplementary report 'Prosthesis Types No Longer Used' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2021

PATELLA/TROCHLEA

There have been 4,529 patella/trochlear knee replacement procedures undertaken for all diagnoses. This is an additional 302 procedures compared to the previous report. The principal diagnosis for patella/trochlea procedures is osteoarthritis. The mean age of patients is 58.5 years, with this procedure undertaken more frequently in females.

In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified.

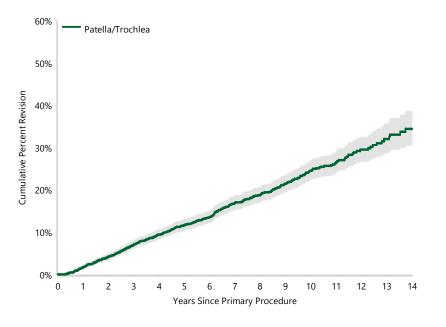

The Registry has recorded 480 revisions of primary patella/trochlear knee replacement for osteoarthritis. The cumulative percent revision of patella/ trochlear replacement at 14 years is 34.4% (Table KP2 and Figure KP1). The most common reason for revision is progression of disease, with most revised to a total knee replacement. Both age and gender are risk factors for revision with patients aged <65 years and males having a higher rate of revision.

Table KP2 Cumulative Percent Revision of Primary Patella/Trochlear Knee Replacement (Primary Diagnosis OA)

Knee Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Patella/Trochlea	480	3324	1.8 (1.4, 2.3)	7.0 (6.1, 8.1)	11.7 (10.4, 13.0)	17.0 (15.4, 18.7)	24.5 (22.4, 26.9)	34.4 (30.5, 38.7)
TOTAL	480	3324						

Note: Restricted to modern prostheses

Figure KP1 Cumulative Percent Revision of Primary Patella/Trochlear Knee Replacement (Primary Diagnosis OA)

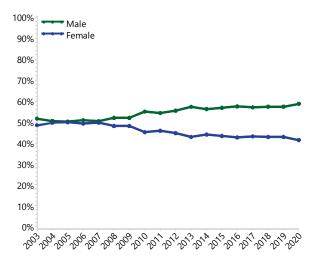
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Patella/Trochlea	3324	2977	2201	1564	1074	519	83

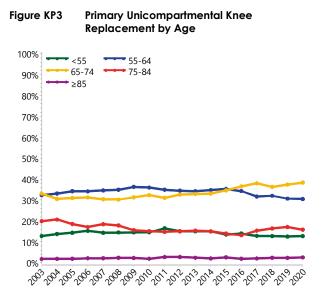
Note: Restricted to modern prostheses

More information regarding patella/trochlea procedures is available in the 'Partial Knee Arthroplasty Supplementary Report' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2021

UNICOMPARTMENTAL

DEMOGRAPHICS

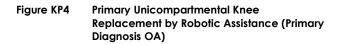

This year, the Registry is reporting on 63,977 primary unicompartmental knee procedures. This is an additional 3,590 procedures compared to the last report.

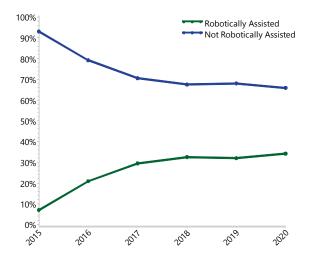

The use of unicompartmental knee replacement increased from 5.6% in 2019 to 5.7% of all knee procedures in 2020. Although the proportion of unicompartmental knee replacements has increased over the last 5 years (from 4.2% in 2014), it is still considerably less than in 2003 (14.5%). Osteoarthritis is the principal diagnosis.

This procedure is undertaken more often in males (54.0%) (Table KP3). The proportion of males has increased to 58.7% in 2020 (Figure KP2).

Unicompartmental knee replacement is most frequently undertaken in patients aged 55-74 years. The age distribution has remained relatively stable since 2003 (Figure KP3). The mean age of patients is 65.4 years (Table KP3).

Figure KP2 Primary Unicompartmental Knee Replacement by Gender





The proportion of unicompartmental knee replacements using robotic assistance continues to increase in 2020 to 34.2% despite a small decrease in 2019 (Figure KP4).

In 2020, the 10 most used tibial prostheses account for 98.7% of all unicompartmental procedures. The Restoris MCK, Oxford (cementless) and ZUK are the most used prostheses in 2020 (Table KP4).

The outcomes of unicompartmental knee prosthesis combinations with more than 200 procedures are presented in Table KP5.

Table KP3	Age and Gender of Primary Unicompartmental Knee Replacement
	rige and conder of finitally encompanies and the placement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	34534	54.0%	24	98	66	65.8	9.6
Female	29443	46.0%	13	98	65	64.9	10.2
TOTAL	63977	100.0%	13	98	65	65.4	9.9

Table KP4 10 Most Used Tibial Prostheses in Primary Unicompartmental Knee Replacement

	2003		2017		2018		2019		2020
Ν	Model	Ν	Model	Ν	Model	Ν	Model	Ν	Model
1366	Oxford (ctd)	1026	Restoris MCK	1148	Restoris MCK	1094	Restoris MCK	1139	Restoris MCK
444	Repicci II	915	ZUK	985	ZUK	897	ZUK	807	Oxford (cless)
373	Preservation Fixed	912	Oxford (cless)	804	Oxford (cless)	830	Oxford (cless)	709	ZUK
353	M/G	262	Oxford (ctd)	202	Journey Uni (v2)	208	BalanSys Uni Fixed	176	BalanSys Uni Fixed
336	Allegretto Uni	175	Journey Uni (v2)	196	Oxford (ctd)	196	Journey Uni (v2)	168	Sigma HP
321	GRU	136	Sigma HP	146	Sigma HP	168	Oxford (ctd)	151	Journey Uni (v2)
275	Genesis	62	Triathlon PKR	139	BalanSys Uni Fixed	162	Sigma HP	139	Oxford (ctd)
260	Unix	43	Endo-Model Sled	46	Triathlon PKR	118	Genus	128	Genus
121	Preservation Mobile	27	Journey Uni All	36	Genus	24	Journey Uni All	68	Persona
101	Endo-Model Sled	25	Repicci II	29	GMK-UNI	17	Endo-Model Sled	20	Endo-Model Sled
10 Mo:	st Used								
3950	(10) 96.1%	3583	(10) 98.0%	3731	(10) 98.0%	3714	(10) 98.9%	3505	(10) 98.7%
Remair	nder								
159	(7) 3.9%	74	(8) 2.0%	76	(7) 2.0%	40	(6) 1.1%	46	(6) 1.3%
TOTAL									
4109	(17) 100.0%	3657	(18) 100.0%	3807	(17) 100.0%	3754	(16) 100.0%	3551	(16) 100.0%

Uni Femoral	Uni Tibial	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Allegretto Uni	ZUK	20	281	0.8 (0.2, 3.0)	5.0 (2.9, 8.7)	8.4 (5.2, 13.4)			
BalanSys Uni	BalanSys Uni Fixed	46	923	2.1 (1.3, 3.3)	3.9 (2.7, 5.6)	4.7 (3.3, 6.7)	8.1 (5.8, 11.3)		
Endo-Model Sled	Endo-Model Sled	209	1328	1.3 (0.8, 2.1)	5.2 (4.1, 6.6)	7.9 (6.6, 9.6)	14.8 (12.8, 17.1)	22.2 (19.4, 25.3)	
Genus	Genus	7	287	1.8 (0.7, 4.8)					
Journey Uni	Journey Uni (v2)	46	1049	2.5 (1.7, 3.6)	4.7 (3.5, 6.5)	6.0 (4.4, 8.1)			
	Journey Uni All Poly	37	330	1.6 (0.7, 3.7)	7.0 (4.6, 10.5)	9.0 (6.2, 13.0)	15.3 (10.9, 21.2)		
Oxford (cless)	Oxford (cless)	492	7507	2.7 (2.3, 3.1)	4.7 (4.2, 5.2)	6.0 (5.4, 6.7)	11.2 (10.0, 12.5)		
	Oxford (ctd)	44	459	3.3 (2.0, 5.4)	6.4 (4.4, 9.1)	9.2 (6.7, 12.6)			
Oxford (ctd)	Oxford (ctd)	2423	13432	2.2 (1.9, 2.4)	5.7 (5.4, 6.2)	8.2 (7.7, 8.7)	14.6 (14.0, 15.3)	22.5 (21.6, 23.4)	31.5 (29.5, 33.7)
Repicci II	Repicci II	591	2237	1.5 (1.1, 2.1)	4.6 (3.8, 5.6)	7.6 (6.5, 8.8)	18.8 (17.1, 20.6)	30.8 (28.6, 33.1)	
Restoris MCK	Restoris MCK	132	5162	1.5 (1.1, 1.8)	3.2 (2.7, 3.9)	4.2 (3.4, 5.0)			
Sigma HP	Sigma HP	60	1470	0.9 (0.6, 1.6)	2.8 (2.0, 3.9)	4.7 (3.6, 6.2)	7.5 (5.5, 10.1)		
Triathlon PKR	Triathlon PKR	29	366	3.1 (1.7, 5.5)	6.5 (4.3, 9.7)	7.8 (5.3, 11.4)			
ZUK	ZUK	509	9303	1.5 (1.2, 1.7)	3.5 (3.1, 3.9)	4.7 (4.2, 5.2)	8.1 (7.3, 8.9)	12.4 (10.5, 14.6)	
Other (10)		93	623	4.3 (2.9, 6.3)	11.0 (8.6, 14.0)	14.5 (11.7, 18.0)	20.5 (16.7, 24.9)		
TOTAL		4738	44757						

Table KP5 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Prosthesis Combination

Note: Restricted to modern prostheses

Only prostheses with over 200 procedures have been listed

OUTCOME FOR OSTEOARTHRITIS

The Registry has recorded 4,690 revisions of primary unicompartmental knee replacements with an initial diagnosis of osteoarthritis.

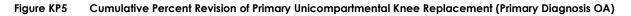
In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified.

The cumulative percent revision for primary unicompartmental knee replacement undertaken for osteoarthritis is 13.0% at 10 years and 30.7% at 20 years (Table KP6 and Figure KP5).

The main reasons for revision are progression of disease, loosening and pain (Table KP7 and

Figure KP6). The main type of revision is to a total knee replacement (Table KP8).

Patient Characteristics


Age is a major factor affecting the outcome of primary unicompartmental knee replacement, with the rate of revision decreasing with increasing age (Table KP9 and Figure KP7).

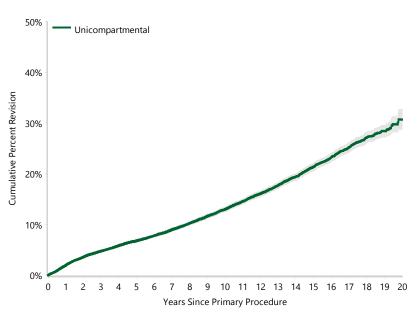

Females have a higher rate of revision. The effect of age on the rate of revision is evident in both males and females (Table KP10 and Figure KP8).

Table KP6	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)
-----------	---

Кпее Туре	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Unicompartmental	4690	44380	2.0 (1.8, 2.1)	4.8 (4.5, 5.0)	6.8 (6.5, 7.0)	13.0 (12.6, 13.4) 2	1.4 (20.7, 22.1)	30.7 (28.7, 32.7)
TOTAL	4690	44380						

Note: Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Unicompartmental	44380	39889	31090	23763	12503	4384	103

Table KP7Primary Unicompartmental Knee
Replacement by Reason for Revision
(Primary Diagnosis OA)

Reason for Revision	Number	Percent
Progression Of Disease	1691	36.1
Loosening	1567	33.4
Pain	364	7.8
Infection	224	4.8
Bearing Dislocation	153	3.3
Fracture	129	2.8
Lysis	110	2.3
Instability	71	1.5
Wear Tibial Insert	71	1.5
Malalignment	59	1.3
Other (14)	251	5.4
TOTAL	4690	100.0

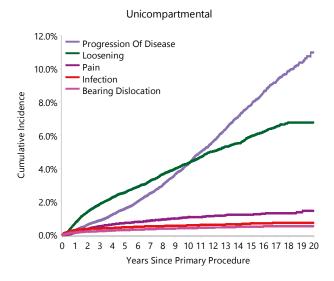
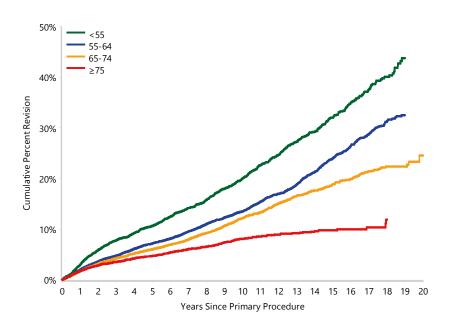

Note: Restricted to modern prostheses

Table KP8 Primary Unicompartmental Knee Replacement by Type of Revision (Primary Diagnosis OA)

Type of Revision	Number	Percent
TKR (Tibial/Femoral)	4008	85.5
Uni Insert Only	417	8.9
Uni Tibial Component	113	2.4
Uni Femoral Component	48	1.0
Cement Spacer	39	0.8
UKR (Uni Tibial/Uni Femoral)	37	0.8
Patella/Trochlear Resurfacing	13	0.3
Removal of Prostheses	5	0.1
Reinsertion of Components	4	0.1
Femoral Component*	3	0.1
Tibial Component	2	0.0
Patella Only	1	0.0
TOTAL	4690	100.0

Note: *Bicompartmental component Restricted to modern prostheses

Figure KP6 Cumulative Incidence Revision Diagnosis of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)



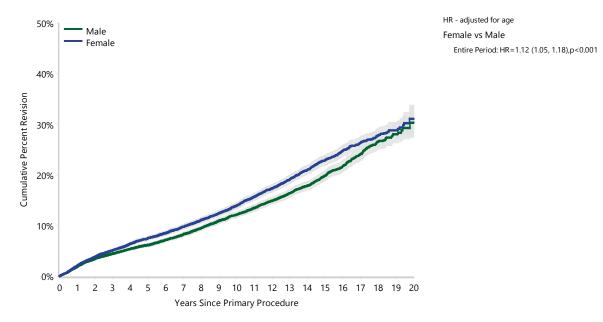
Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	1017	5842	3.0 (2.6, 3.5)	7.8 (7.1, 8.5)	10.6 (9.8, 11.5)	20.0 (18.7, 21.4)	32.1 (30.1, 34.2)	
55-64	1797	14601	2.0 (1.8, 2.2)	4.8 (4.4, 5.2)	7.2 (6.7, 7.7)	13.5 (12.8, 14.2)	24.0 (22.8, 25.2)	
65-74	1408	15455	1.7 (1.5, 1.9)	4.2 (3.9, 4.6)	6.0 (5.6, 6.4)	12.1 (11.4, 12.9)	18.8 (17.7, 20.0)	24.5 (21.6, 27.7)
≥75	468	8482	1.7 (1.5, 2.0)	3.5 (3.1, 4.0)	4.7 (4.2, 5.3)	8.1 (7.3, 8.9)	9.8 (8.7, 10.9)	
TOTAL	4690	44380						

Table KP9 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA)

Note: Restricted to modern prostheses

Figure KP7 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA)

HR - adjusted for gender <55 vs ≥75 0 - 1.5Yr: HR=2.05 (1.71, 2.45),p<0.001 1.5Yr - 8.5Yr: HR=2.86 (2.47, 3.31),p<0.001 8.5Yr - 10Yr: HR=3.62 (2.64, 4.95),p<0.001 10Yr - 10.5Yr: HR=4.55 (2.88, 7.19),p<0.001 10.5Yr - 11.5Yr: HR=3.57 (2.43, 5.25),p<0.001 11.5Yr - 12Yr: HR=4.03 (2.32, 7.00),p<0.001 12Yr - 12.5Yr: HR=6.54 (4.01, 10.65),p<0.001 12.5Yr - 14Yr: HR=4.71 (3.11, 7.14),p<0.001 14Yr+: HR=7.28 (5.27, 10.06),p<0.001 55-64 vs ≥75 0 - 2Yr: HR=1.32 (1.13, 1.53),p<0.001 2Yr - 7Yr: HR=1.93 (1.66, 2.25),p<0.001 7Yr - 12.5Yr: HR=2.49 (2.05, 3.01),p<0.001 12.5Yr+: HR=5.51 (4.24, 7.16),p<0.001 65-74 vs ≥75 0 - 1.5Yr: HR=1.12 (0.94, 1.32),p=0.201 1.5Yr - 7Yr: HR=1.53 (1.32, 1.77),p<0.001 7Yr+: HR=2.37 (1.96, 2.86),p<0.001


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	5842	5227	4058	3139	1676	619	11
55-64	14601	13237	10546	8228	4581	1710	38
65-74	15455	13819	10682	8028	4248	1546	45
≥75	8482	7606	5804	4368	1998	509	9

Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male		2275	24222	1.9 (1.7, 2.1)	4.5 (4.2, 4.7)	6.1 (5.8, 6.5)	12.1 (11.6, 12.7)	19.8 (18.9, 20.8)	30.3 (27.4, 33.5)
	<55	446	2694	3.0 (2.4, 3.7)	7.3 (6.4, 8.5)	9.6 (8.5, 10.9)	19.9 (17.9, 22.0)	33.0 (29.8, 36.4)	
	55-64	908	8044	2.0 (1.7, 2.4)	4.7 (4.2, 5.2)	6.8 (6.2, 7.4)	13.0 (12.1, 14.1)	22.3 (20.7, 24.0)	
	65-74	703	8801	1.6 (1.3, 1.9)	4.0 (3.6, 4.5)	5.5 (5.0, 6.1)	11.1 (10.2, 12.0)	16.9 (15.5, 18.4)	
	≥75	218	4683	1.6 (1.2, 2.0)	3.2 (2.7, 3.7)	4.0 (3.4, 4.7)	7.4 (6.4, 8.5)	9.0 (7.6, 10.7)	
Female		2415	20158	2.1 (1.9, 2.3)	5.1 (4.8, 5.4)	7.5 (7.1, 7.9)	13.9 (13.3, 14.6)	22.9 (21.9, 23.9)	31.1 (28.6, 33.8)
	<55	571	3148	3.0 (2.4, 3.7)	8.1 (7.2, 9.2)	11.4 (10.3, 12.7)	20.2 (18.5, 22.1)	31.4 (28.9, 34.1)	
	55-64	889	6557	1.9 (1.6, 2.3)	4.9 (4.4, 5.5)	7.6 (6.9, 8.3)	14.0 (13.0, 15.1)	25.7 (24.0, 27.6)	
	65-74	705	6654	1.8 (1.5, 2.2)	4.5 (4.0, 5.1)	6.6 (5.9, 7.3)	13.5 (12.4, 14.6)	21.0 (19.4, 22.8)	
	≥75	250	3799	1.9 (1.5, 2.4)	3.9 (3.3, 4.7)	5.5 (4.8, 6.4)	8.9 (7.8, 10.2)	10.6 (9.2, 12.2)	
TOTAL		4690	44380						

 Table KP10
 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Gender and Age (Primary Diagnosis OA)

Note: Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	24222	21611	16620	12478	6198	2142	47
Female	20158	18278	14470	11285	6305	2242	56

OUTCOME BY PROSTHESIS CHARACTERISTICS

Bearing Mobility

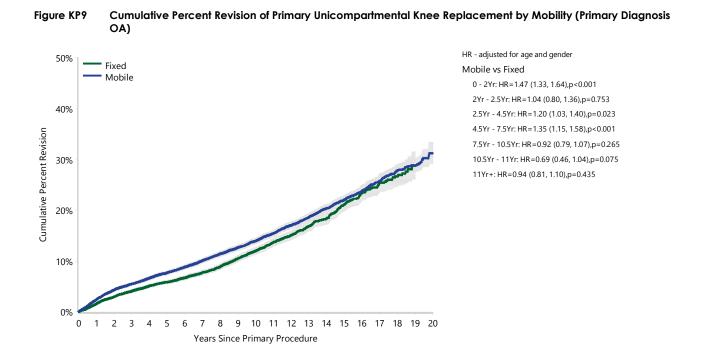
Fixed bearings are used in 51.8% of unicompartmental knee replacements, while in the remainder the bearing insert is mobile. Three different prostheses have a mobile bearing. Fixed bearing prostheses have a lower rate of revision compared to mobile bearing prostheses in the first 2 years and between 2.5 and 7.5 years (Table KP11 and Figure KP9).

Robotic Assistance

There have been 5,476 robotically assisted unicompartmental knee replacement procedures recorded since 2015. In 2020, 34.2% of unicompartmental knee procedures used robotic assistance. There are only 4 unicompartmental combinations that can be used with robotic assistance.

Unicompartmental knee procedures using robotic assistance have a lower rate of revision compared to unicompartmental procedures without robotic assistance (Table KP12 and Figure KP10). When using robotic assistance, there are fewer revisions for loosening, progression of disease and pain, but more revisions for infection (Table KP13 and Figure KP11).

Position


The Registry has recorded 1,285 lateral unicompartmental knee procedures undertaken for osteoarthritis. There is no difference in the rate of revision when lateral unicompartmental knee replacement is compared to medial unicompartmental knee replacement (Table KP14 and Figure KP12). The most common reasons for revision of both lateral and medial unicompartmental knees are progression of disease and loosening (Table KP15 and Figure KP13).

The outcome of prosthesis combinations with >50 procedures used in lateral unicompartmental knee replacement is presented in Table KP16.

Mobility	N	Ν	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
wiobility	Revised	Total		5 115	5 115	10 115	13 115	20 113
Fixed	1743	22977	1.6 (1.4, 1.7)	4.0 (3.8, 4.3)	5.8 (5.5, 6.2)	11.9 (11.3, 12.6)	21.0 (19.8, 22.4)	
Mobile	2946	21334	2.4 (2.2, 2.6)	5.5 (5.2, 5.8)	7.7 (7.3, 8.1)	13.9 (13.4, 14.5)	22.0 (21.2, 22.9)	31.2 (29.1, 33.4)
TOTAL	4689	44311						

Table KP11 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Mobility (Primary Diagnosis OA)

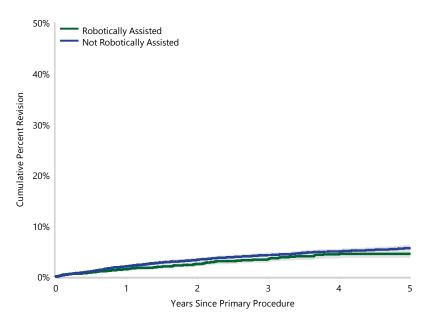
Note: Excludes 69 primary unicompartmental knee procedures with unknown/missing mobility Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Fixed	22977	20068	14061	9641	4341	1077	2
Mobile	21334	19820	17029	14122	8162	3307	101

Table KP12 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement since 2015 by Robotic Assistance (Primary Diagnosis OA)

Robotic Assistance	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs
Robotically Assisted	147	5476	1.5 (1.2, 1.8)	2.5 (2.1, 3.0)	3.4 (2.9, 4.1)	4.3 (3.6, 5.2)	4.5 (3.7, 5.4)
Not Robotically Assisted	549	14341	2.0 (1.8, 2.3)	3.3 (3.0, 3.6)	4.2 (3.9, 4.6)	4.9 (4.5, 5.4)	5.6 (5.1, 6.1)
TOTAL	696	19817					

Note: Restricted to modern prostheses

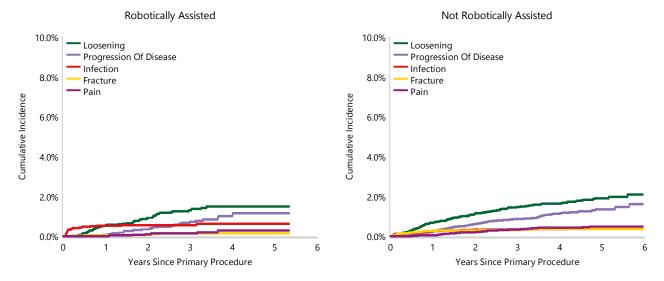

Figure KP10 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement since 2015 by Robotic Assistance (Primary Diagnosis OA)

HR - adjusted for age and gender

Not Robotically Assisted vs

Entire Period: HR=1.23 (1.03, 1.48),p=0.025

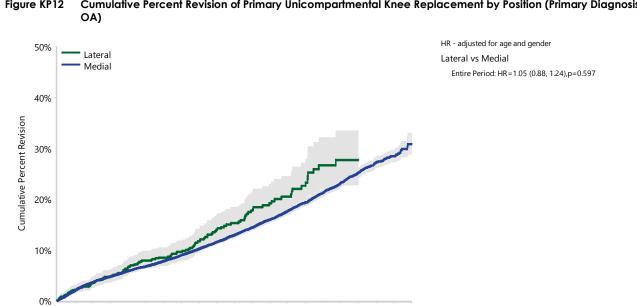
Robotically Assisted


Number at Risk 0 Yr 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs Robotically Assisted 5476 4193 2980 1776 738 141 Not Robotically Assisted 14341 11750 9094 6557 4114 1958

		Robotically Assisted	ł	No	ot Robotically Assis	ted
Revision Diagnosis	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions
Loosening	52	0.9	35.4	187	1.3	34.1
Progression Of Disease	28	0.5	19.0	118	0.8	21.5
Infection	30	0.5	20.4	46	0.3	8.4
Bearing Dislocation				45	0.3	8.2
Fracture	6	0.1	4.1	45	0.3	8.2
Pain	7	0.1	4.8	43	0.3	7.8
Instability	5	0.1	3.4	17	0.1	3.1
Malalignment	4	0.1	2.7	13	0.1	2.4
Prosthesis Dislocation				6	0.0	1.1
Incorrect Sizing				5	0.0	0.9
Lysis	3	0.1	2.0	5	0.0	0.9
Arthrofibrosis				2	0.0	0.4
Implant Breakage Tibial				2	0.0	0.4
Osteonecrosis	2	0.0	1.4	2	0.0	0.4
Patellofemoral Pain	1	0.0	0.7	2	0.0	0.4
Wear Tibial Insert	1	0.0	0.7	2	0.0	0.4
Metal Related Pathology	1	0.0	0.7	1	0.0	0.2
Patella Erosion				1	0.0	0.2
Synovitis	1	0.0	0.7	1	0.0	0.2
Other	6	0.1	4.1	6	0.0	1.1
N Revision	147	2.7	100.0	549	3.8	100.0
N Primary	5476			14341		

Table KP13 Revision Diagnosis of Primary Unicompartmental Knee Replacement Since 2015 by Robotic Assistance (Primary Diagnosis OA)

Note: Restricted to modern prostheses


Figure KP11 Cumulative Incidence Revision Diagnosis of Primary Unicompartmental Knee Replacement Since 2015 by Robotic Assistance (Primary Diagnosis OA)

Position	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Lateral	140	1285	2.1 (1.4, 3.1)	4.7 (3.6, 6.1)	7.9 (6.3, 9.8)	15.2 (12.6, 18.4)	26.6 (22.0, 32.1)	
Medial	4478	42639	2.0 (1.8, 2.1)	4.7 (4.5, 5.0)	6.7 (6.5, 7.0)	12.9 (12.4, 13.3)	21.2 (20.5, 21.9)	30.8 (28.8, 32.9)
TOTAL	4618	43924						

Table KP14 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Position (Primary Diagnosis OA)

Note: Excludes 456 primary unicompartmental knee procedures with unknown/missing position Restricted to modern prostheses

Figure KP12	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Position (Primary Diagnosis

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Lateral	1285	1168	883	632	292	94	6
Medial	42639	38318	29881	22847	12015	4202	97

8 9 10 11 12 13 14 15 16 17 18 19 20

Years Since Primary Procedure

Note: Restricted to modern prostheses

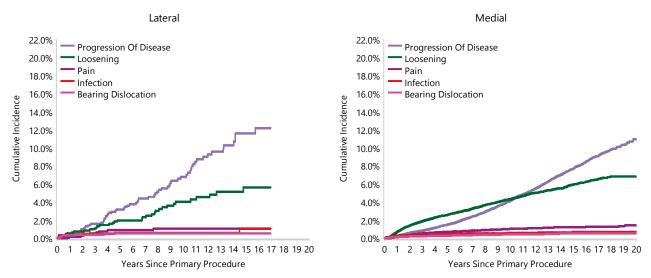

0 1 2 3 4 5 6 7

Table KP15	Reason for Revision of Primary Unicompartmental Knee Replacement by Position (Primary Diagnosis OA)
------------	---

		Lateral			Medial	
Revision Diagnosis	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions
Progression Of Disease	68	5.3	48.6	1591	3.7	35.5
Loosening	36	2.8	25.7	1513	3.5	33.8
Pain	10	0.8	7.1	345	0.8	7.7
Infection	8	0.6	5.7	216	0.5	4.8
Bearing Dislocation	6	0.5	4.3	147	0.3	3.3
Fracture	3	0.2	2.1	124	0.3	2.8
Lysis	1	0.1	0.7	107	0.3	2.4
Instability	2	0.2	1.4	68	0.2	1.5
Wear Tibial Insert	2	0.2	1.4	66	0.2	1.5
Malalignment	1	0.1	0.7	57	0.1	1.3
Other	3	0.2	2.1	244	0.6	5.4
N Revision	140	10.9	100.0	4478	10.5	100.0
N Primary	1285			42639		

Note: Restricted to modern prostheses

Figure KP13 Cumulative Incidence Revision Diagnosis of Primary Unicompartmental Knee Replacement by Position (Primary Diagnosis OA)

Table KP16	Cumulative Percent Revision of Lateral Primary Unicompartmental Knee Replacement by Prosthesis Combination
	(Primary Diagnosis OA)

Uni Femoral	Uni Tibial	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
BalanSys Uni	BalanSys Uni Fixed	1	52	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	3.8 (0.6, 24.3)		
Endo-Model Sled	Endo-Model Sled	22	156	0.0 (0.0, 0.0)	4.0 (1.8, 8.8)	7.1 (3.9, 12.8)	13.6 (8.4, 21.6)		
Oxford (cless)	Oxford (ctd)	7	81	3.8 (1.2, 11.2)	5.3 (2.0, 13.5)	5.3 (2.0, 13.5)	15.4 (7.0, 32.1)		
Oxford (ctd)	Oxford (ctd)	37	171	5.9 (3.2, 10.7)	9.0 (5.5, 14.5)	13.0 (8.6, 19.2)	22.0 (15.9, 30.1)		
Repicci II	Repicci II	41	105	1.9 (0.5, 7.5)	8.7 (4.6, 16.0)	17.7 (11.5, 26.6)	27.8 (19.9, 37.9)		
Restoris MCK	Restoris MCK	2	192	0.6 (0.1, 4.0)	1.2 (0.3, 4.9)				
Sigma HP	Sigma HP	3	52	2.2 (0.3, 14.4)	2.2 (0.3, 14.4)	8.3 (2.7, 23.9)	8.3 (2.7, 23.9)		
ZUK	ZUK	17	299	1.0 (0.3, 3.1)	2.9 (1.5, 5.8)	5.3 (3.0, 9.2)			
Other (15)		10	177	3.5 (1.6, 7.7)	5.6 (2.9, 10.4)	5.6 (2.9, 10.4)			
TOTAL		140	1285						

Note: Only prostheses with over 50 procedures have been listed Restricted to modern prostheses

Primary Total Knee Replacement

CLASS OF TOTAL KNEE REPLACEMENT

The Registry defines a total knee replacement as a replacement of the entire femorotibial articulation using a single femoral and a single tibial prosthesis. This may or may not be combined with a patella resurfacing replacement.

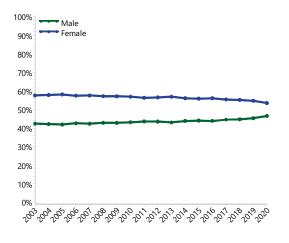
In this report, the Registry details the outcome of total knee replacement based on specific patient and prosthesis characteristics. In addition, the outcome for different types of total knee prostheses is presented.

Most total knee systems have a variety of individual prostheses within the system that vary based on distinguishing prosthesis characteristics. Where possible, the Registry subdivides these systems into the specific prosthesis types. The initial characteristic used is fixation. Further subdivision is based on mobility, stability and flexion capacity. However, this further system subdivision is not uniformly applied to all knee systems at this time. High use prosthesis systems are subdivided. This enables the identification of differences or potential differences in outcome between prostheses with different characteristics within each of these systems.

Low use systems are unlikely to be subdivided. This is because of small numbers or insufficient follow-up. The exception is if the entire system is identified as having a higher than anticipated rate of revision. The Registry then undertakes a catalogue range-specific analysis to determine if the higher than anticipated rate of revision is associated with specific prosthesis attributes within that system.

To enable the Registry to undertake rangespecific analyses uniformly across all knee systems, it is necessary to link the different catalogue ranges to the specific prosthesis characteristics for every prosthesis within the system. This is an ongoing process with increasing numbers of systems being subdivided.

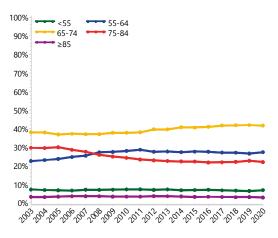
DEMOGRAPHICS


There have been 769,798 primary total knee replacement procedures reported to the Registry. This is an additional 54,013 procedures compared to the last report.

In 2020, there was a decrease of 6.1% in primary total knee replacement procedures when compared to 2019. This is the first time the number of knee replacements has decreased since the Registry began and this is due to the cancellation of elective surgery during COVID-19 restrictions. As a proportion of all knee replacement procedures, primary total knee replacement increased to 86.5% in 2020.

Osteoarthritis is the most common diagnosis for primary total knee replacement.

Primary total knee replacement remains more common in females (56.2%). This proportion has shown little change from 2003. The mean age of patients is 68.5 years (Table KT1 and Figure KT1).


Figure KT1	Primary To	tal Knee Re	placement b	v Gender
ingoic kin	i i i i i i i i i i i i i i i i i i i		placement b	y ochaci

There have been 769,798 primary total knee replacement procedures reported to the Registry. This is an additional 54,013 procedures compared to the last report.

There has been a decrease in the proportion of patients aged 75-84 years. The proportion of patients aged <55 years remains small and there has been little change in that proportion (Figure KT2).

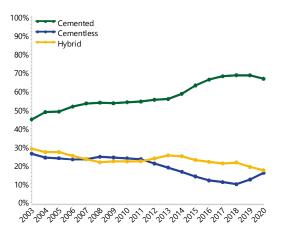
Figure KT2 Primary Total Knee Replacement by Age

Detailed demographic information on primary total knee replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website:

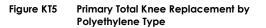
https://aoanjrr.sahmri.com/annual-reports-2021

Table KT1	Age and Gender of Primar	v Total Knee Replacement
	Age und Gender of Filling	y loiul knee keplucemen

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	337110	43.8%	8	101	68	68.1	9.1
Female	432688	56.2%	8	103	69	68.7	9.4
TOTAL	769798	100.0%	8	103	69	68.5	9.2


Patella resurfacing at the time of the primary total knee replacement has increased to 75.4% in 2020 (Figure KT3).

100% Pate	iella Used
90% 🕶 No	Patella
80%	
70%	
60%	
50%	
40%	
30%	
20%	•
10%	
0%	
0% 2993299429529	³⁶ 2 ⁶⁶ 2 ⁸⁶ 2 ⁶⁶ 2 ⁶⁶ 2 ⁶⁶ 2 ⁶⁶ 2 ⁶⁶ 2 ⁶


Figure KT3 Primary Total Knee Replacement by Patella Usage

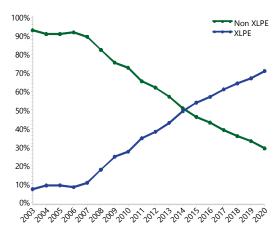

The most common method of fixation is cementing both femoral and tibial components. This accounts for 66.7% of procedures in 2020. The use of cementless fixation decreased to 9.8% in 2018 but has increased to 15.9% in 2020 (Figure KT4).

Figure KT4 Primary Total Knee Replacement by Fixation

The use of cross-linked polyethylene (XLPE) in primary total knee replacement increased to 70.9% in 2020 (Figure KT5).

Cruciate retaining (CR) and posterior stabilised (PS) prostheses are reported separately for the majority of total knee prostheses. This reporting is based on the design of the femoral component. In 2020, the most commonly used femoral prostheses were the Triathlon CR, Persona CR and GMK Sphere Primary (Table KT2). The most used prostheses are also reported based on fixation (cemented, cementless and hybrid) (Table KT3 to Table KT5).

Table KT2 10 Most Used Femoral Prostheses in Primary Total Knee Replacement

	2003		2017		2018		2019		2020
Ν	Model	Ν	Model	Ν	Model	Ν	Model	Ν	Model
3184	LCS CR	10502	Triathlon CR	12327	Triathlon CR	13391	Triathlon CR	13707	Triathlon CR
2846	Duracon	6644	Nexgen CR Flex	5796	Nexgen CR Flex	5663	Persona CR	8283	Persona CR
2150	Nexgen CR	3195	Attune CR	3586	Persona CR	4303	Nexgen CR Flex	3220	GMK Sphere Primary
1419	PFC Sigma CR	2649	LCS CR	3246	Attune CR	3402	Attune CR	3130	Attune CR
1354	Scorpio CR	2645	Nexgen LPS Flex	2190	Nexgen LPS Flex	2744	GMK Sphere Primary	2380	Nexgen CR Flex
1059	Genesis II CR	2388	Vanguard CR	2147	GMK Sphere Primary	1842	LCS CR	1774	Attune PS
1002	Natural Knee II	1754	Evolution	2089	LCS CR	1795	Attune PS	1597	Apex Knee CR
902	Nexgen LPS	1583	Legion Oxinium PS	1956	Vanguard CR	1568	Vanguard CR	1394	LCS CR
883	Profix	1537	GMK Sphere Primary	1660	Evolution	1536	Evolution	1353	Legion Oxinium CR
751	Scorpio PS	1484	Persona CR	1409	Apex Knee CR	1475	Apex Knee CR	1199	Evolution
10 Most	Used								
15550	(10) 71.5%	34381	(10) 62.4%	36406	(10) 64.8%	37719	(10) 66.1%	38037	(10) 71.0%
Remaind	der								
6185	(47) 28.5%	20738	(70) 37.6%	19774	(73) 35.2%	19326	(66) 33.9%	15543	(64) 29.0%
TOTAL									
21735	(57) 100.0%	55119	(80) 100.0%	56180	(83) 100.0%	57045	(76) 100.0%	53580	(74) 100.0%

Table KT3 10 Most Used Femoral Prostheses in Cemented Primary Total Knee Replacement

	2003		2017		2018		2019		2020
Ν	Model	N	Model	Ν	Model	Ν	Model	Ν	Model
1213	Duracon	6018	Triathlon CR	6689	Triathlon CR	6632	Triathlon CR	6149	Triathlon CR
948	LCS CR	3420	Nexgen CR Flex	3158	Attune CR	3423	Persona CR	4748	Persona CR
824	Nexgen LPS	3175	Attune CR	2953	Nexgen CR Flex	3280	Attune CR	3220	GMK Sphere Primary
761	Nexgen CR	2327	Nexgen LPS Flex	2392	Persona CR	2743	GMK Sphere Primary	2858	Attune CR
690	Nexgen LPS Flex	1747	Evolution	2147	GMK Sphere Primary	2312	Nexgen CR Flex	1650	Attune PS
642	Genesis II CR	1582	Legion Oxinium PS	1918	Nexgen LPS Flex	1776	Attune PS	1337	Legion Oxinium CR
495	Profix	1537	GMK Sphere Primary	1620	Evolution	1510	Evolution	1216	Nexgen CR Flex
471	Genesis II Oxinium CR	1431	Genesis II Oxinium PS	1392	Legion Oxinium PS	1377	Legion Oxinium CR	1126	Evolution
471	PFC Sigma PS	1353	Attune PS	1365	Attune PS	1269	Legion Oxinium PS	1102	Columbus
419	Genesis II PS	1187	Persona CR	1343	Genesis II Oxinium PS	1267	Genesis II Oxinium PS	1068	Genesis II Oxinium PS
10 Mo	st Used								
6934	(10) 71.3%	23777	(10) 63.4%	24977	(10) 64.8%	25589	(10) 65.4%	24474	(10) 68.4%
Remai	nder								
2795	(41) 28.7%	13752	(69) 36.6%	13587	(70) 35.2%	13542	(65) 34.6%	11286	(62) 31.6%
TOTAL									
9729	(51) 100.0%	37529	(79) 100.0%	38564	(80) 100.0%	39131	(75) 100.0%	35760	(72) 100.0%

	2003		2017		2018		2019		2020
Ν	Model	Ν	Model	Ν	Model	N	Model	N	Model
1470	LCS CR	1357	Nexgen CR Flex	1619	Triathlon CR	3362	Triathlon CR	4871	Triathlon CR
793	Nexgen CR	1288	Triathlon CR	1177	Nexgen CR Flex	894	Nexgen CR Flex	1283	Persona CR
500	Natural Knee II	1177	LCS CR	851	LCS CR	754	LCS CR	567	LCS CR
487	Active Knee	272	Scorpio NRG CR	219	PFC Sigma CR	458	Persona CR	533	Nexgen CR Flex
476	Duracon	229	PFC Sigma CR	209	Score	194	PFC Sigma CR	246	Score
320	Scorpio CR	219	Nexgen LPS Flex	200	Nexgen LPS Flex	192	ACS	175	Attune CR
314	PFC Sigma CR	205	Vanguard CR	167	GMK Primary	146	Nexgen LPS Flex	137	PFC Sigma CR
303	RBK	200	RBK	144	RBK	146	Score	104	GMK Primary
187	Profix	158	Score	143	Vanguard CR	137	GMK Primary	99	RBK
181	Scorpio PS	157	Natural Knee Flex	119	Natural Knee Flex	92	Triathlon PS	79	Attune PS
10 Most	Used								
5031	(10) 88.1%	5262	(10) 87.6%	4848	(10) 87.7%	6375	(10) 91.0%	8094	(10) 94.8%
Remaind	ler								
681	(14) 11.9%	745	(15) 12.4%	680	(18) 12.3%	627	(16) 9.0%	447	(13) 5.2%
TOTAL									
5712	(24) 100.0%	6007	(25) 100.0%	5528	(28) 100.0%	7002	(26) 100.0%	8541	(23) 100.0%

 Table KT4
 10 Most Used Femoral Prostheses in Cementless Primary Total Knee Replacement

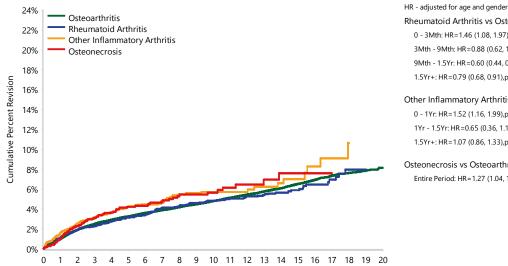
Table KT5 10 Most Used Femoral Prostheses in Hybrid Primary Total Knee Replacement

	2003		2017		2018		2019		2020
Ν	Model	Ν	Model	Ν	Model	Ν	Model	Ν	Model
1157	Duracon	3196	Triathlon CR	4019	Triathlon CR	3397	Triathlon CR	2687	Triathlon CR
766	LCS CR	1867	Nexgen CR Flex	1666	Nexgen CR Flex	1782	Persona CR	2252	Persona CR
764	PFC Sigma CR	1201	Vanguard CR	1158	Persona CR	1097	Nexgen CR Flex	756	Apex Knee CR
737	Scorpio CR	752	LCS CR	899	Vanguard CR	757	Vanguard CR	631	Nexgen CR Flex
596	Nexgen CR	552	Apex Knee CR	618	Apex Knee CR	607	Apex Knee CR	437	LCS CR
364	Genesis II CR	407	Legion CR	599	LCS CR	570	LCS CR	404	Legion CR
255	Maxim	388	Genesis II CR	549	Legion CR	490	Legion CR	374	Vanguard CR
247	Natural Knee II	318	BalanSys	366	BalanSys	389	BalanSys	304	PFC Sigma CR
204	AGC	299	PFC Sigma CR	310	PFC Sigma CR	353	PFC Sigma CR	223	BalanSys
203	Scorpio PS	299	Scorpio CR	300	Genesis II CR	255	Genesis II CR	207	Genesis II CR
10 Most	Used								
5293	(10) 84.1%	9279	(10) 80.1%	10484	(10) 86.7%	9697	(10) 88.9%	8275	(10) 89.2%
Remaind	ler								
1001	(27) 15.9%	2304	(29) 19.9%	1604	(27) 13.3%	1215	(26) 11.1%	1004	(27) 10.8%
TOTAL									
6294	(37) 100.0%	11583	(39) 100.0%	12088	(37) 100.0%	10912	(36) 100.0%	9279	(37) 100.0%

OUTCOME FOR ALL DIAGNOSES

Primary Diagnosis

The Registry recognises that the usage and availability of knee prostheses changes with time. In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified.


The most common diagnosis for primary total knee replacement is osteoarthritis. Comparisons of revision rates of other primary diagnoses compared to osteoarthritis are shown in Table KT6 and Figure KT6.

Rheumatoid arthritis has a lower rate of revision compared to osteoarthritis after 9 months.

Table KT6 Cumulative Percent Revision of Primary Total Knee Replacement by Primary Diagnosis

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Osteoarthritis	22899	654260	1.0 (1.0, 1.0)	2.5 (2.5, 2.5)	3.3 (3.2, 3.3)	4.8 (4.7, 4.9)	6.5 (6.4, 6.6)	8.1 (7.8, 8.5)
Rheumatoid Arthritis	296	7672	1.1 (0.9, 1.4)	2.3 (2.0, 2.7)	3.1 (2.7, 3.6)	4.8 (4.3, 5.5)	5.9 (5.1, 6.8)	
Other Inflammatory Arthritis	145	3385	1.6 (1.2, 2.1)	3.1 (2.6, 3.8)	4.3 (3.6, 5.1)	5.7 (4.8, 6.8)	7.0 (5.5, 8.9)	
Osteonecrosis	89	2036	1.0 (0.7, 1.6)	3.1 (2.4, 4.0)	4.2 (3.3, 5.3)	5.7 (4.5, 7.1)	7.6 (5.7, 10.1)	
Other (4)	173	1499	4.4 (3.4, 5.6)	9.4 (7.9, 11.3)	12.8 (10.9, 15.1)	20.6 (17.4, 24.3)		
TOTAL	23602	668852						

Note: Restricted to modern prostheses

Years Since Primary Procedure

Cumulative Percent Revision of Primary Total Knee Replacement by Primary Diagnosis Figure KT6

Rheumatoid Arthritis vs Osteoarthritis 0 - 3Mth: HR=1.46 (1.08, 1.97),p=0.013 3Mth - 9Mth: HR=0.88 (0.62, 1.26),p=0.491 9Mth - 1.5Yr: HR=0.60 (0.44, 0.83),p=0.001 1.5Yr+: HR=0.79 (0.68, 0.91),p=0.001 Other Inflammatory Arthritis vs Osteoarthritis 0 - 1Yr: HR=1.52 (1.16, 1.99),p=0.002 1Yr - 1.5Yr: HR=0.65 (0.36, 1.18).p=0.159

1.5Yr+: HR=1.07 (0.86, 1.33),p=0.563

Osteonecrosis vs Osteoarthritis Entire Period: HR=1.27 (1.04, 1.57),p=0.022

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Osteoarthritis	654260	591609	464003	349144	132336	31023	645
Rheumatoid Arthritis	7672	7122	5877	4707	2148	709	24
Other Inflammatory Arthritis	3385	3059	2313	1701	618	178	6
Osteonecrosis	2036	1858	1467	1106	424	106	0

Note: Only primary diagnoses with over 1,000 procedures have been listed Restricted to modern prostheses

PROSTHESIS TYPES

Overall, there have been 260 femoral and tibial prosthesis combinations that meet the definition of a modern prosthesis in primary total knee replacement. Of these, only172 were used in 2020.

The cumulative percent revision of the 113 combinations with >400 procedures by fixation are listed in Table KT7 to Table KT9. Although the listed combinations are a small proportion of all possible combinations, they represent 98.5% of all primary total knee replacement procedures. The 'other' group is the combined outcome of the remaining 147 prosthesis combinations with <400 procedures per combination.

There are 54 cemented femoral and tibial prosthesis combinations with >400 procedures. Of those combinations with a 20 year cumulative percent revision, the Nexgen CR/Nexgen has the lowest rate of revision (Table KT7). There are 28 cementless femoral and tibial prosthesis combinations with >400 procedures. Of those combinations with a 20 year cumulative percent revision, the Nexgen CR/Nexgen has the lowest rate of revision (Table KT8).

There are 31 combinations of primary total knee replacement using hybrid fixation with >400 procedures. The PFC Sigma CR/PFC Sigma has the lowest 20 year cumulative percent revision (Table KT9).

There have been 172 different femoral and tibial prosthesis combinations reported to the Registry in 2020. Outcomes at 20 years are being reported for the first time.

Femoral Component	Tibial Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
ACS	ACS Fixed	22	694	1.5 (0.8, 2.7)	2.9 (1.8, 4.5)	3.9 (2.5, 6.0)			
	ACS Mobile	25	1137	0.6 (0.3, 1.3)	1.8 (1.1, 2.9)	3.4 (2.2, 5.2)			
Active Knee	Active Knee	105	2972	1.0 (0.7, 1.4)	2.8 (2.2, 3.5)	3.6 (2.9, 4.4)	5.3 (4.3, 6.5)	8.5 (5.5, 13.3)	
Advance	Advance II	67	918	1.5 (0.9, 2.6)	4.4 (3.3, 6.0)	5.1 (3.9, 6.8)	7.1 (5.5, 9.0)	8.1 (6.3, 10.5)	
Anatomic	Anatomic	16	1072	0.7 (0.3, 1.4)	1.8 (1.1, 3.0)				
Apex Knee CR	Apex Knee	37	4089	0.5 (0.3, 0.8)	1.0 (0.7, 1.5)	1.8 (1.2, 2.7)			
Apex Knee PS	Apex Knee	104	4830	0.9 (0.6, 1.2)	2.2 (1.8, 2.7)	3.0 (2.4, 3.7)			
Attune CR	Attune	392	18176	1.0 (0.8, 1.1)	2.4 (2.2, 2.7)	3.1 (2.8, 3.5)			
Attune PS	Attune	159	8840	0.9 (0.7, 1.1)	2.0 (1.7, 2.4)	2.7 (2.3, 3.2)			
BalanSys	BalanSys	57	2079	0.4 (0.2, 0.8)	1.6 (1.1, 2.3)	2.0 (1.5, 2.8)	4.0 (3.0, 5.4)	5.8 (3.8, 8.7)	
Columbus	Columbus	38	3360	0.7 (0.4, 1.0)	1.9 (1.3, 2.7)	2.0 (1.4, 2.9)	2.4 (1.6, 3.8)		
E.Motion	E.Motion	37	852	1.8 (1.1, 3.0)	3.9 (2.7, 5.5)	4.4 (3.1, 6.2)			
Evolis	Evolis	21	1069	0.3 (0.1, 0.9)	1.0 (0.6, 1.9)	1.6 (0.9, 2.7)	3.0 (1.9, 4.8)		
Evolution	Evolution	213	9099	0.9 (0.7, 1.1)	2.5 (2.1, 2.8)	3.4 (2.9, 3.9)			
GMK Primary	GMK Primary	25	693	1.0 (0.5, 2.1)	2.6 (1.7, 4.2)	3.4 (2.2, 5.1)	4.9 (3.2, 7.6)		
GMK Sphere Primary	GMK Primary	247	11134	1.3 (1.1, 1.6)	2.9 (2.5, 3.3)	3.3 (2.9, 3.7)			
	GMK Sphere Primary	50	1910	0.9 (0.5, 1.5)	3.1 (2.3, 4.2)	4.6 (3.4, 6.2)			
Genesis II CR	Genesis II	638	16068	0.9 (0.8, 1.1)	2.4 (2.2, 2.6)	3.0 (2.8, 3.3)	4.5 (4.1, 4.9)	5.7 (5.2, 6.3)	6.9 (5.9, 8.1)
Genesis II Oxinium CR	Genesis II	505	9621	1.1 (0.9, 1.3)	2.7 (2.4, 3.0)	3.5 (3.1, 3.9)	6.0 (5.4, 6.6)	8.5 (7.7, 9.4)	
Genesis II Oxinium PS	Genesis II	1240	20938	1.4 (1.3, 1.6)	3.7 (3.4, 3.9)	5.0 (4.7, 5.4)	7.4 (7.0, 7.9)	10.2 (9.4, 11.1)	
Genesis II PS	Genesis II	783	19152	1.1 (1.0, 1.3)	2.7 (2.5, 2.9)	3.6 (3.3, 3.9)	4.9 (4.6, 5.3)	6.2 (5.6, 6.8)	
LCS CR	LCS	334	3939	1.0 (0.7, 1.4)	3.7 (3.2, 4.4)	5.1 (4.4, 5.8)	7.3 (6.5, 8.2)	9.4 (8.5, 10.5)	11.1 (9.7, 12.7)
	MBT	532	12912	0.8 (0.7, 1.0)	2.5 (2.3, 2.8)	3.5 (3.1, 3.8)	5.2 (4.7, 5.7)	6.0 (5.4, 6.7)	
Legion CR	Genesis II	70		1.1 (0.8, 1.5)		3.0 (2.3, 3.8)	4.2 (2.8, 6.4)	,	
Legion Oxinium CR	Genesis II	177	7313		2.4 (2.1, 2.9)	3.6 (3.0, 4.2)	4.6 (3.8, 5.4)		

Femoral Component	Tibial Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Legion Oxinium PS	Genesis II	577	15094	1.1 (0.9, 1.2)	3.0 (2.8, 3.3)	4.1 (3.8, 4.5)	5.8 (5.2, 6.5)		
Legion PS	Genesis II	172	5538	1.2 (1.0, 1.6)	2.4 (2.0, 2.9)	3.2 (2.7, 3.7)	4.5 (3.7, 5.4)		
MRK	MRK	15	592	0.7 (0.3, 1.9)	1.9 (1.0, 3.5)	2.1 (1.2, 3.8)	3.3 (1.9, 5.7)		
Natural Knee Flex	Natural Knee II	72	2497	1.2 (0.8, 1.7)	2.5 (2.0, 3.3)	2.9 (2.3, 3.8)	4.3 (3.3, 5.6)		
Nexgen CR	Nexgen	152	4147	0.7 (0.5, 1.0)	1.6 (1.2, 2.0)	2.1 (1.7, 2.6)	3.1 (2.6, 3.7)	4.9 (4.1, 5.8)	5.7 (4.8, 6.9)
Nexgen CR Flex	Natural Knee II*	15	806	0.2 (0.1, 1.0)	0.9 (0.4, 1.8)	1.1 (0.6, 2.2)	2.2 (1.3, 3.8)		
	Nexgen	618	29406	0.7 (0.6, 0.8)	1.5 (1.4, 1.7)	2.0 (1.9, 2.2)	2.9 (2.6, 3.2)	4.1 (3.5, 4.9)	
Nexgen LCCK	Nexgen	53	1040	2.1 (1.4, 3.2)	3.8 (2.8, 5.2)	5.4 (4.0, 7.1)	6.4 (4.8, 8.5)		
Nexgen LPS	Nexgen	309	6158	1.1 (0.9, 1.4)	2.4 (2.1, 2.8)	3.1 (2.7, 3.5)	4.7 (4.2, 5.3)	6.5 (5.8, 7.3)	8.5 (7.1, 10.3)
Nexgen LPS Flex	Nexgen	1460	35887	0.9 (0.8, 1.0)	2.3 (2.1, 2.4)	3.1 (2.9, 3.3)	5.0 (4.7, 5.3)	6.8 (6.3, 7.2)	
Nexgen RH	Nexgen	34	619	2.2 (1.3, 3.8)	4.3 (2.9, 6.4)	5.6 (3.8, 8.1)	9.0 (6.3, 12.9)		
Optetrak Logic CR	Optetrak Logic	11	621	0.9 (0.4, 2.1)	2.0 (1.1, 3.8)	2.4 (1.3, 4.3)			
Optetrak Logic PS	Optetrak Logic	21	611	2.1 (1.2, 3.6)	3.9 (2.5, 6.0)	4.2 (2.7, 6.5)			
	Optetrak Logic RBK	16	769	1.5 (0.8, 2.8)	2.5 (1.5, 4.3)	3.7 (2.1, 6.6)			
PFC Sigma CR	MBT	40	1190	0.8 (0.5, 1.6)	1.9 (1.2, 2.8)	2.3 (1.6, 3.4)	3.3 (2.4, 4.6)	3.9 (2.7, 5.7)	
	PFC Sigma	474	13414	0.8 (0.7, 1.0)	2.1 (1.8, 2.3)	2.6 (2.4, 2.9)	3.7 (3.3, 4.1)	5.5 (4.9, 6.2)	
PFC Sigma PS	MBT	331	6142	1.0 (0.8, 1.3)	2.9 (2.5, 3.4)	3.8 (3.4, 4.3)	5.4 (4.8, 6.0)	7.6 (6.6, 8.7)	
	PFC Sigma	374	8289	1.2 (0.9, 1.4)	2.5 (2.2, 2.9)	3.3 (2.9, 3.7)	4.8 (4.3, 5.3)	6.6 (5.8, 7.4)	
Persona CR	Nexgen	5	481	0.6 (0.2, 2.0)	1.2 (0.5, 2.9)				
	Persona	123	11681	0.8 (0.6, 1.0)	1.9 (1.5, 2.3)	2.6 (1.9, 3.6)			
Persona PS	Persona	47	3435	0.9 (0.6, 1.2)	1.9 (1.4, 2.5)	1.9 (1.4, 2.5)			
RBK	RBK	112	2646	1.0 (0.7, 1.4)	2.4 (1.9, 3.1)	3.2 (2.6, 4.0)	4.8 (4.0, 5.9)	6.1 (4.8, 7.8)	
SAIPH	SAIPH	61	4128	0.5 (0.3, 0.8)	1.8 (1.4, 2.3)	2.2 (1.7, 2.9)			
Score	Score	36	970	1.5 (0.9, 2.5)	2.9 (1.9, 4.2)	4.0 (2.8, 5.6)	5.1 (3.6, 7.2)		
Triathlon CR	Triathlon	1306	56580	0.8 (0.7, 0.9)	1.9 (1.8, 2.1)	2.4 (2.3, 2.6)	3.8 (3.6, 4.1)	5.4 (4.5, 6.4)	
Triathlon PS	Triathlon	386	9343	1.4 (1.2, 1.7)	3.0 (2.7, 3.4)	3.9 (3.5, 4.3)	5.8 (5.2, 6.5)		
Unity Knee	Unity Knee	1	455	0.2 (0.0, 1.5)					
Vanguard CR	Vanguard	382	12079	0.7 (0.6, 0.9)	2.1 (1.9, 2.4)	2.7 (2.4, 3.1)	4.6 (4.1, 5.2)		
Vanguard PS	Vanguard	287	4525	2.0 (1.6, 2.4)	4.5 (3.9, 5.2)	5.6 (4.9, 6.3)	7.9 (7.0, 8.9)		
Other (65)		333	4264	3.5 (3.0, 4.1)	6.7 (5.9, 7.5)	8.7 (7.7, 9.8)	13.3 (11.7, 15.1)	20.1 (15.8, 25.5)	
TOTAL		13717	409481						

Note: Restricted to modern prostheses

Some cementless components have been cemented

Only combinations with >400 procedures have been listed * denotes prosthesis combinations that have not had any reported use in primary total knee procedures in 2020

ctive Knee Active Knee 540 4899 1.3 (1.1, 1.7) 4.0 (3.4, 4.5) 5.6 (5.0, 6.3) 9.7 (8.9, 10.6) 1.3.5 (12.4, 14.7) dvance Advance 57 908 1.8 (1.1, 2.9) 5.4 (4.1, 7.1) 6.3 (4.8, 8.1) 7.5 (5.7, 9.7) pex Knee 27 446 2.5 (1.4, 4.4) 5.7 (3.9, 8.5) 6.0 (4.1, 8.8) olumbus Columbus 65 500 3.2 (2.0, 5.2) 7.7 (5.6, 10.4) 9.7 (7.4, 12.7) 13.2 (10.4, 16.6) MK Primary GMK Primary 40 12.9 1.2 (0.7, 1.9) 2.9 (2.1, 4.0) 3.6 (2.5, 50) ienesis IL PS Genesis II 26 420 1.7 (0.8, 3.5) 3.3 (2.0, 5.6) 4.1 (2.5, 6.5) 6.1 (4.1, 9.1) CS CR LCS 169 2369 1.4 (10.2.0) 3.4 (2.7, 4.2) 4.3 (3.6, 5.2) 6.1 (5.2, 7.2) 7.3 (6.8, 8.5) 8.8 (7.5, 10.2) MBT 440 9244 1.1 (0.9, 1.3) 3.3 (3.0, 3.7) 4.0 (3.6, 4.5) 5.4 (4.9, 6.0, 7.5) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0)							•			
ctive Knee Active Knee 540 4899 1.3 (1.1, 1.7) 4.0 (3.4, 4.5) 5.6 (5.0, 6.3) 9.7 (8.9, 10.6) 1.3.5 (12.4, 14.7) dvance Advance 57 908 1.8 (1.1, 2.9) 5.4 (4.1, 7.1) 6.3 (4.8, 8.1) 7.5 (5.7, 9.7) pex Knee 27 446 2.5 (1.4, 4.4) 5.7 (3.9, 8.5) 6.0 (4.1, 8.8) olumbus Columbus 65 500 3.2 (2.0, 5.2) 7.7 (5.6, 10.4) 9.7 (7.4, 12.7) 13.2 (10.4, 16.6) MK Primary GMK Primary 40 12.9 1.2 (0.7, 1.9) 2.9 (2.1, 4.0) 3.6 (2.5, 50) ienesis IL PS Genesis II 26 420 1.7 (0.8, 3.5) 3.3 (2.0, 5.6) 4.1 (2.5, 6.5) 6.1 (4.1, 9.1) CS CR LCS 169 2369 1.4 (10.2.0) 3.4 (2.7, 4.2) 4.3 (3.6, 5.2) 6.1 (5.2, 7.2) 7.3 (6.8, 8.5) 8.8 (7.5, 10.2) MBT 440 9244 1.1 (0.9, 1.3) 3.3 (3.0, 3.7) 4.0 (3.6, 4.5) 5.4 (4.9, 6.0, 7.5) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0) 7.4 (6.8, 8.0)					1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
dwance Advance 57 908 1.8 (1.1, 2.9) 5.4 (4.1, 7.1) 6.3 (4.8, 8.1) 7.5 (5.7, 9.7) pex Knee CR Apex Knee 27 446 2.5 (1.4, 4.4) 5.7 (3.9, 8.5) 6.0 (4.1, 8.8) olumbus Columbus 65 500 3.2 (2.0, 5.2) 7.7 (5.6, 10.4) 9.7 (7.4, 12.7) 13.2 (10.4, 16.6) iMK Primary GMK Primary 40 1294 1.2 (0.7, 19) 2.9 (2.1, 4.0) 3.6 (2.6, 5.0) ienesis II CR Genesis II 26 420 1.7 (0.8, 3.5) 3.3 (2.0, 5.6) 4.1 (3.5, 5.2) 6.6 (4.8, 9.1) cenesis II 26 420 1.7 (0.8, 3.5) 3.3 (2.0, 5.6) 4.1 (2.5, 6.5) 6.6 (4.8, 9.1) cenesis II 26 420 1.7 (0.8, 3.5) 3.3 (2.0, 3.7) 4.0 (3.6, 4.5) 5.4 (4.9, 6.0) 7.5 (6.6, 8.5) MBT 440 9244 1.1 (0.9, 1.3) 3.3 (3.0, 3.7) 4.0 (3.8, 4.4) 5.4 (4.9, 6.0) 7.5 (6.6, 8.5) MBT 440 9244 1.1 (0.7, 1.2) 2.1 (1.7, 2.7) 3.0 (2.2, 4.3) 1.2 (4.5, 7.6) latural Knee III 37 1635 0.7 (0.4,	ACS	ACS Fixed	50	1027	1.6 (1.0, 2.6)	4.2 (3.1, 5.7)	5.3 (3.9, 7.0)			
pex Knee CR Apex Knee 27 446 2.5 (1.4, 4.4) 5.7 (3.9, 8.5) 6.0 (4.1, 8.8) olumbus Columbus 65 500 3.2 (2.0, 5.2) 7.7 (5.6, 10.4) 9.7 (7.4, 12.7) 13.2 (10.4, 16.6) iMK Primary GMK Primary 40 1294 1.2 (0.7, 19) 2.9 (2.1, 40) 3.6 (2.6, 5.0) ienesis II CR Genesis II 38 7.44 1.5 (0.8, 2.7) 3.9 (2.7, 5.6) 4.6 (3.3, 6.5) 6.6 (4.8, 9.1) ienesis II PS Genesis II 26 420 1.7 (0.8, 3.5) 3.3 (2.0, 5.6) 4.1 (2.5, 6.5) 6.1 (4.1, 9.1) CS CR LCS 169 2369 1.4 (1.0, 2.0) 3.4 (2.7, 4.2) 4.3 (3.6, 5.2) 6.1 (5.2, 7.2) 7.3 (6.6, 8.5) MBT 440 9244 1.1 (0.9, 1.3) 3.3 (3.0, 3.7) 4.0 (3.6, 4.5) 5.4 (4.9, 6.0) 7.5 (6.6, 8.5) Iatural Knee Flex Natural Knee II 37 1635 0.7 (0.4, 1.2) 1.6 (1.1, 2.4) 2.1 (1.7, 2.7) 3.0 (2.2, 4.3) Iekgen CR Nexgen TM CR 50 741 1.4 (0.7, 2.5) 4.3 (3.1, 4.2) 3.3 (3.9, 3.3) 1.6 (3.1, 7.2) 3	Active Knee	Active Knee	540	4899	1.3 (1.1, 1.7)	4.0 (3.4, 4.5)	5.6 (5.0, 6.3)	9.7 (8.9, 10.6)	13.5 (12.4, 14.7)	
Columbus Columbus <td< td=""><td>Advance</td><td>Advance</td><td>57</td><td>908</td><td>1.8 (1.1, 2.9)</td><td>5.4 (4.1, 7.1)</td><td>6.3 (4.8, 8.1)</td><td>7.5 (5.7, 9.7)</td><td></td><td></td></td<>	Advance	Advance	57	908	1.8 (1.1, 2.9)	5.4 (4.1, 7.1)	6.3 (4.8, 8.1)	7.5 (5.7, 9.7)		
MK Primary GMK Primary 40 1294 1.2 (0.7, 1.9) 2.9 (2,1, 4,0) 3.6 (2,6, 5,0) ienesis II CR Genesis II 38 744 1.5 (0.8, 2.7) 3.9 (2,7, 5.6) 4.6 (3.3, 6.5) 6.6 (4,8, 9.1) ienesis II PS Genesis II 26 420 1.7 (0.8, 3.5) 3.3 (2,0, 5.6) 4.1 (2,5, 6.5) 6.1 (4,1, 9.1) CS CR LCS 169 2369 1.4 (1.0, 2.0) 3.4 (2,7, 4.2) 4.3 (3,6, 5.2) 6.1 (5,2, 7.2) 7.3 (6.3, 8.5) 8.8 (7.5, 10.2) MBT 440 9244 1.3 (0.1, 1.5) 3.3 (3,0, 3.7) 4.0 (3,6, 4.5) 5.4 (4.9, 6.0) 7.5 (6,6, 8.5) MBT Duofix 785 14487 1.3 (1.1, 1.5) 3.3 (3,0, 3.7) 4.0 (3,6, 4.5) 5.4 (4.9, 6.0) 7.5 (6,6, 8.5) Iatural Knee Flex Natural Knee II 37 1635 0.7 (0.4, 1.2) 1.6 (1.1, 2.4) 2.1 (1.4, 2.9) 3.0 (2.2, 4.3) lexgen TM CR 50 741 1.4 (0.7, 2.5) 4.4 (3, 1, 6.2) 6.3 (4.7, 8.3) 7.1 (5.3, 9.3) 8.5 (6.2, 11.5) lexgen TM CR 50 741 1.4 (0.7, 2.5) 4.4 (3, 1, 6.2) 3.3 (2.9,	Apex Knee CR	Apex Knee	27	446	2.5 (1.4, 4.4)	5.7 (3.9, 8.5)	6.0 (4.1, 8.8)			
ienesis II CR Genesis II 38 744 1.5 (0.8, 2.7) 3.9 (2.7, 5.6) 4.6 (3.3, 6.5) 6.6 (4.8, 9.1) ienesis II PS Genesis II 26 420 1.7 (0.8, 3.5) 3.3 (2.0, 5.6) 4.1 (2.5, 6.5) 6.1 (4.1, 9.1) CS CR LCS 169 2369 1.4 (1.0, 2.0) 3.4 (2.7, 4.2) 4.3 (3.6, 5.2) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.8 (7.5, 10.2) MBT 440 9244 1.1 (0.9, 1.3) 3.3 (3.0, 3.7) 4.0 (3.6, 4.5) 5.4 (4.9, 6.0) 7.5 (6.6, 8.5) MBT Valor 785 14487 1.3 (1.1, 1.5) 3.3 (3.0, 3.6) 4.1 (3.8, 4.4) 5.4 (5.0, 5.8) 7.4 (6.8, 8.0) Iatural Knee Flex Natural Knee II 37 1635 0.7 (0.4, 1.2) 1.6 (1.1, 2.4) 2.1 (1.4, 2.9) 3.0 (2.2, 4.3) Iekegen CR Nexgen 741 1.4 (0.7, 2.5) 4.4 (3.1, 6.2) 6.3 (4.7, 8.3) 7.1 (5.3, 9.3) 8.5 (6.2, 11.5) Iekegen CR Nexgen 311 857 1.1 (0.9, 1.4) 2.7 (2.4, 3.1) 3.3 (2.9, 3.7) 4.3 (3.8, 4.8) 4.9 (4.3, 5.7) Iekegen LPS Nexgen TM CR 299	Columbus	Columbus	65	500	3.2 (2.0, 5.2)	7.7 (5.6, 10.4)	9.7 (7.4, 12.7)	13.2 (10.4, 16.6)		
Interests II PS Genesis II 26 420 1.7 (0, 8, 35) 3.3 (2, 0, 5.6) 4.1 (2, 5, 6.5) 6.1 (4, 1, 9, 1) CS CR LCS 169 2369 1.4 (1, 0, 2, 0) 3.4 (2, 7, 4, 2) 4.3 (3, 6, 5.2) 6.1 (5, 2, 7, 2) 7.3 (6, 3, 8, 5) 8.8 (7, 5, 10, 2) MBT 440 9244 1.1 (0, 9, 1.3) 3.3 (3, 0, 3.7) 4.0 (3, 6, 4.5) 5.4 (4.9, 6.0) 7.5 (6, 6, 8.5) MBT Duofix 785 14487 1.3 (1, 1, 1.5) 3.3 (3, 0, 3.6) 4.1 (3, 8, 4.4) 5.4 (5, 5, 6) 7.4 (6, 8, 8.0) Iatural Knee Flex Natural Knee II 37 1635 0.7 (0, 4, 1.2) 1.6 (1, 1, 2.4) 2.1 (1, 7, 2.7) 3.0 (2, 2, 3.3) 4.0 (3, 3, 4.8) 5.9 (4, 5, 7.6) Iatural Knee Flex Nexgen 126 3442 0.6 (0, 4, 0.9) 1.7 (1, 3, 2.2) 2.1 (1, 7, 2.7) 3.0 (2, 2, 3.3) 4.0 (3, 3, 4.8) 5.9 (4, 5, 7.6) Iekgen TM CR S0 741 1.4 (0, 7, 2.5) 4.4 (3, 1, 6.2) 6.3 (2, 9, 3.3) 4.1 (3, 5, 5.9) 4.3 (3.8, 4.8) 4.9 (4.3, 5, 7.5) Iekgen TM CR S0 741 1.4 (0, 7, 2.8) 4.1 (3, 5, 1.2) 2.3 (2, 0, 2.6)	GMK Primary	GMK Primary	40	1294	1.2 (0.7, 1.9)	2.9 (2.1, 4.0)	3.6 (2.6, 5.0)			
CS CR LCS 169 2369 1.4 (10, 2, 0) 3.4 (2, 7, 4) 4.3 (3, 6, 5, 2) 6.1 (5, 2, 7, 2) 7.3 (6, 3, 8) 8.8 (7, 5, 1, 0, 2) MBT 440 9244 1.1 (0, 1, 1, 1) 3.3 (3, 3, 7) 4.0 (3, 6, 4, 5) 5.4 (4, 9, 6) 7.5 (6, 6, 8, 5) MBT Duofix 785 14487 1.3 (1, 1, 1) 3.3 (3, 3, 7) 4.0 (3, 6, 4) 5.4 (5, 5, 8) 7.4 (6, 8, 8) latural Knee Flex Natural Knee Flex Natural Knee Flex 7.8 (3, 6, 7, 6) 7.1 (3, 2, 2) 2.1 (1, 7, 2, 7) 3.0 (2, 2, 4) 5.9 (4, 5, 7, 6) lexgen CR Nexgen 126 3442 0.6 (0, 4, 0) 1.7 (1, 3, 2) 2.1 (1, 7, 2, 7) 3.0 (2, 2, 4) 4.0 (3, 3, 4, 8) 5.9 (4, 5, 7, 6) lexgen CR Nexgen TM CR 50 7.41 1.4 (0, 7, 2) 4.4 (3, 1, 2) 3.1 (2, 2, 4) 3.3 (2, 9, 3) 4.4 (3, 7, 5) 5.9 (4, 5, 7, 6) lexgen CPS Nexgen TM CR 29 11163 0.5 (0, 4, 7) 1.8 (16, 2, 1) 2.3 (2, 0, 2) 3.3 (2, 9, 3) 4.4 (3, 7, 5) 5.9 (6, 5, 1, 1, 6) lexgen LP	Genesis II CR	Genesis II	38	744	1.5 (0.8, 2.7)	3.9 (2.7, 5.6)	4.6 (3.3, 6.5)	6.6 (4.8, 9.1)		
MBT 440 9244 11 (0,9, 1,3) 3,3 (3,0, 3,7) 4.0 (3,6, 4,5) 5,4 (4,9, 6,0) 7.5 (6,6, 8.5) MBT Duofix 785 14487 1,3 (1,1,15) 3,3 (3,0, 3,6) 4.1 (3,8,4,4) 5,4 (5,0, 5,8) 7.4 (6,8, 8,0) Iatural Knee Flex Natural Knee II 37 1635 0.7 (0,4, 1,2) 1.6 (1,1, 2,4) 2.1 (1,7, 2,7) 3.0 (2,2, 4,3) Iexgen CR Nexgen 126 3442 0.6 (0,4, 0.9) 1.7 (1,3, 2,2) 2.1 (1,7, 2,7) 3.0 (2,5, 3,7) 4.0 (3,3, 4,8) 5.9 (4,5, 7,6) Nexgen TM CR 50 741 1.4 (0,7, 2,5) 4.4 (3,1, 6,2) 6.3 (4,7, 8,3) 7.1 (5,3, 9,3) 8.5 (6,2, 11.5) Iexgen CR Flex Nexgen 311 8567 1.1 (0,9, 1,4) 2.7 (2,4, 3,1) 3.3 (2,0, 2,6) 3.3 (2,9, 3,8) 4.4 (3,7, 5,2) Iexgen LPS Nexgen TM LPS 32 1408 0.7 (0,3, 1,3) 1.1 (0,7, 1.9) 2.1 (1,4, 3,1) 2.8 (1.9, 4,1) Iexgen TM LPS 32 108 0.7 (0,3, 1,3) 1.1 (0,7, 1.9) 2.1 (1,4, 3,1) 2.8 (1.9, 4,1) Iexgen TM LPS 50 1056 1.3 (0,8, 2.2) 3.	Genesis II PS	Genesis II	26	420	1.7 (0.8, 3.5)	3.3 (2.0, 5.6)	4.1 (2.5, 6.5)	6.1 (4.1, 9.1)		
MBT Duofix 785 14487 1.3 (1, 1, 1, 5) 3.3 (3, 0, 3.6) 4.1 (3, 8, 4.4) 5.4 (5, 0, 5.8) 7.4 (6, 8, 8.0) latural Knee Flex Natural Knee II 37 1635 0.7 (0, 4, 1.2) 1.6 (1, 1, 2.4) 2.1 (1, 4, 2.9) 3.0 (2, 2, 4.3) lexgen CR Nexgen 126 3442 0.6 (0, 4, 0.9) 1.7 (1, 3, 2.2) 2.1 (1, 7, 2.7) 3.0 (2, 5, 3.7) 4.0 (3, 3, 4.8) 5.9 (4.5, 7.6) Nexgen TM CR 50 741 1.4 (0, 7, 2.5) 4.4 (3, 1, 6.2) 6.3 (4.7, 8.3) 7.1 (5.3, 9.3) 8.5 (6.2, 11.5) lexgen CR Flex Nexgen 311 8567 1.1 (0, 9, 1.4) 2.7 (2, 4, 3.1) 3.3 (2, 9, 3.7) 4.3 (3, 8, 4.8) 4.9 (4.3, 5.7) lexgen LPS Nexgen TM CR 299 11163 0.5 (0, 4, 0.7) 1.8 (1, 6, 2.1) 2.3 (2, 0, 2.6) 3.3 (2, 9, 3.8) 4.4 (3.7, 5.2) lexgen LPS Nexgen TM LPS 32 1408 0.7 (0, 3, 1.3) 1.1 (0, 7, 1.9) 2.1 (1, 4, 3.1) 2.8 (1.9, 4.1) lexgen LPS Nexgen TM LPS 50 1056 1.3 (0, 8, 2.2) 3.1 (2, 4, 4) 4.3 (3, 2, 5.8) 5.7 (4, 2, 7.8) FC	LCS CR	LCS	169	2369	1.4 (1.0, 2.0)	3.4 (2.7, 4.2)	4.3 (3.6, 5.2)	6.1 (5.2, 7.2)	7.3 (6.3, 8.5)	8.8 (7.5, 10.2)
Hatural Knee Flex Natural Knee II 37 1635 0.7 (0.4, 1.2) 1.6 (1.1, 2.4) 2.1 (1.4, 2.9) 3.0 (2.2, 4.3) lexgen CR Nexgen 126 3442 0.6 (0.4, 0.9) 1.7 (1.3, 2.2) 2.1 (1.7, 2.7) 3.0 (2.2, 4.3) lexgen CR Flex Nexgen 311 8567 1.1 (0.9, 1.4) 2.7 (2.4, 3.1) 3.3 (2.9, 3.7) 4.3 (3.8, 4.8) 4.9 (4.3, 5.7) lexgen CR Flex Nexgen 311 8567 1.1 (0.9, 1.4) 2.7 (2.4, 3.1) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) lexgen LPS Nexgen TM CR 299 11163 0.5 (0.4, 0.7) 1.8 (1.6, 2.1) 2.3 (2.0, 2.6) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) lexgen LPS Nexgen TM LPS 32 1408 0.7 (0.3, 1.3) 1.1 (0.7, 1.9) 2.1 (1.4, 3.1) 2.8 (1.9, 4.1) lexgen LPS Nexgen TM LPS 50 1056 1.3 (0.8, 2.2) 3.1 (2.2, 4.4) 4.3 (3.2, 5.8) 5.7 (4.2, 7.8) FC Sigma CR MBT 69 995 2.3 (1.5, 3.5) 4.9 (3.7, 6.4) 5.6 (4.3, 7.2) 6.6 (5.2, 8.4) 8.5 (6.5, 11.0) gersona CR Persona 12 1666 1.1 (0.		MBT	440	9244	1.1 (0.9, 1.3)	3.3 (3.0, 3.7)	4.0 (3.6, 4.5)	5.4 (4.9, 6.0)	7.5 (6.6, 8.5)	
Nexgen 126 3442 0.6 (0.4, 0.9) 1.7 (1.3, 2.2) 2.1 (1.7, 2.7) 3.0 (2.5, 3.7) 4.0 (3.3, 4.8) 5.9 (4.5, 7.6) Nexgen TM CR 50 741 1.4 (0.7, 2.5) 4.4 (3.1, 6.2) 6.3 (4.7, 8.3) 7.1 (5.3, 9.3) 8.5 (6.2, 11.5) Nexgen TM CR 299 11163 0.5 (0.4, 0.7) 1.8 (1.6, 2.1) 2.3 (2.0, 2.6) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) 1.4 (3.7, 5.2) Nexgen TM CR 299 11163 0.5 (0.4, 0.7) 1.8 (1.6, 2.1) 2.3 (2.0, 2.6) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) Nexgen TM CR 299 11163 0.5 (0.4, 0.7) 1.8 (1.6, 2.1) 2.3 (2.0, 2.6) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) Iekgen LPS Nexgen TM LPS 32 1408 0.7 (0.3, 1.3) 1.1 (0.7, 1.9) 2.1 (1.4, 3.1) 2.8 (1.9, 4.1) 1.8 (1.0, 2.1) 1.1 (3.1) 2.8 (2.1, 5.6) 1.7 (4.2, 7.8) 3.1 (2.2, 4.4) 4.3 (3.2, 5.8) 5.7 (4.2, 7.8) 1.1 (1.0, 1.2) 3.3 (2.9, 3.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) 1.1 (1.0, 1.2) 3.3 (2.9, 4.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) <td< td=""><td></td><td>MBT Duofix</td><td>785</td><td>14487</td><td>1.3 (1.1, 1.5)</td><td>3.3 (3.0, 3.6)</td><td>4.1 (3.8, 4.4)</td><td>5.4 (5.0, 5.8)</td><td>7.4 (6.8, 8.0)</td><td></td></td<>		MBT Duofix	785	14487	1.3 (1.1, 1.5)	3.3 (3.0, 3.6)	4.1 (3.8, 4.4)	5.4 (5.0, 5.8)	7.4 (6.8, 8.0)	
Nexgen TM CR 50 741 1.4 (0.7, 2.5) 4.4 (3.1, 6.2) 6.3 (4.7, 8.3) 7.1 (5.3, 9.3) 8.5 (6.2, 11.5) lexgen CR Flex Nexgen 311 8567 1.1 (0.9, 1.4) 2.7 (2.4, 3.1) 3.3 (2.9, 3.7) 4.3 (3.8, 4.8) 4.9 (4.3, 5.7) Nexgen TM CR 299 11163 0.5 (0.4, 0.7) 1.8 (1.6, 2.1) 2.3 (2.0, 2.6) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) lexgen LPS Nexgen TM LPS 32 1408 0.7 (0.3, 1.3) 1.1 (0.7, 1.9) 2.1 (1.4, 3.1) 2.8 (1.9, 4.1) lexgen LPS Nexgen TM LPS 32 1408 0.7 (0.3, 1.3) 1.1 (0.7, 1.9) 2.1 (1.4, 3.1) 2.8 (1.9, 4.1) lexgen LPS Flex Nexgen 47 1188 2.7 (1.9, 3.8) 4.1 (3.0, 5.4) 4.2 (3.1, 5.6) Nexgen TM LPS 50 1056 1.3 (0.8, 2.2) 3.1 (2.2, 4.4) 4.3 (3.2, 5.8) 5.7 (4.2, 7.8) FC Sigma CR MBT 69 995 2.3 (1.5, 3.5) 4.9 (3.7, 6.4) 5.6 (4.3, 7.2) 6.6 (5.2, 8.4) 8.5 (6.5, 11.0) MBT Duofix 154 3327 1.1 (0.8, 1.5) 2.8 (2.3, 3.4) 3.5 (2.9, 4.3) 4.9 (Natural Knee Flex	Natural Knee II	37	1635	0.7 (0.4, 1.2)	1.6 (1.1, 2.4)	2.1 (1.4, 2.9)	3.0 (2.2, 4.3)		
Lexgen CR Flex Nexgen 311 8567 1.1 (0,9, 1.4) 2.7 (2.4, 3.1) 3.3 (2.9, 3.7) 4.3 (3.8, 4.8) 4.9 (4.3, 5.7) Nexgen TM CR 299 11163 0.5 (0.4, 0.7) 1.8 (1.6, 2.1) 2.3 (2.0, 2.6) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) Iexgen LPS Nexgen TM LPS 32 1408 0.7 (0.3, 1.3) 1.1 (0.7, 1.9) 2.1 (1.4, 3.1) 2.8 (1.9, 4.1) Iexgen LPS Flex Nexgen 47 1188 2.7 (1.9, 3.8) 4.1 (3.0, 5.4) 4.2 (3.1, 5.6) Nexgen TM LPS 50 1056 1.3 (0.8, 2.2) 3.1 (2.2, 4.4) 4.3 (3.2, 5.8) 5.7 (4.2, 7.8) FC Sigma CR MBT 69 995 2.3 (1.5, 3.5) 4.9 (3.7, 6.4) 5.6 (4.3, 7.2) 6.6 (5.2, 8.4) 8.5 (6.5, 11.0) MBT Duofix 154 3327 1.1 (0.8, 1.5) 2.8 (2.3, 3.4) 3.5 (2.9, 4.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) ersona CR Persona 12 1666 1.1 (0.6, 1.9) 1.4 1.4 1.4 1.4 1.4 1.9 (1.3, 2.8) 3.6 (2.7, 4.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) core Score 20	Nexgen CR	Nexgen	126	3442	0.6 (0.4, 0.9)	1.7 (1.3, 2.2)	2.1 (1.7, 2.7)	3.0 (2.5, 3.7)	4.0 (3.3, 4.8)	5.9 (4.5, 7.6)
Nexgen TM CR 299 11163 0.5 (0.4, 0.7) 1.8 (1.6, 2.1) 2.3 (2.0, 2.6) 3.3 (2.9, 3.8) 4.4 (3.7, 5.2) lexgen LPS Nexgen TM LPS 32 1408 0.7 (0.3, 1.3) 1.1 (0.7, 1.9) 2.1 (1.4, 3.1) 2.8 (1.9, 4.1) lexgen LPS Nexgen TM LPS 32 1408 0.7 (0.3, 1.3) 1.1 (0.7, 1.9) 2.1 (1.4, 3.1) 2.8 (1.9, 4.1) lexgen LPS Flex Nexgen 47 1188 2.7 (1.9, 3.8) 4.1 (3.0, 5.4) 4.2 (3.1, 5.6) Nexgen TM LPS 50 1056 1.3 (0.8, 2.2) 3.1 (2.2, 4.4) 4.3 (3.2, 5.8) 5.7 (4.2, 7.8) FC Sigma CR MBT 69 995 2.3 (1.5, 3.5) 4.9 (3.7, 6.4) 5.6 (4.3, 7.2) 6.6 (5.2, 8.4) 8.5 (6.5, 11.0) MBT Duofix 154 3327 1.1 (0.8, 1.5) 2.8 (2.3, 3.4) 3.5 (2.9, 4.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) ersona CR Persona 12 1666 1.1 (0.6, 1.9) 1.8 (1.0, 2.1, 3.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) core Score 208 2638 <td></td> <td>Nexgen TM CR</td> <td>50</td> <td>741</td> <td>1.4 (0.7, 2.5)</td> <td>4.4 (3.1, 6.2)</td> <td>6.3 (4.7, 8.3)</td> <td>7.1 (5.3, 9.3)</td> <td>8.5 (6.2, 11.5)</td> <td></td>		Nexgen TM CR	50	741	1.4 (0.7, 2.5)	4.4 (3.1, 6.2)	6.3 (4.7, 8.3)	7.1 (5.3, 9.3)	8.5 (6.2, 11.5)	
Jexgen LPSNexgen TM LPS3214080.7 (0.3, 1.3)1.1 (0.7, 1.9)2.1 (1.4, 3.1)2.8 (1.9, 4.1)Lexgen LPS FlexNexgen4711882.7 (1.9, 3.8)4.1 (3.0, 5.4)4.2 (3.1, 5.6)Nexgen TM LPS5010561.3 (0.8, 2.2)3.1 (2.2, 4.4)4.3 (3.2, 5.8)5.7 (4.2, 7.8)FC Sigma CRMBT699952.3 (1.5, 3.5)4.9 (3.7, 6.4)5.6 (4.3, 7.2)6.6 (5.2, 8.4)8.5 (6.5, 11.0)MBT Duofix15433271.1 (0.8, 1.5)2.8 (2.3, 3.4)3.5 (2.9, 4.3)4.9 (4.2, 5.9)7.3 (5.9, 8.8)ersona CRPersona1216661.1 (0.6, 1.9)BKRBK35568251.3 (1.1, 1.6)3.2 (2.8, 3.6)4.2 (3.7, 4.7)5.5 (5.0, 6.2)6.8 (6.0, 7.7)coreScore20826381.7 (1.2, 2.2)5.3 (4.5, 6.3)7.3 (6.3, 8.5)11.8 (10.2, 13.7)riathlon CRTriathlon658244051.1 (1.0, 1.2)2.3 (2.1, 2.6)3.0 (2.8, 3.3)4.4 (4.0, 4.8)riathlon PSTriathlon6212461.9 (1.3, 2.8)3.6 (2.7, 4.9)4.6 (3.6, 6.1)5.7 (4.5, 7.3)anguard CRRegenerex8516951.2 (0.8, 1.8)3.4 (2.6, 4.3)4.1 (3.2, 5.2)7.4 (5.7, 9.5)Vanguard10116951.4 (1.0, 2.1)4.1 (3.3, 5.2)4.8 (3.9, 6.0)6.7 (5.4, 8.2)Wther (28)17626492.7 (2.1, 3.4)6.1 (5.2, 7.2)7.3 (6.3, 8.5)8.9 (7.6, 10.3)9.6 (8.0, 11.5) <td>Nexgen CR Flex</td> <td>Nexgen</td> <td>311</td> <td>8567</td> <td>1.1 (0.9, 1.4)</td> <td>2.7 (2.4, 3.1)</td> <td>3.3 (2.9, 3.7)</td> <td>4.3 (3.8, 4.8)</td> <td>4.9 (4.3, 5.7)</td> <td></td>	Nexgen CR Flex	Nexgen	311	8567	1.1 (0.9, 1.4)	2.7 (2.4, 3.1)	3.3 (2.9, 3.7)	4.3 (3.8, 4.8)	4.9 (4.3, 5.7)	
Jexgen LPS Flex Nexgen 47 1188 2.7 (1.9, 3.8) 4.1 (3.0, 5.4) 4.2 (3.1, 5.6) Nexgen TM LPS 50 1056 1.3 (0.8, 2.2) 3.1 (2.2, 4.4) 4.3 (3.2, 5.8) 5.7 (4.2, 7.8) FC Sigma CR MBT 69 995 2.3 (1.5, 3.5) 4.9 (3.7, 6.4) 5.6 (4.3, 7.2) 6.6 (5.2, 8.4) 8.5 (6.5, 11.0) MBT Duofix 154 3327 1.1 (0.8, 1.5) 2.8 (2.3, 3.4) 3.5 (2.9, 4.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) ersona CR Persona 12 1666 1.1 (0.6, 1.9) BK RBK 355 6825 1.3 (1.1, 1.6) 3.2 (2.8, 3.6) 4.2 (3.7, 4.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) core Score 208 2638 1.7 (1.2, 2.2) 5.3 (4.5, 6.3) 7.3 (6.3, 8.5) 11.8 (10.2, 13.7) riathlon CR Triathlon 658 24405 1.1 (1.0, 1.2) 2.3 (2.1, 2.6) 3.0 (2.8, 3.3) 4.4 (4.0, 4.8) riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) 'anguard CR R		Nexgen TM CR	299	11163	0.5 (0.4, 0.7)	1.8 (1.6, 2.1)	2.3 (2.0, 2.6)	3.3 (2.9, 3.8)	4.4 (3.7, 5.2)	
Nexgen TM LPS 50 1056 1.3 (0.8, 2.2) 3.1 (2.2, 4.4) 4.3 (3.2, 5.8) 5.7 (4.2, 7.8) FC Sigma CR MBT 69 995 2.3 (1.5, 3.5) 4.9 (3.7, 6.4) 5.6 (4.3, 7.2) 6.6 (5.2, 8.4) 8.5 (6.5, 11.0) MBT Duofix 154 3327 1.1 (0.8, 1.5) 2.8 (2.3, 3.4) 3.5 (2.9, 4.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) ersona CR Persona 12 1666 1.1 (0.6, 1.9) Units 4.2 (3.7, 4.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) BK RBK 355 6825 1.3 (1.1, 1.6) 3.2 (2.8, 3.6) 4.2 (3.7, 4.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) riathlon CR Triathlon 658 24405 1.1 (1.0, 1.2) 2.3 (2.1, 2.6) 3.0 (2.8, 3.3) 4.4 (4.0, 4.8) riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) anguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0)	Nexgen LPS	Nexgen TM LPS	32	1408	0.7 (0.3, 1.3)	1.1 (0.7, 1.9)	2.1 (1.4, 3.1)	2.8 (1.9, 4.1)		
FC Sigma CR MBT 69 995 2.3 (1.5, 3.5) 4.9 (3.7, 6.4) 5.6 (4.3, 7.2) 6.6 (5.2, 8.4) 8.5 (6.5, 11.0) MBT Duofix 154 3327 1.1 (0.8, 1.5) 2.8 (2.3, 3.4) 3.5 (2.9, 4.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) ersona CR Persona 12 1666 1.1 (0.6, 1.9)	Nexgen LPS Flex	Nexgen	47	1188	2.7 (1.9, 3.8)	4.1 (3.0, 5.4)	4.2 (3.1, 5.6)			
MBT Duofix 154 3327 1.1 (0.8, 1.5) 2.8 (2.3, 3.4) 3.5 (2.9, 4.3) 4.9 (4.2, 5.9) 7.3 (5.9, 8.8) ersona CR Persona 12 1666 1.1 (0.6, 1.9) BK RBK 355 6825 1.3 (1.1, 1.6) 3.2 (2.8, 3.6) 4.2 (3.7, 4.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) core Score 208 2638 1.7 (1.2, 2.2) 5.3 (4.5, 6.3) 7.3 (6.3, 8.5) 11.8 (10.2, 13.7) riathlon CR Triathlon 658 24405 1.1 (1.0, 1.2) 2.3 (2.1, 2.6) 3.0 (2.8, 3.3) 4.4 (4.0, 4.8) riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) anguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) Other (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)		Nexgen TM LPS	50	1056	1.3 (0.8, 2.2)	3.1 (2.2, 4.4)	4.3 (3.2, 5.8)	5.7 (4.2, 7.8)		
ersona CR Persona 12 1666 1.1 (0.6, 1.9) BK RBK 355 6825 1.3 (1.1, 1.6) 3.2 (2.8, 3.6) 4.2 (3.7, 4.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) core Score 208 2638 1.7 (1.2, 2.2) 5.3 (4.5, 6.3) 7.3 (6.3, 8.5) 11.8 (10.2, 13.7) riathlon CR Triathlon 658 24405 1.1 (1.0, 1.2) 2.3 (2.1, 2.6) 3.0 (2.8, 3.3) 4.4 (4.0, 4.8) riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) 'anguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) Other (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)	PFC Sigma CR	MBT	69	995	2.3 (1.5, 3.5)	4.9 (3.7, 6.4)	5.6 (4.3, 7.2)	6.6 (5.2, 8.4)	8.5 (6.5, 11.0)	
BK RBK 355 6825 1.3 (1.1, 1.6) 3.2 (2.8, 3.6) 4.2 (3.7, 4.7) 5.5 (5.0, 6.2) 6.8 (6.0, 7.7) core Score 208 2638 1.7 (1.2, 2.2) 5.3 (4.5, 6.3) 7.3 (6.3, 8.5) 11.8 (10.2, 13.7) riathlon CR Triathlon 658 24405 1.1 (1.0, 1.2) 2.3 (2.1, 2.6) 3.0 (2.8, 3.3) 4.4 (4.0, 4.8) riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) anguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) Other (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)		MBT Duofix	154	3327	1.1 (0.8, 1.5)	2.8 (2.3, 3.4)	3.5 (2.9, 4.3)	4.9 (4.2, 5.9)	7.3 (5.9, 8.8)	
Score 208 2638 1.7 (1.2, 2.2) 5.3 (4.5, 6.3) 7.3 (6.3, 8.5) 11.8 (10.2, 13.7) riathlon CR Triathlon 658 24405 1.1 (1.0, 1.2) 2.3 (2.1, 2.6) 3.0 (2.8, 3.3) 4.4 (4.0, 4.8) riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) anguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) Dther (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)	Persona CR	Persona	12	1666	1.1 (0.6, 1.9)					
Triathlon CR Triathlon 658 24405 1.1 (1.0, 1.2) 2.3 (2.1, 2.6) 3.0 (2.8, 3.3) 4.4 (4.0, 4.8) riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) 'anguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) Other (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)	RBK	RBK	355	6825	1.3 (1.1, 1.6)	3.2 (2.8, 3.6)	4.2 (3.7, 4.7)	5.5 (5.0, 6.2)	6.8 (6.0, 7.7)	
riathlon PS Triathlon 62 1246 1.9 (1.3, 2.8) 3.6 (2.7, 4.9) 4.6 (3.6, 6.1) 5.7 (4.5, 7.3) 'anguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) Other (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)	Score	Score	208	2638	1.7 (1.2, 2.2)	5.3 (4.5, 6.3)	7.3 (6.3, 8.5)	11.8 (10.2, 13.7)		
Vanguard CR Regenerex 85 1695 1.2 (0.8, 1.8) 3.4 (2.6, 4.3) 4.1 (3.2, 5.2) 7.4 (5.7, 9.5) Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) Other (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)	Triathlon CR	Triathlon	658	24405	1.1 (1.0, 1.2)	2.3 (2.1, 2.6)	3.0 (2.8, 3.3)	4.4 (4.0, 4.8)		
Vanguard 101 1695 1.4 (1.0, 2.1) 4.1 (3.3, 5.2) 4.8 (3.9, 6.0) 6.7 (5.4, 8.2) ther (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)	Triathlon PS	Triathlon	62	1246	1.9 (1.3, 2.8)	3.6 (2.7, 4.9)	4.6 (3.6, 6.1)	5.7 (4.5, 7.3)		
Other (28) 176 2649 2.7 (2.1, 3.4) 6.1 (5.2, 7.2) 7.3 (6.3, 8.5) 8.9 (7.6, 10.3) 9.6 (8.0, 11.5)	Vanguard CR	Regenerex	85	1695	1.2 (0.8, 1.8)	3.4 (2.6, 4.3)	4.1 (3.2, 5.2)	7.4 (5.7, 9.5)		
		Vanguard	101	1695	1.4 (1.0, 2.1)	4.1 (3.3, 5.2)	4.8 (3.9, 6.0)	6.7 (5.4, 8.2)		
OTAL 5069 112679	Other (28)		176	2649	2.7 (2.1, 3.4)	6.1 (5.2, 7.2)	7.3 (6.3, 8.5)	8.9 (7.6, 10.3)	9.6 (8.0, 11.5)	
	TOTAL		5069	112679						

Table KT8 Cumulative Percent Revision of Cementless Primary Total Knee Replacement by Prosthesis Combination

Note: Only combinations with >400 procedures have been listed Restricted to modern prostheses

Femoral	Tibial	N	N	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Component	Component	Revised	Total						
ACS	ACS Fixed	60	1377	1.4 (0.9, 2.2)	4.4 (3.4, 5.8)	5.2 (4.0, 6.7)			
Active Knee	Active Knee	142	2306	0.6 (0.4, 1.0)	2.7 (2.1, 3.5)	3.8 (3.0, 4.6)	6.7 (5.6, 8.0)	9.7 (8.1, 11.6)	
Advance	Advance II	25	478	1.1 (0.4, 2.5)	2.8 (1.6, 4.7)	3.7 (2.3, 5.9)	5.6 (3.7, 8.4)	6.8 (4.5, 10.3)	
Apex Knee CR	Apex Knee	49	3454	1.0 (0.7, 1.4)	1.6 (1.2, 2.1)	2.1 (1.6, 2.9)			
BalanSys	BalanSys	39	2004	1.0 (0.6, 1.5)	2.1 (1.5, 2.9)	2.7 (1.9, 3.8)			
GMK Primary	GMK Primary	26	695	0.8 (0.3, 1.8)	3.6 (2.4, 5.4)	4.0 (2.7, 5.9)			
Genesis II CR	Genesis II	442	8424	1.0 (0.8, 1.2)	3.2 (2.8, 3.6)	4.3 (3.9, 4.8)	5.9 (5.3, 6.5)	7.1 (6.3, 7.8)	
Genesis II PS	Genesis II	67	707	1.7 (1.0, 3.0)	4.4 (3.1, 6.2)	5.6 (4.1, 7.6)	8.7 (6.8, 11.2)	11.0 (8.7, 14.0)	
LCS CR	LCS	146	2364	1.0 (0.7, 1.5)	2.7 (2.1, 3.5)	3.8 (3.1, 4.7)	5.5 (4.6, 6.5)	6.7 (5.7, 7.9)	8.8 (6.5, 11.9)
	MBT	341	10693	0.7 (0.6, 0.9)	2.1 (1.9, 2.4)	2.8 (2.5, 3.2)	4.0 (3.5, 4.4)	4.5 (4.0, 5.1)	
	MBT Duofix	36	987	1.3 (0.8, 2.3)	3.3 (2.3, 4.6)	3.4 (2.4, 4.8)	4.2 (3.0, 5.9)		
Legion CR	Genesis II	117	3324	1.4 (1.0, 1.9)	3.5 (2.9, 4.3)	4.3 (3.6, 5.2)	5.7 (4.5, 7.1)		
Natural Knee Flex	Natural Knee II	40	1934	0.4 (0.2, 0.8)	1.3 (0.9, 1.9)	1.9 (1.3, 2.6)	2.6 (1.9, 3.6)		
Nexgen CR	Nexgen	159	4345	0.6 (0.4, 0.9)	1.7 (1.4, 2.2)	2.2 (1.8, 2.7)	3.2 (2.7, 3.8)	4.5 (3.8, 5.4)	
Nexgen CR Flex	Nexgen	515	21655	0.7 (0.6, 0.9)	1.8 (1.6, 2.0)	2.2 (2.0, 2.5)	3.0 (2.7, 3.3)	3.8 (3.2, 4.5)	
	Nexgen TM CR	23	847	0.7 (0.3, 1.6)	1.6 (0.9, 2.7)	1.7 (1.0, 2.9)	2.4 (1.6, 3.8)	3.6 (2.3, 5.5)	
Nexgen LPS	Nexgen	56	1028	0.5 (0.2, 1.2)	2.7 (1.9, 3.9)	4.1 (3.1, 5.6)	5.4 (4.1, 7.1)	6.4 (4.9, 8.4)	
Nexgen LPS Flex	Nexgen	58	1060	2.1 (1.4, 3.2)	4.5 (3.4, 6.0)	5.7 (4.4, 7.4)	6.6 (5.0, 8.6)		
	Nexgen TM LPS	20	508	0.6 (0.2, 1.8)	1.8 (0.9, 3.4)	2.0 (1.1, 3.7)	3.1 (1.9, 5.1)		
Optetrak Logic CR	Optetrak Logic	21	921	1.3 (0.7, 2.3)	2.7 (1.7, 4.2)	3.4 (2.1, 5.4)			
PFC Sigma CR	MBT	217	4153	1.3 (1.0, 1.7)	3.1 (2.6, 3.7)	4.1 (3.5, 4.8)	5.3 (4.6, 6.0)	7.1 (6.0, 8.2)	
	PFC Sigma	392	11649	0.6 (0.5, 0.8)	1.9 (1.7, 2.2)	2.4 (2.2, 2.8)	3.5 (3.1, 3.9)	5.2 (4.6, 5.9)	5.9 (5.1, 6.9)
PFC Sigma PS	MBT Duofix	173	2252	1.8 (1.3, 2.5)	4.5 (3.7, 5.4)	6.0 (5.1, 7.1)	8.2 (7.0, 9.5)	10.5 (8.7, 12.5)	
Persona CR	Persona	67	5609	1.1 (0.8, 1.4)	2.0 (1.5, 2.6)	2.5 (1.6, 3.9)			
RBK	RBK	73	1604	1.1 (0.7, 1.7)	2.9 (2.2, 3.9)	3.7 (2.8, 4.8)	4.9 (3.8, 6.2)	8.0 (5.7, 11.2)	
Score	Score	84	1670	1.6 (1.1, 2.3)	4.0 (3.1, 5.2)	6.1 (4.9, 7.6)			
Trekking	Trekking	15	545	1.1 (0.5, 2.5)	2.6 (1.5, 4.5)	3.3 (1.8, 5.8)			
Triathlon CR	Triathlon	591	29974	0.7 (0.6, 0.8)	1.6 (1.4, 1.7)	2.1 (1.9, 2.3)	3.2 (2.9, 3.6)		
Triathlon PS	Triathlon	109	2872	1.7 (1.3, 2.2)	2.7 (2.1, 3.3)	3.6 (2.9, 4.4)	5.0 (4.0, 6.1)		
Vanguard CR	Vanguard	437	13289	0.8 (0.7, 1.0)	2.2 (2.0, 2.5)	3.0 (2.7, 3.3)	4.9 (4.4, 5.5)		
Vanguard PS	Vanguard	32	693	1.2 (0.6, 2.4)	3.0 (2.0, 4.7)	4.1 (2.8, 6.0)	6.0 (4.2, 8.7)		
Other (54)	5	244	3271	3.0 (2.4, 3.6)	6.2 (5.4, 7.2)	7.5 (6.6, 8.6)	9.6 (8.4, 10.9)	11.7 (9.8, 13.8)	
TOTAL		4816	146692						

Table KT9 Cumulative Percent Revision of Hybrid Primary Total Knee Replacement by Prosthesis Combination

Note: Only combinations with >400 procedures have been listed Restricted to modern prostheses

OUTCOME FOR OSTEOARTHRITIS - PATIENT CHARACTERISTICS

Primary total knee replacement has the lowest rate of revision compared to all other classes of primary knee replacement. At 20 years, the cumulative percent revision of all primary total knee replacement procedures undertaken for osteoarthritis is 8.1% (Table KT10 and Figure KT7).

Reasons for Revision

Infection is the most common reason for revision followed by loosening, instability patellofemoral pain, and pain (Table KT11 and Figure KT8).

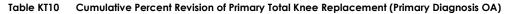
The aetiology of loosening changes with time. Loosening reported in the first few years most likely reflects failure to gain fixation. Loosening reported in later years is often due to loss of fixation, secondary to bone resorption.

Types of Revision

The most common types of revision are insert only, both femoral and tibial components, and patella only (Table KT12).

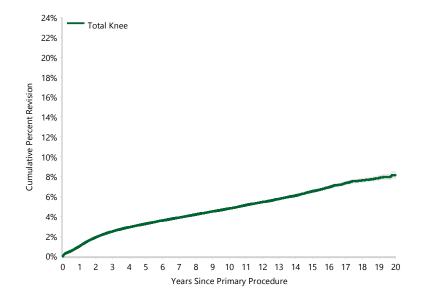
Age and Gender

The rate of revision decreases with increasing age. This difference becomes more evident with time. Patients aged <55 years have almost 3 times the rate of revision after 6 months and this increases to more than 5 times after 7 years, compared to patients aged \geq 75 years (Table KT13 and Figure KT9).


Males have a higher rate of revision compared to females (Table KT14 and Figure KT10). Loosening is the most common reason for revision in females. Males have a higher incidence of revision for infection (Figure KT11).

Males have a higher rate of revision which is largely due to an increased incidence of infection.

Age-related differences in the rate of revision are evident for both males and females (Table KT14, Figure KT12 and Figure KT13).


ASA and BMI

ASA scores are an indication of comorbidity and have been collected since 2012. The definitions for these scores can be found in the introductory part of this chapter. The Registry reports on the outcome of 386,408 primary total knee replacement procedures for osteoarthritis in relation to these scores. When compared to patients with an ASA score of 1, patients in all other ASA groups have a higher rate of revision (Table KT15 and Figure KT14). The difference in the rate of revision for each ASA score is partially due to an increase in the cumulative incidence of infection with increasing ASA score (Figure KT15). BMI data have been collected since 2015. The early revision outcomes are reported for 298,203 primary total knee replacement procedures for osteoarthritis in relation to BMI category. When compared to patients with normal BMI, there is no difference in the rate of revision for patients who are pre-obese or obese class 1. However, there is an early increase in the rate of revision for patients in obese class 2 and obese class 3 (Table KT16 and Figure KT16). The most common reasons for revision are shown in Figure KT17. There is an increased rate of revision for infection for patients in obese classes 2 and 3 when compared to patients with a normal BMI (Table KT17 and Figure KT18).

Knee Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Knee	22899	654260	1.0 (1.0, 1.0)	2.5 (2.5, 2.5)	3.3 (3.2, 3.3)	4.8 (4.7, 4.9)	6.5 (6.4, 6.6)	8.1 (7.8, 8.5)
TOTAL	22899	654260						

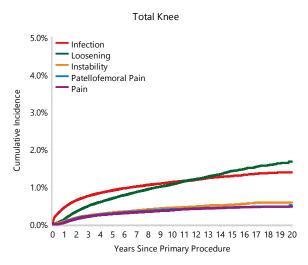
Note: Restricted to modern prostheses

Figure KT7 Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Total Knee	654260	591609	464003	349144	132336	31023	645

Table KT11 Primary Total Knee Replacement by Reason for Revision (Primary Diagnosis OA)

Reason for Revision	Number	Percent
Infection	6055	26.4
Loosening	5194	22.7
Instability	2170	9.5
Patellofemoral Pain	1931	8.4
Pain	1846	8.1
Patella Erosion	1451	6.3
Arthrofibrosis	879	3.8
Fracture	789	3.4
Malalignment	532	2.3
Lysis	304	1.3
Wear Tibial Insert	294	1.3
Incorrect Sizing	244	1.1
Metal Related Pathology	109	0.5
Other	1101	4.8
TOTAL	22899	100.0


Table KT12 Primary Total Knee Replacement by Type of Revision (Primary Diagnosis OA)

Type of Revision	Number	Percent
Insert Only	6150	26.9
TKR (Tibial/Femoral)	5582	24.4
Patella Only	4309	18.8
Insert/Patella	2386	10.4
Tibial Component	1916	8.4
Cement Spacer	1208	5.3
Femoral Component	1140	5.0
Removal of Prostheses	129	0.6
Minor Components	47	0.2
Cement Only	11	0.0
Total Femoral	11	0.0
Reinsertion of Components	10	0.0
TOTAL	22899	100.0

Note: Restricted to modern prostheses

Note: Restricted to modern prostheses

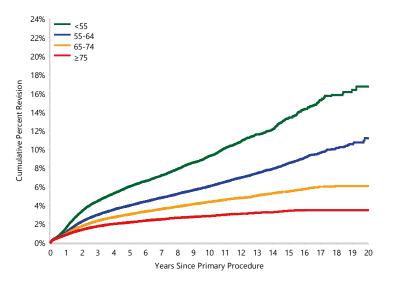

Figure KT8 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement (Primary Diagnosis OA)

Table KT13	Cumulative Percent Revision of Primar	v Total Knee Replacement l	ov Aae	(Primary Diagnosis OA)
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	3048	43036	1.6 (1.5, 1.7)	4.5 (4.3, 4.7)	6.0 (5.8, 6.3)	9.3 (8.9, 9.6)	13.4 (12.8, 14.0)	16.7 (15.5, 18.1)
55-64	7921	175435	1.1 (1.1, 1.2)	3.0 (2.9, 3.1)	4.0 (3.9, 4.1)	6.0 (5.9, 6.2)	8.5 (8.3, 8.8)	11.2 (10.4, 12.1)
65-74	8242	261499	0.9 (0.9, 1.0)	2.3 (2.3, 2.4)	3.0 (3.0, 3.1)	4.4 (4.3, 4.5)	5.5 (5.3, 5.6)	6.1 (5.8, 6.3)
≥75	3688	174290	0.8 (0.8, 0.9)	1.7 (1.7, 1.8)	2.2 (2.1, 2.2)	2.8 (2.7, 2.9)	3.4 (3.2, 3.6)	3.5 (3.3, 3.7)
TOTAL	22899	654260						

Figure KT9 Cumulative Percent Revision of Primary Total Knee Replacement by Age (Primary Diagnosis OA)

HR - adjusted for gender <55 vs ≥75 0 - 6Mth: HR=1.40 (1.23, 1.60),p<0.001

6Mth - 1.5Yr: HR=2.92 (2.66, 3.20),p<0.001 1.5Yr - 2Yr: HR=3.47 (2.96, 4.06),p<0.001 2Yr - 3.5Yr: HR=3.26 (2.93, 3.62),p<0.001 3.5Yr - 4Yr: HR=3.82 (3.12, 4.66),p<0.001 4Yr - 6.5Yr: HR=3.80 (3.38, 4.28),p<0.001 6.5Yr - 7Yr: HR=4.58 (3.45, 6.09),p<0.001 7Yr+: HR=5.69 (5.12, 6.33),p<0.001

55-64 vs ≥75

0 - 3Mth: HR=0.96 (0.86, 1.07),p=0.425 3Mth - 9Mth: HR=1.49 (1.36, 1.64),p<0.001 9Mth - 1.5Yr: HR=1.93 (1.78, 2.09),p<0.001 1.5Yr - 2Yr: HR=2.21 (1.94, 2.51),p<0.001 2Yr - 2.5Yr: HR=2.06 (1.84, 2.30),p<0.001 2.5Yr - 4Yr: HR=2.26 (2.07, 2.47),p<0.001 4Yr - 4.5Yr: HR=2.48 (2.11, 2.92),p<0.001 4.5Yr - 6.5Yr: HR=2.47 (2.24, 2.73),p<0.001 6.5Yr - 7Yr: HR=2.59 (2.08, 3.23),p<0.001 7Yr - 13Yr: HR=3.15 (2.87, 3.46),p<0.001 13Yr+: HR=4.08 (3.43, 4.86),p<0.001

65-74 vs ≥75 0 - 6Mth: HR=1.02 (0.94, 1.11),p=0.625 6Mth - 1.5Yr: HR=1.37 (1.28, 1.48),p<0.001 1.5Yr - 2Yr: HR=1.60 (1.41, 1.81),p<0.001 2Yr+: HR=1.68 (1.58, 1.78),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
<55	43036	38817	30945	23878	10173	2956	80
55-64	175435	158877	126049	96622	39566	10403	240
65-74	261499	236236	184397	138529	53432	13052	269
≥75	174290	157679	122612	90115	29165	4612	56

Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male		10888	289361	1.2 (1.2, 1.2)	2.8 (2.7, 2.8)	3.6 (3.5, 3.7)	5.2 (5.1, 5.3)	7.1 (6.9, 7.3)	9.0 (8.3, 9.7)
	<55	1366	18531	1.9 (1.7, 2.1)	4.9 (4.5, 5.2)	6.3 (6.0, 6.7)	9.5 (9.0, 10.1)	13.8 (12.9, 14.8)	17.0 (15.4, 18.9)
	55-64	3848	81699	1.3 (1.2, 1.4)	3.3 (3.1, 3.4)	4.3 (4.1, 4.4)	6.4 (6.2, 6.6)	8.9 (8.5, 9.3)	11.7 (10.3, 13.2)
	65-74	4022	117951	1.1 (1.1, 1.2)	2.6 (2.5, 2.7)	3.3 (3.2, 3.4)	4.8 (4.6, 4.9)	6.0 (5.7, 6.3)	6.9 (6.4, 7.3)
	≥75	1652	71180	1.0 (0.9, 1.1)	2.0 (1.9, 2.1)	2.4 (2.3, 2.6)	3.1 (3.0, 3.3)	3.7 (3.4, 4.0)	
Female		12011	364899	0.8 (0.8, 0.9)	2.3 (2.2, 2.3)	3.0 (3.0, 3.1)	4.5 (4.4, 4.6)	6.1 (6.0, 6.3)	7.5 (7.1, 8.0)
	<55	1682	24505	1.4 (1.2, 1.5)	4.2 (3.9, 4.4)	5.8 (5.5, 6.1)	9.1 (8.6, 9.6)	13.0 (12.2, 13.9)	
	55-64	4073	93736	0.9 (0.9, 1.0)	2.7 (2.6, 2.9)	3.7 (3.6, 3.9)	5.7 (5.5, 5.9)	8.2 (7.9, 8.6)	10.8 (9.8, 11.9)
	65-74	4220	143548	0.8 (0.7, 0.8)	2.1 (2.1, 2.2)	2.8 (2.7, 2.9)	4.0 (3.9, 4.2)	5.1 (4.9, 5.3)	5.5 (5.2, 5.8)
	≥75	2036	103110	0.7 (0.7, 0.8)	1.6 (1.5, 1.6)	2.0 (1.9, 2.1)	2.6 (2.5, 2.8)	3.2 (3.0, 3.4)	
TOTAL		22899	654260						

Table KT14 Cumulative Percent Revision of Primary Total Knee Replacement by Gender and Age (Primary Diagnosis OA)

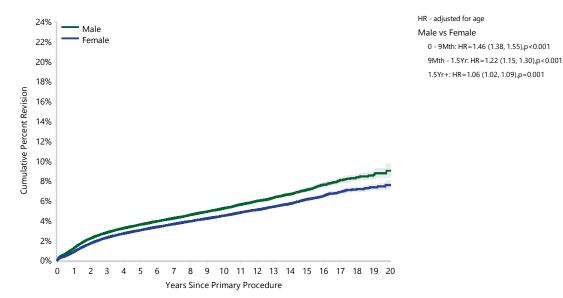
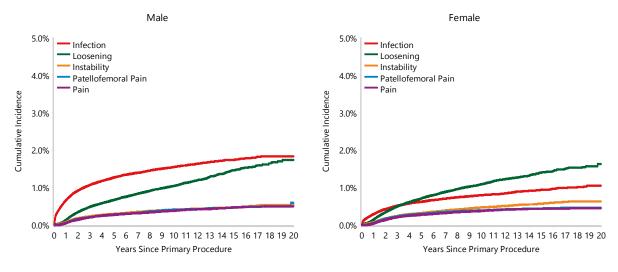
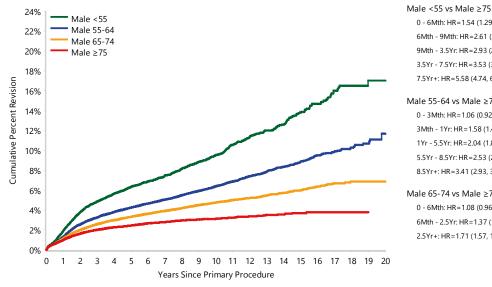
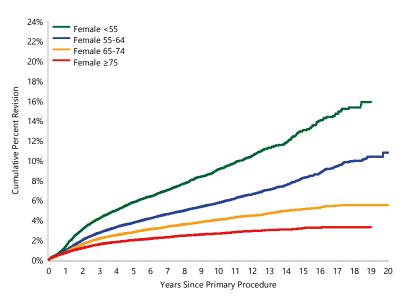



Figure KT10 Cumulative Percent Revision of Primary Total Knee Replacement by Gender (Primary Diagnosis OA)


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	289361	259351	200789	149220	54589	12277	253
Female	364899	332258	263214	199924	77747	18746	392

Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Gender (Primary Diagnosis OA) Figure KT11

Note: Restricted to modern prostheses

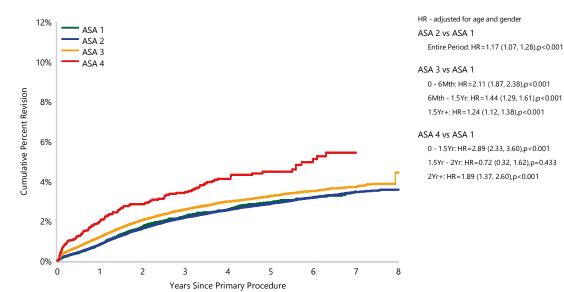

0 - 6Mth: HR=1.54 (1.29, 1.84),p<0.001 6Mth - 9Mth: HR=2.61 (2.07, 3.28),p<0.001 9Mth - 3.5Yr: HR=2.93 (2.65, 3.23),p<0.001 3.5Yr - 7.5Yr: HR=3.53 (3.05, 4.08),p<0.001 7.5Yr+: HR=5.58 (4.74, 6.57),p<0.001 Male 55-64 vs Male ≥75 0 - 3Mth: HR=1.06 (0.92, 1.23),p=0.423 3Mth - 1Yr: HR=1.58 (1.42, 1.75),p<0.001

1Yr - 5.5Yr: HR=2.04 (1.89, 2.19),p<0.001 5.5Yr - 8.5Yr: HR=2.53 (2.20, 2.91),p<0.001 8.5Yr+: HR=3.41 (2.93, 3.96),p<0.001 Male 65-74 vs Male ≥75

0 - 6Mth: HR=1.08 (0.96, 1.21),p=0.203 6Mth - 2.5Yr: HR=1.37 (1.27, 1.48),p<0.001 2.5Yr+: HR=1.71 (1.57, 1.86),p<0.001

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Male	<55	18531	16602	13122	10103	4349	1285	43
	55-64	81699	73332	57356	43632	17630	4476	105
	65-74	117951	105715	81825	60910	22481	5116	88
	≥75	71180	63702	48486	34575	10129	1400	17

Figure KT13 Cumulative Percent Revision of Primary Total Knee Replacement in Females by Age (Primary Diagnosis OA)


Female <55 vs Female ≥75 0 - 6Mth: HR=1.21 (1.00, 1.47),p=0.051 6Mth - 3Yr: HR=3.35 (3.06, 3.66),p<0.001 3Yr - 7Yr: HR=4.03 (3.59, 4.52),p<0.001 7Yr - 14Yr: HR=5.82 (4.98, 6.80),p<0.001 14Yr+: HR=10.63 (7.46, 15.14),p<0.001

Female 55-64 vs Female ≥75 0 - 3Mth: HR=0.80 (0.68, 0.94),p=0.008 3Mth - 6Mth: HR=1.16 (0.95, 1.42),p=0.134 6Mth - 3.5Yr: HR=2.13 (1.99, 2.29),p<0.001 3.5Yr - 8Yr: HR=2.68 (2.43, 2.94),p<0.001 8Yr - 12Yr: HR=3.34 (2.85, 3.91),p<0.001 12Yr - 15Yr: HR=4.50 (3.54, 5.71),p<0.001 15Yr+: HR=7.40 (4.94, 11.08),p<0.001

Female 65-74 vs Female ≥75 0 - 6Mth: HR=0.91 (0.81, 1.03),p=0.149 6Mth - 5Yr: HR=1.57 (1.48, 1.68),p<0.001 5Yr+: HR=1.78 (1.59, 1.98),p<0.001

Num	ber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Female	< 55	24505	22215	17823	13775	5824	1671	37
	55-64	93736	85545	68693	52990	21936	5927	135
	65-74	143548	130521	102572	77619	30951	7936	181
	≥75	103110	93977	74126	55540	19036	3212	39

ASA Score	N Revised	N Total	1 Yr	3 Yrs	4 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
ASA 1	523	22609	0.8 (0.7, 1.0)	2.3 (2.0, 2.5)	2.6 (2.3, 2.8)	2.9 (2.7, 3.2)	3.2 (2.9, 3.5)	3.5 (3.2, 3.9)	
ASA 2	4685	212441	0.8 (0.8, 0.9)	2.2 (2.1, 2.2)	2.6 (2.5, 2.6)	2.9 (2.8, 3.0)	3.2 (3.1, 3.3)	3.5 (3.3, 3.6)	3.6 (3.4, 3.7)
ASA 3	3621	147280	1.2 (1.1, 1.3)	2.6 (2.5, 2.7)	3.0 (2.9, 3.1)	3.3 (3.2, 3.4)	3.5 (3.4, 3.6)	3.7 (3.6, 3.9)	4.4 (3.4, 5.7)
ASA 4	145	4067	2.0 (1.6, 2.5)	3.4 (2.9, 4.1)	4.1 (3.5, 4.9)	4.5 (3.8, 5.3)	5.1 (4.2, 6.1)	5.4 (4.5, 6.6)	
ASA 5	0	11	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)			
TOTAL	8974	386408							

Figure KT14 Cumulative Percent Revision of Primary Total Knee Replacement by ASA Score (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	4 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
ASA 1	22609	19584	13358	10273	7401	4511	1892	19
ASA 2	212441	182219	120584	91447	64244	38265	15096	133
ASA 3	147280	123540	76235	55538	37023	21183	7910	59
ASA 4	4067	3390	2064	1522	1053	631	256	5

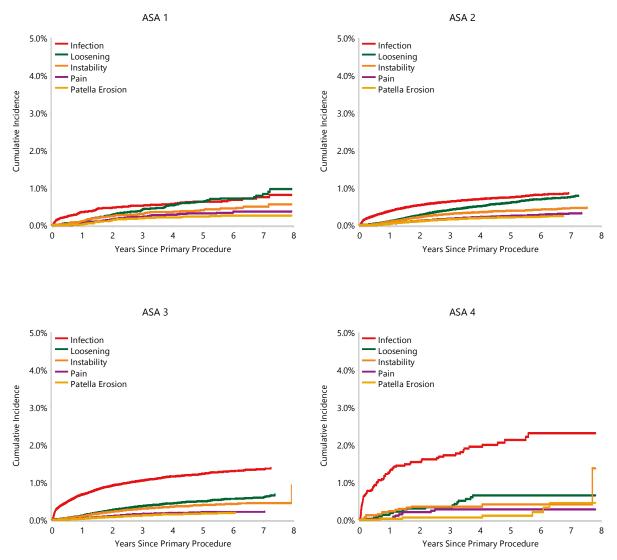


Figure KT15 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by ASA Score (Primary Diagnosis OA)

BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Underweight (<18.50)	7	531	0.8 (0.3, 2.1)	1.1 (0.4, 2.6)	1.4 (0.6, 3.2)	1.4 (0.6, 3.2)	2.3 (0.9, 5.6)	
Normal (18.50-24.99)	504	30704	0.7 (0.6, 0.8)	1.4 (1.3, 1.6)	1.9 (1.7, 2.1)	2.3 (2.1, 2.5)	2.6 (2.3, 2.8)	
Pre Obese (25.00-29.99)	1715	92848	0.9 (0.9, 1.0)	1.6 (1.5, 1.7)	2.1 (2.0, 2.3)	2.5 (2.4, 2.6)	2.8 (2.6, 2.9)	
Obese Class 1 (30.00-34.99)	1815	92082	0.9 (0.8, 1.0)	1.8 (1.7, 1.9)	2.3 (2.2, 2.5)	2.7 (2.6, 2.8)	3.0 (2.8, 3.1)	3.4 (2.9, 3.9)
Obese Class 2 (35.00-39.99)	1043	50787	1.0 (0.9, 1.1)	1.8 (1.7, 2.0)	2.3 (2.2, 2.5)	2.8 (2.6, 3.0)	3.1 (2.9, 3.3)	
Obese Class 3 (≥40.00)	757	31251	1.4 (1.3, 1.5)	2.1 (1.9, 2.3)	2.8 (2.6, 3.0)	3.2 (2.9, 3.4)	3.4 (3.2, 3.7)	
TOTAL	5841	298203						

Table KT16 Cumulative Percent Revision of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA	e Percent Revision of Primary Total Knee Rep	placement by BMI Category (Primary Diagnosis OA
--	--	---

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

egory (r HR - adjusted for age and gender 6% Normal (18.50-24.99) Pre Obese (25.00-29.99) vs Normal (18.50-24.99) Pre Obese (25.00-29.99) Entire Period: HR=1.03 (0.94, 1.14),p=0.518 Obese Class 1 (30.00-34.99) 5% Obese Class 2 (35.00-39.99) Obese Class 1 (30.00-34.99) vs Obese Class 3 (≥40.00) Normal (18.50-24.99) Cumulative Percent Revision Entire Period: HR=1.06 (0.96, 1.17),p=0.235 4% Obese Class 2 (35.00-39.99) vs Normal (18.50-24.99) 3% 0 - 1Mth: HR=1.38 (1.09, 1.75),p=0.007 1Mth - 3Mth: HR=1.16 (0.91, 1.48),p=0.231 3Mth - 1.5Yr: HR=1.07 (0.94, 1.22),p=0.316 2% 1.5Yr+: HR=1.01 (0.88, 1.17),p=0.839 Obese Class 3 (≥40.00) vs Normal (18.50-24.99) 1% 0 - 1Mth: HR=2.42 (1.92, 3.04),p<0.001 1Mth - 6Mth: HR=1.62 (1.34, 1.95),p<0.001 6Mth - 1.5Yr: HR=1.03 (0.88, 1.21),p=0.706 0% 1.5Yr - 2Yr: HR=0.83 (0.64, 1.08),p=0.169 1 2 3 4 5 0 6 2Yr+: HR=1.12 (0.94, 1.34),p=0.207 Years Since Primary Procedure

Figure KT16	Cumulative Percent Revision of Primary	Total Knee Replacement by BMI Category (Primary Diagnosis OA)
-------------	--	---

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Normal (18.50-24.99)	30704	24826	18865	13357	8372	3864	9
Pre Obese (25.00-29.99)	92848	75213	57461	40800	25276	11466	38
Obese Class 1 (30.00-34.99)	92082	74832	56963	40386	24971	11359	41
Obese Class 2 (35.00-39.99)	50787	41394	31733	22254	13703	6182	22
Obese Class 3 (≥40.00)	31251	25687	19687	13926	8577	3766	9

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

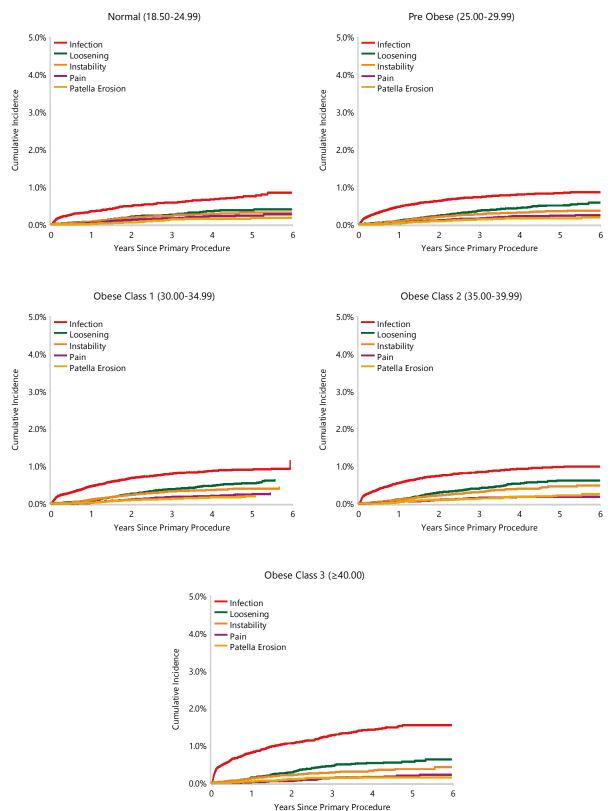


Figure KT17 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA)

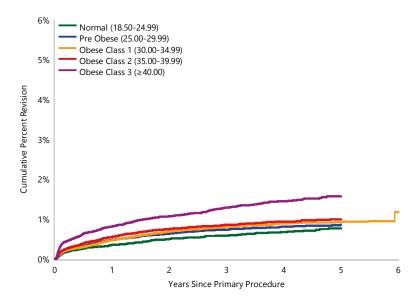

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

Table KT17 Cumulative Percent Revision of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA, Revision for Infection)

BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Underweight (<18.50)	4	531	0.6 (0.2, 1.8)	0.6 (0.2, 1.8)	0.9 (0.3, 2.5)	0.9 (0.3, 2.5)	0.9 (0.3, 2.5)	
Normal (18.50-24.99)	166	30704	0.4 (0.3, 0.4)	0.5 (0.4, 0.6)	0.6 (0.5, 0.7)	0.7 (0.6, 0.8)	0.8 (0.6, 0.9)	
Pre Obese (25.00-29.99)	602	92848	0.5 (0.4, 0.5)	0.6 (0.6, 0.7)	0.7 (0.7, 0.8)	0.8 (0.7, 0.9)	0.9 (0.8, 0.9)	
Obese Class 1 (30.00-34.99)	641	92082	0.5 (0.4, 0.5)	0.7 (0.6, 0.7)	0.8 (0.7, 0.9)	0.9 (0.8, 1.0)	0.9 (0.8, 1.0)	1.2 (0.8, 1.7)
Obese Class 2 (35.00-39.99)	386	50787	0.5 (0.5, 0.6)	0.7 (0.7, 0.8)	0.9 (0.8, 0.9)	0.9 (0.8, 1.0)	1.0 (0.9, 1.1)	
Obese Class 3 (≥40.00)	363	31251	0.8 (0.7, 0.9)	1.1 (1.0, 1.2)	1.3 (1.2, 1.4)	1.4 (1.3, 1.6)	1.6 (1.4, 1.8)	
TOTAL	2162	298203						

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

Figure KT18 Cumulative Percent Revision of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA, Revision for Infection)

HR - adjusted for age and gender Pre Obese (25.00-29.99) vs Normal (18.50-24.99) Entire Period: HR=1.07 (0.90, 1.27),p=0.442

Obese Class 1 (30.00-34.99) vs Normal (18.50-24.99) Entire Period: HR=1.18 (1.00, 1.41),p=0.053

Obese Class 2 (35.00-39.99) vs Normal (18.50-24.99) Entire Period: HR=1.39 (1.16, 1.68),p<0.001

Obese Class 3 (≥40.00) vs Normal (18.50-24.99) 0 - 1Mth: HR=3.44 (2.59, 4.57),p<0.001 1Mth+: HR=2.10 (1.73, 2.56),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Normal (18.50-24.99)	30704	24826	18865	13357	8372	3864	9
Pre Obese (25.00-29.99)	92848	75213	57461	40800	25276	11466	38
Obese Class 1 (30.00-34.99)	92082	74832	56963	40386	24971	11359	41
Obese Class 2 (35.00-39.99)	50787	41394	31733	22254	13703	6182	22
Obese Class 3 (≥40.00)	31251	25687	19687	13926	8577	3766	9

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

OUTCOME FOR OSTEOARTHRITIS - PROSTHESIS CHARACTERISTICS

Bearing Mobility

Tibial prostheses are either modular or nonmodular. Modular prostheses have a metal baseplate and tibial insert, which may be fixed or mobile. Non-modular prostheses are either all-polyethylene or polyethylene moulded to a metal baseplate.

Fixed bearings include non-modular tibial prostheses, as well as those with fixed inserts that do not move relative to the baseplate.

Fixed bearing prostheses have a lower rate of revision compared to mobile bearings in the first 7 years (Table KT18 and Figure KT19). When types of fixed bearings are compared, moulded non-modular tibial prostheses have a lower rate of revision compared to fixed modular components. There is no difference when comparing all-polyethylene to fixed modular or fixed non-modular tibial prostheses. However, the moulded non-modular and the all-polyethylene groups only have a limited number of prosthesis types (Table KT19 and Figure KT20).

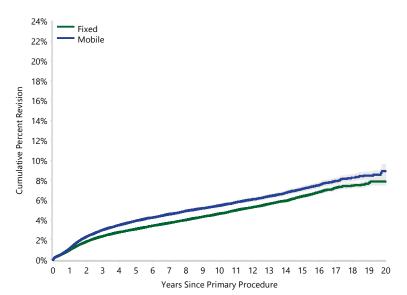
HR - adjusted for age and gender

0 - 1Yr: HR=1.15 (1.08, 1.22),p<0.001 1Yr - 1.5Yr: HR=1.44 (1.33, 1.57),p<0.001

1.5Yr - 2Yr: HR=1.29 (1.17, 1.42),p<0.001

2Yr - 2.5Yr: HR=1.16 (1.03, 1.29),p=0.011

2.5Yr - 3Yr: HR=1.35 (1.19, 1.53),p<0.001 3Yr - 7Yr: HR=1.19 (1.12, 1.27),p<0.001

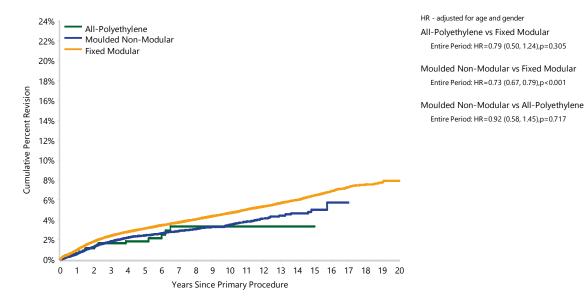

7Yr+: HR=0.93 (0.86, 1.00),p=0.059

Mobile vs Fixed

Table KT18	Cumulative Percent Revision of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA)
	control and a second of thinking for a second of the secon

Bearing Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Fixed	17224	531654	1.0 (0.9, 1.0)	2.4 (2.3, 2.4)	3.1 (3.0, 3.1)	4.6 (4.6, 4.7)	6.4 (6.2, 6.5)	7.9 (7.5, 8.2)
Mobile	5669	122448	1.1 (1.1, 1.2)	3.0 (2.9, 3.1)	3.9 (3.8, 4.0)	5.4 (5.3, 5.6)	7.1 (6.9, 7.4)	8.9 (8.3, 9.6)
TOTAL	22893	654102						

Note: Excludes 158 procedures with unknown bearing mobility Restricted to modern prostheses


Figure KT19 Cumulative Percent Revision of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA)

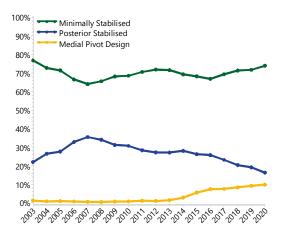
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Fixed	531654	477465	367604	270282	93784	18668	305
Mobile	122448	113992	96267	78744	38491	12337	339

Table KT19 Cumulative Percent Revision of Primary Total Knee Replacement by Fixed Bearing Type (Primary Diagnosis OA)

Fixed Bearing Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
All-Polyethylene	19	950	0.7 (0.3, 1.4)	1.6 (1.0, 2.8)	1.8 (1.1, 3.1)	3.3 (2.0, 5.6)	3.3 (2.0, 5.6)	
Moulded Non-Modular	544	18308	0.6 (0.5, 0.7)	1.8 (1.6, 2.0)	2.4 (2.2, 2.7)	3.5 (3.2, 3.9)	5.0 (4.3, 5.8)	
Fixed Modular	16661	512396	1.0 (1.0, 1.0)	2.4 (2.4, 2.4)	3.1 (3.1, 3.2)	4.7 (4.6, 4.8)	6.5 (6.3, 6.6)	7.9 (7.6, 8.3)
TOTAL	17224	531654						

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
All-Polyethylene	950	868	638	345	143	44	1
Moulded Non-Modular	18308	17605	15499	13230	5240	375	0
Fixed Modular	512396	458992	351467	256707	88401	18249	304

Stability


Stability refers to particular prosthetic features intended to substitute for the intrinsic stability of knee ligaments. In 2018, the Registry expanded the classification to include the medial pivot designs separately. The five categories are: minimally stabilised, medial pivot design, posterior stabilised, fully stabilised, and hinged prostheses.

The five major categories for stability are: minimally stabilised, medial pivot design, posterior stabilised, fully stabilised, and hinged prostheses.

The Registry defines minimally stabilised prostheses as those that have a flat or dished tibial articulation, regardless of congruency. Medial pivot design prostheses have a balland-socket medial portion of the articulation. Posterior stabilised prostheses provide additional posterior stability, most commonly using a peg and box design, or less frequently, a cam and groove.

The use of minimally stabilised prostheses has remained relatively constant over the last 10 years. In 2020, these accounted for 73.9% of primary procedures. The use of posterior stabilised prostheses has declined to 16.3% in 2020. Medial pivot design prostheses have been used in small numbers since the Registry began collecting data. In 2020, medial pivot design prostheses accounted for 9.8% of primary procedures (Figure KT21).

Figure KT21 Primary Total Knee Replacement by Stability (Primary Diagnosis OA)

Posterior stabilised and medial pivot design prostheses have higher rates of revision compared to minimally stabilised prostheses (Table KT20 and Figure KT22). The cumulative incidence for the different reasons for revision varies depending on stability. Posterior stabilised prostheses have a higher cumulative incidence of infection compared to minimally stabilised and medial pivot design prostheses. Posterior stabilised also have a higher cumulative incidence of loosening compared to minimally stabilised prostheses. Medial pivot design prostheses have a higher cumulative incidence of revision for pain and instability compared to minimally stabilised prostheses (Figure KT23).

As with minimally stabilised and posterior stabilised prostheses, there is variation in the rate of revision when different prostheses are compared within the medial pivot design group. This group only contains 6 prosthesis designs (Table KT21). The Advance/Advance is identified as a prosthesis combination with a higher than anticipated rate of revision. When this combination is excluded from the analysis, medial pivot designs have a higher rate of revision than minimally stabilised but a lower rate compared to posterior stabilised prostheses (Table KT22 and Figure KT24).

Prosthesis performance can also be analysed by polyethylene insert shape. Some prostheses offer tibial polyethylene inserts with differing levels of conformity to be used with a cruciate retaining femoral component. Conceptually, these sit between the minimally stabilised and posterior stabilised designs. These are described as 'anterior lipped' or 'anterior stabilised' designs which are intended to provide additional anterior stability.

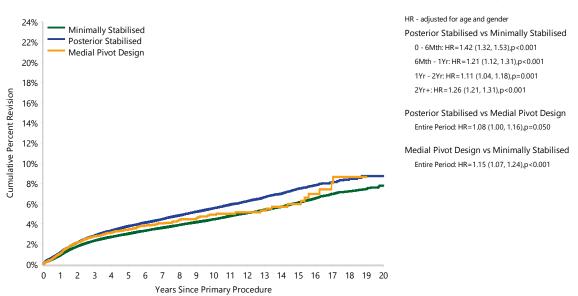
There are two knee prostheses with >500 procedures in each conformity category using a fixed bearing XLPE insert, with a follow-up of >3 years. The Triathlon prosthesis with the cruciate retaining polyethylene insert shows no difference when compared to the condylar stabilising polyethylene (Table KT23 and Figure KT25). The PFC Sigma knee shows no difference in revision rates when the cruciate retaining (curved) and curved plus inserts are compared (Table KT24 and Figure KT26).

An alternative approach is the ultra-congruent or 'deep dish' polyethylene shape that can add additional sagittal stability without the need for a peg and box design. There are two prostheses with >500 procedures in each category using a fixed bearing XLPE insert with a follow-up of >3 years. The Natural Knee and Persona have both cruciate retaining and ultra-congruent components. There is no difference in the rate of revision between the polyethylene insert styles for either design (Table KT25, Figure KT27, Table KT26, and Figure KT28).

Fully Stabilised and Hinged Prostheses

Fully stabilised (large peg and box design) and hinged knees are uncommonly used prostheses that provide additional collateral, as well as posterior ligament stability. While these designs of knee prostheses are usually considered to be revision components, they can also be used in complex primary clinical situations.

Fully constrained and hinged knee designs are used in 0.4% of primary procedures. Whereas osteoarthritis is the major diagnosis for all primary total knee replacements, fully stabilised prostheses are used in a higher proportion for rheumatoid arthritis and fracture. Hinged prostheses are used proportionally more for tumour, fracture and rheumatoid arthritis (Table KT27). Fully stabilised prostheses have been used in 2,934 primary procedures and hinged prostheses in 2,234 primary procedures. For these two knee designs, the cumulative percent revision for all diagnoses are shown in Table KT28 and Figure KT29.


When the outcome for osteoarthritis alone is considered, fully stabilised and hinged knee prostheses both have higher rates of revision compared to minimally stabilised prostheses (Figure KT30). For both of these designs, infection is the most common reason for revision, followed by loosening for fully stabilised and fracture for hinged prostheses (Table KT29 and Figure KT31).

Stability	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Minimally Stabilised	14876	456782	0.9 (0.9, 0.9)	2.3 (2.3, 2.4)	3.0 (3.0, 3.1)	4.5 (4.4, 4.5)	6.1 (6.0, 6.3)	7.8 (7.4, 8.2)
Posterior Stabilised	7032	164228	1.2 (1.1, 1.2)	2.8 (2.8, 2.9)	3.8 (3.7, 3.9)	5.6 (5.4, 5.7)	7.5 (7.2, 7.7)	8.7 (8.2, 9.4)
Medial Pivot Design	743	29189	1.1 (1.0, 1.2)	2.8 (2.6, 3.0)	3.4 (3.2, 3.7)	4.9 (4.4, 5.5)	6.0 (5.0, 7.1)	
Fully Stabilised	153	2664	2.7 (2.1, 3.4)	5.0 (4.2, 6.0)	6.3 (5.4, 7.5)	9.0 (7.4, 10.9)		
Hinged	89	1240	3.3 (2.4, 4.5)	6.3 (4.9, 8.0)	8.6 (6.8, 10.8)	13.0 (10.1, 16.5)		
TOTAL	22893	654103						

Table KT20 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)

Note: Excludes 157 procedures with unknown stability

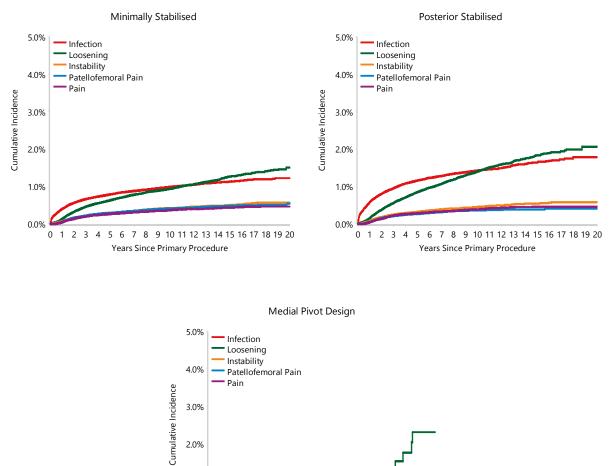

Restricted to modern prostheses

Figure KT22	Cumulative Percent Revision of Prima	y Total Knee Replacement by	/ Stability (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Minimally Stabilised	456782	411706	321752	243874	92437	23709	579
Posterior Stabilised	164228	152769	126222	97672	38475	6948	64
Medial Pivot Design	29189	23712	13697	6123	1040	319	0

1.0%

0.0%

Insert	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
GMK Sphere Primary	291	12844	1.3 (1.1, 1.5)	2.9 (2.6, 3.3)	3.4 (3.0, 3.9)			
Evolution	210	9168	0.9 (0.7, 1.1)	2.4 (2.1, 2.8)	3.3 (2.8, 3.8)			
SAIPH	60	4073	0.5 (0.3, 0.8)	1.8 (1.4, 2.4)	2.2 (1.7, 2.9)			
Advance II	123	1696	1.8 (1.3, 2.5)	4.5 (3.6, 5.6)	5.5 (4.5, 6.7)	7.3 (6.1, 8.7)	8.2 (6.8, 9.9)	
Advance	39	733	1.5 (0.8, 2.7)	4.6 (3.3, 6.4)	5.3 (3.8, 7.2)	6.2 (4.5, 8.4)		
MRK	20	675	0.8 (0.3, 1.8)	2.3 (1.4, 3.8)	2.5 (1.5, 4.1)	3.7 (2.3, 5.9)		
TOTAL	743	29189						

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Years Since Primary Procedure

Cumulative Percent Revision of Primary Total Knee Replacement with Medial Pivot Design by Insert (Primary

Note: Restricted to modern prostheses

Note: Restricted to modern prostheses

Diagnosis OA)

Table KT21

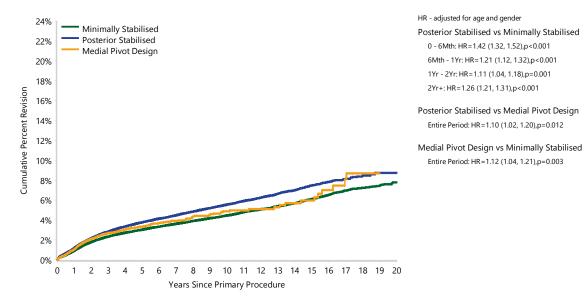
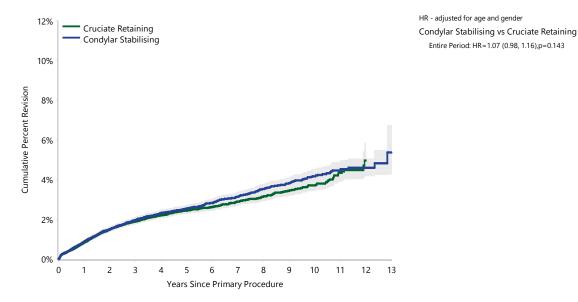

Stability	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Minimally Stabilised	14876	456782	0.9 (0.9, 0.9)	2.3 (2.3, 2.4)	3.0 (3.0, 3.1)	4.5 (4.4, 4.5)	6.1 (6.0, 6.3)	7.8 (7.4, 8.2)
Posterior Stabilised	7031	164195	1.2 (1.1, 1.2)	2.8 (2.8, 2.9)	3.8 (3.7, 3.9)	5.6 (5.4, 5.7)	7.5 (7.2, 7.7)	8.8 (8.2, 9.4)
Medial Pivot Design	689	28268	1.0 (0.9, 1.2)	2.7 (2.5, 2.9)	3.3 (3.1, 3.6)	4.9 (4.3, 5.5)	6.0 (5.0, 7.2)	
Fully Stabilised	153	2664	2.7 (2.1, 3.4)	5.0 (4.2, 6.0)	6.3 (5.4, 7.5)	9.0 (7.4, 10.9)		
Hinged	89	1240	3.3 (2.4, 4.5)	6.3 (4.9, 8.0)	8.6 (6.8, 10.8)	13.0 (10.1, 16.5)		
TOTAL	22838	653149						

Table KT22 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA, Excluding Advance/Advance)

Note: Excludes 157 procedures with unknown stability

Restricted to modern prostheses

Figure KT24 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA, Excluding Advance/Advance)



Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs 20 Yrs Minimally Stabilised 579 456782 411706 321752 243874 92437 23709 **Posterior Stabilised** 164195 152739 126194 97646 38451 6927 64 Medial Pivot Design 28268 22836 12980 5591 895 314 0

Table KT23	Cumulative Percent Revision of Triathlon/Triathlon Primary Total Knee Replacement with XLPE by Polyethylene
	Insert Shape (Primary Diagnosis OA)

Polyethylene Insert Shape	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Cruciate Retaining	1038	47784	0.8 (0.7, 0.9)	1.9 (1.8, 2.0)	2.4 (2.3, 2.6)	2.9 (2.7, 3.1)	3.7 (3.4, 4.0)	
Condylar Stabilising	1118	49983	0.9 (0.8, 1.0)	2.0 (1.8, 2.1)	2.5 (2.4, 2.7)	3.1 (2.9, 3.4)	4.2 (3.9, 4.5)	5.4 (4.3, 6.7)
TOTAL	2156	97767						

Figure KT25 Cumulative Percent Revision of Triathlon/Triathlon Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (Primary Diagnosis OA)

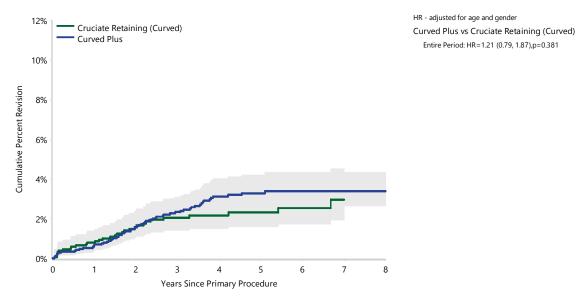
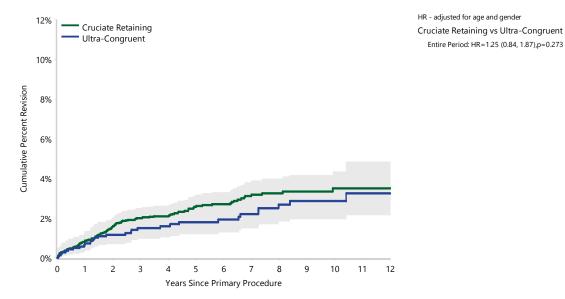

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Cruciate Retaining	47784	40776	28396	19639	12068	3213	30
Condylar Stabilising	49983	42629	28979	18326	10411	2942	105

Table KT24 Cumulative Percent Revision of PFC Sigma/PFC Sigma Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (Primary Diagnosis OA)


Polyethylene Insert Shape	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	8 Yrs
Cruciate Retaining (Curved)	31	1579	0.8 (0.5, 1.4)	1.6 (1.0, 2.4)	2.1 (1.4, 3.0)	2.3 (1.6, 3.3)	3.0 (1.9, 4.5)	
Curved Plus	64	2361	0.7 (0.4, 1.1)	1.6 (1.1, 2.2)	2.3 (1.8, 3.1)	3.3 (2.6, 4.2)	3.4 (2.6, 4.3)	3.4 (2.6, 4.3)
TOTAL	95	3940						

Note: Restricted to modern prostheses

Figure KT26 Cumulative Percent Revision of PFC Sigma/PFC Sigma Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	8 Yrs
Cruciate Retaining (Curved)	1579	1384	1102	897	514	133	4
Curved Plus	2361	2159	1938	1637	950	282	120

Polyethylene Insert Shape	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	11 Yrs	12 Yrs
Cruciate Retaining	107	4252	0.8 (0.6, 1.2)	2.0 (1.6, 2.5)	2.6 (2.1, 3.1)	3.2 (2.6, 3.9)	3.5 (2.8, 4.3)	3.5 (2.8, 4.3)
Ultra-Congruent	31	1395	0.7 (0.4, 1.3)	1.5 (1.0, 2.3)	1.8 (1.2, 2.7)	2.2 (1.5, 3.3)	3.2 (2.2, 4.8)	3.2 (2.2, 4.8)
TOTAL	138	5647						

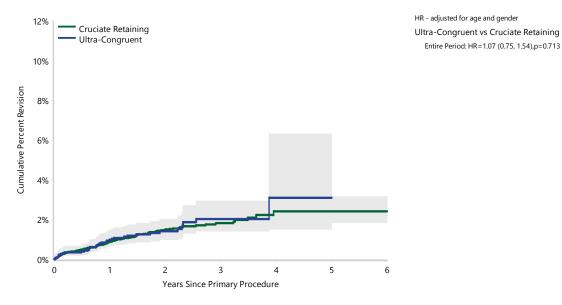

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	11 Yrs	12 Yrs
Cruciate Retaining	4252	3935	3212	2276	1448	322	110
Ultra-Congruent	1395	1361	1118	856	665	181	71

Table KT26 Cumulative Percent Revision of Persona Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (Primary Diagnosis OA)

Polyethylene Insert Shape	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Cruciate Retaining	167	16553	0.9 (0.7, 1.1)	1.5 (1.3, 1.8)	1.8 (1.5, 2.2)	2.4 (1.8, 3.2)	2.4 (1.8, 3.2)	2.4 (1.8, 3.2)
Ultra-Congruent	36	2653	1.0 (0.7, 1.5)	1.4 (1.0, 2.0)	2.0 (1.4, 2.9)	3.1 (1.5, 6.3)	3.1 (1.5, 6.3)	
TOTAL	203	19206						

Note: Restricted to modern prostheses

Figure KT28 Cumulative Percent Revision of Persona Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
Cruciate Retaining	16553	8888	4282	1592	513	260	102
Ultra-Congruent	2653	2016	1112	390	78	40	12

Table KT27 Primary Total Knee Replacement by Primary Diagnosis and Stability

Primary Diagnosis	Fully St	abilised	Hin	ged	TOTAL		
	N	Col%	N	Col%	N	Col%	
Osteoarthritis	2664	90.8	1240	55.5	3904	75.5	
Tumour	8	0.3	593	26.5	601	11.6	
Fracture	47	1.6	225	10.1	272	5.3	
Rheumatoid Arthritis	134	4.6	67	3.0	201	3.9	
Osteonecrosis	34	1.2	30	1.3	64	1.2	
Other Inflammatory Arthritis	27	0.9	27	1.2	54	1.0	
Other	20	0.7	52	2.3	72	1.4	
TOTAL	2934	100.0	2234	100.0	5168	100.0	

Note: Restricted to modern prostheses

Table KT28 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (All Diagnoses)

Stability	N Revised	N Total	1 Yr	3 Yrs	6 Yrs	9 Yrs	12 Yrs	14 Yrs
Fully Stabilised	167	2934	2.8 (2.2, 3.5)	5.0 (4.2, 5.9)	6.5 (5.6, 7.7)	8.6 (7.1, 10.3)	9.9 (7.9, 12.4)	11.8 (8.9, 15.6)
Hinged	230	2234	4.2 (3.4, 5.2)	8.7 (7.4, 10.1)	14.0 (12.1, 16.1)	19.2 (16.5, 22.3)	25.1 (20.9, 30.0)	
TOTAL	397	5168						

Note: Restricted to modern prostheses

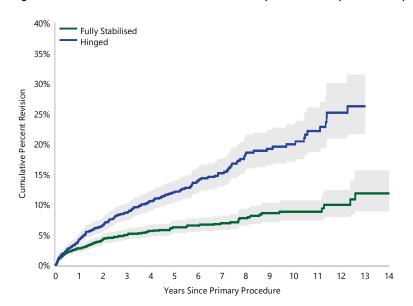
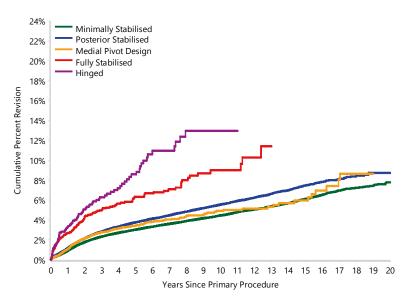



Figure KT29 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (All Diagnoses)

HR - adjusted for age and gender Hinged vs Fully Stabilised Entire Period: HR=1.63 (1.32, 2.02),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	6 Yrs	9 Yrs	12 Yrs	14 Yrs
Fully Stabilised	2934	2505	1764	867	366	116	44
Hinged	2234	1727	1047	476	235	76	38

Figure KT30 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)

HR - adjusted for age and gender Posterior Stabilised vs Minimally Stabilised 0 - 6Mth: HR=1.41 (1.31, 1.52),p<0.001 6Mth - 9Mth: HR=1.09 (0.96, 1.22),p=0.173 9Mth - 1Yr: HR=1.34 (1.20, 1.50),p<0.001 1Yr - 2Yr: HR=1.11 (1.04, 1.18),p=0.001 2Yr+: HR=1.26 (1.21, 1.31),p<0.001

Medial Pivot Design vs Minimally Stabilised Entire Period: HR=1.15 (1.07, 1.24),p<0.001

Fully Stabilised vs Minimally Stabilised 0 - 6Mth: HR=4.49 (3.42, 5.89),p<0.001 6Mth - 1.5Yr: HR=1.41 (0.99, 2.02),p=0.060 1.5Yr+: HR=1.87 (1.48, 2.37),p<0.001

Hinged vs Minimally Stabilised Entire Period: HR=3.12 (2.54, 3.85),p<0.001

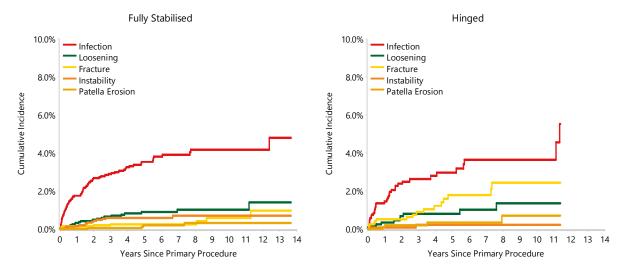

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Minimally Stabilised	456782	411706	321752	243874	92437	23709	579
Posterior Stabilised	164228	152769	126222	97672	38475	6948	64
Medial Pivot Design	29189	23712	13697	6123	1040	319	0
Fully Stabilised	2664	2287	1607	1010	244	21	1
Hinged	1240	983	593	347	79	8	0

Table KT29 Revision Diagnosis of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)

		Fully Stabilised			Hinged	
Revision Diagnosis	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions
Infection	87	3.3	56.9	35	2.8	39.3
Loosening	21	0.8	13.7	10	0.8	11.2
Fracture	9	0.3	5.9	16	1.3	18.0
Instability	14	0.5	9.2	2	0.2	2.2
Bearing Dislocation	4	0.2	2.6	3	0.2	3.4
Patella Erosion	4	0.2	2.6	4	0.3	4.5
Other	14	0.5	9.2	19	1.5	21.3
N Revision	153	5.7	100.0	89	7.2	100.0
N Primary	2664			1240		

Note: Restricted to modern prostheses

Figure KT31 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)

Patellar Resurfacing

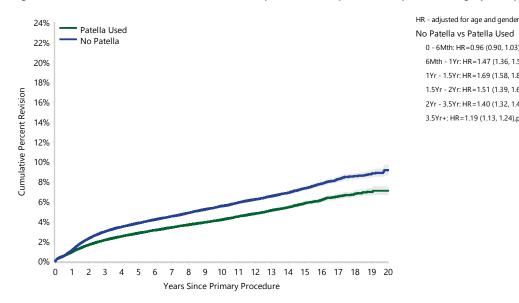
Primary total knee replacement procedures with patellar resurfacing have a lower rate of revision compared to procedures without patellar resurfacing. This is both overall and for each of the three common stability types (Table KT30 and Figure KT32).

When resurfacing the patella, the rate of revision is lower for minimally stabilised compared to posterior stabilised prostheses. Posterior stabilised without patellar resurfacing has the highest rate of revision (Table KT31 and Figure KT33).

When the patella is resurfaced, there is no difference in the rate of revision for medial pivot design prostheses compared to minimally stabilised prostheses. When the patella is not resurfaced, medial pivot design prostheses have a higher rate of revision than minimally stabilised knee prostheses (Figure KT34).

Outcomes related to the use of patellar resurfacing vary depending on the type of prosthesis used.

> 0 - 6Mth: HR=0.96 (0.90, 1.03),p=0.248 6Mth - 1Yr: HR=1.47 (1.36, 1.58),p<0.001


> 1Yr - 1.5Yr; HR=1.69 (1.58, 1.82),p<0.001

1.5Yr - 2Yr: HR = 1.51 (1.39, 1.65),p<0.001

2Yr - 3.5Yr: HR=1.40 (1.32, 1.49),p<0.001 3.5Yr+: HR=1.19 (1.13, 1.24),p<0.001

Patella Usage	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Patella Used	10913	386174	0.9 (0.9, 0.9)	2.1 (2.1, 2.2)	2.8 (2.8, 2.9)	4.2 (4.1, 4.3)	5.8 (5.7, 6.0)	7.1 (6.7, 7.5)
No Patella	11986	268086	1.1 (1.1, 1.1)	3.0 (2.9, 3.1)	3.8 (3.8, 3.9)	5.5 (5.4, 5.6)	7.3 (7.1, 7.5)	9.2 (8.6, 9.7)
TOTAL	22899	654260						

Note: Restricted to modern prostheses

Figure KT32 Cumulative Percent Revision of Primary Total Knee Replacement by Patella Usage (Primary Diagnosis OA)

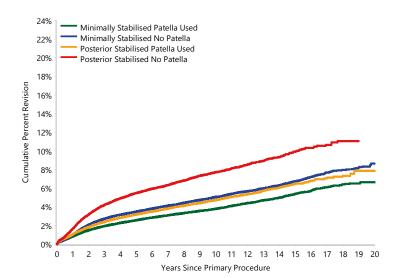
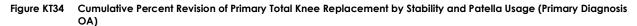

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Patella Used	386174	341166	254783	182151	61829	13369	208
No Patella	268086	250443	209220	166993	70507	17654	437

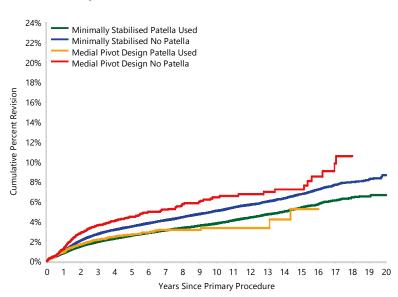
Table KT31 Cumulative Percent Revision of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)

Stability	Patella Usage	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Minimally Stabilised	Patella Used	6057	239359	0.8 (0.8, 0.9)	1.9 (1.9, 2.0)	2.6 (2.5, 2.6)	3.8 (3.7, 3.9)	5.4 (5.2, 5.6)	6.6 (6.2, 7.1)
	No Patella	8856	217586	1.0 (0.9, 1.0)	2.7 (2.7, 2.8)	3.5 (3.4, 3.6)	5.1 (4.9, 5.2)	6.8 (6.6, 6.9)	8.6 (8.1, 9.2)
Posterior Stabilised	Patella Used	4371	125899	1.0 (1.0, 1.1)	2.4 (2.3, 2.5)	3.2 (3.1, 3.3)	4.7 (4.6, 4.9)	6.5 (6.2, 6.8)	7.9 (7.0, 8.8)
	No Patella	2661	38329	1.6 (1.5, 1.8)	4.2 (4.0, 4.4)	5.5 (5.3, 5.7)	7.7 (7.4, 8.0)	9.9 (9.4, 10.4)	
Medial Pivot Design	Patella Used	328	18078	0.9 (0.8, 1.1)	2.2 (1.9, 2.4)	2.6 (2.3, 3.0)	3.3 (2.8, 4.0)	5.2 (3.1, 8.7)	
	No Patella	415	11111	1.3 (1.1, 1.5)	3.6 (3.2, 4.0)	4.4 (4.0, 4.9)	6.4 (5.6, 7.4)	7.2 (6.1, 8.5)	
TOTAL		22688	650362						

Note: Restricted to modern prostheses

Figure KT33 Cumulative Percent Revision of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)


HR - adjusted for age and gender Minimally Stabilised Patella Used vs Minimally Stabilised No Patella 0 - 3Mth: HR=1.09 (0.99, 1.20),p=0.077 3Mth - 6Mth: HR=0.91 (0.80, 1.04),p=0.163 6Mth - 1.5Yr: HR=0.64 (0.60, 0.69),p<0.001 1.5Yr - 3.5Yr: HR=0.70 (0.66, 0.75),p<0.001 3.5Yr+: HR=0.84 (0.80, 0.89),p<0.001


Minimally Stabilised Patella Used vs Posterior Stabilised Patella Used Entire Period: HR=0.82 (0.78, 0.85),p<0.001

Minimally Stabilised No Patella vs Posterior Stabilised No Patella 0 - 1Yr. HR=0.61 (0.56, 0.66),p<0.001 1Yr - 2Yr. HR=0.68 (0.62, 0.75),p<0.001 2Yr - 3.5Yr. HR=0.62 (0.56, 0.68),p<0.001 3.5Yr - 5Yr. HR=0.58 (0.51, 0.66),p<0.001 5Yr+: HR=0.71 (0.66, 0.78),p<0.001

Posterior Stabilised Patella Used vs Posterior Stabilised No Patella Entire Period: HR=0.61 (0.58, 0.64),p<0.001

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Minimally Stabilised	Patella Used	239359	208783	152585	108767	36985	8924	163
	No Patella	217586	203069	169265	135179	55461	14785	416
Posterior Stabilised	Patella Used	125899	115979	93348	69563	24339	4359	44
	No Patella	38329	36790	32874	28109	14136	2589	20

HR - adjusted for age and gender Minimally Stabilised Patella Used vs Minimally Stabilised No Patella 0 - 3Mth: HR=1.13 (1.02, 1.25),p=0.020 3Mth - 6Mth: HR=0.90 (0.78, 1.04),p=0.163 6Mth - 1.5Yr: HR=0.63 (0.59, 0.67),p<0.001 1.5Yr - 3.5Yr: HR=0.69 (0.65, 0.73),p<0.001 3.5Yr+: HR=0.86 (0.81, 0.91),p<0.001

Minimally Stabilised Patella Used vs Medial Pivot Design Patella Used Entire Period: HR=0.95 (0.85, 1.07),p=0.403

Minimally Stabilised No Patella vs Medial Pivot Design No Patella Entire Period: HR=0.78 (0.71, 0.86),p<0.001

Medial Pivot Design Patella Used vs Medial Pivot Design No Patella Entire Period: HR=0.62 (0.54, 0.72),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Minimally Stabilised Patella Used	239359	208783	152585	108767	36985	8924	163
No Patella	217586	203069	169265	135179	55461	14785	416
Medial Pivot Design Patella Used	18078	14074	7360	2939	316	70	0
No Patella	11111	9638	6337	3184	724	249	0

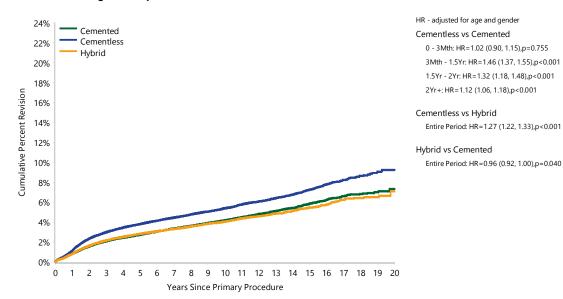
FIXATION

The effect of fixation varies depending on prosthesis stability.

For minimally stabilised prostheses, hybrid fixation has a lower rate of revision compared to when both components are cemented, and to when both components use cementless fixation. Cementless fixation has a higher rate of revision compared to cemented fixation after 3 months (Table KT32 and Figure KT35).

When a posterior stabilised knee is used, cemented fixation has a lower rate of revision compared to both hybrid and cementless fixation for the first 1.5 years. After 1.5 years, cementless fixation has a lower rate of revision than cemented fixation. Cementless fixation has a lower rate of revision than hybrid fixation (Table KT33 and Figure KT36).

Cementing the tibial component gives the best outcome for minimally stabilised knee replacement.

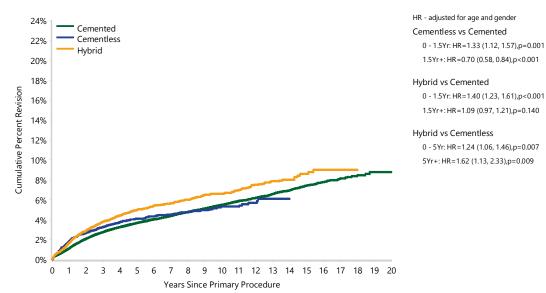

When a medial pivot design prosthesis is used, cemented fixation has a lower rate of revision compared to cementless fixation. However, there is no difference when hybrid fixation is compared to cemented fixation (Table KT34 and Figure KT37).

	-							
Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	6160	219514	0.8 (0.8, 0.9)	2.1 (2.0, 2.2)	2.7 (2.7, 2.8)	4.2 (4.1, 4.3)	5.9 (5.6, 6.1)	7.3 (6.7, 8.0)
Cementless	4619	103736	1.1 (1.1, 1.2)	3.0 (2.9, 3.1)	3.8 (3.7, 3.9)	5.4 (5.2, 5.6)	7.3 (7.0, 7.5)	9.2 (8.6, 9.9)
Hybrid	4051	133426	0.8 (0.8, 0.9)	2.2 (2.1, 2.2)	2.8 (2.7, 2.9)	4.1 (3.9, 4.2)	5.5 (5.2, 5.7)	7.1 (6.2, 8.1)
TOTAL	14830	456676						

Table KT32 Cumulative Percent Revision of Minimally Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)

Note: Excluding cementless Genesis Oxinium femoral prostheses Restricted to modern prostheses

Figure KT35 Cumulative Percent Revision of Minimally Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)

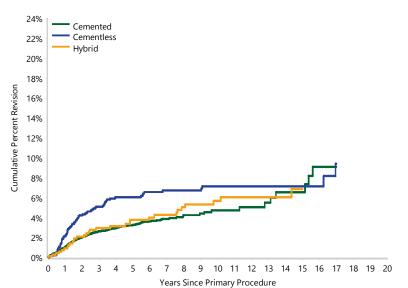


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	219514	194977	144517	102444	36194	8639	239
Cementless	103736	93899	79423	66802	29659	8477	192
Hybrid	133426	122738	97751	74568	26537	6559	148

	Diagnosis							
Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	6194	148297	1.1 (1.1, 1.2)	2.8 (2.7, 2.8)	3.7 (3.6, 3.8)	5.5 (5.3, 5.6)	7.4 (7.1, 7.7)	8.8 (8.1, 9.4)
Cementless	259	5983	1.8 (1.5, 2.2)	3.3 (2.8, 3.8)	4.1 (3.6, 4.7)	5.3 (4.7, 6.0)		
Hybrid	579	9948	1.7 (1.4, 1.9)	3.8 (3.4, 4.2)	5.0 (4.5, 5.4)	6.6 (6.0, 7.2)	8.6 (7.7, 9.6)	
TOTAL	7032	164228						

 Table KT33
 Cumulative Percent Revision of Posterior Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)

Figure KT36 Cumulative Percent Revision of Posterior Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)


Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs 20 Yrs 6432 Cemented 148297 137676 113260 87101 33892 62 Cementless 5983 5564 4686 3829 1478 27 0 6742 2 Hybrid 9948 9529 8276 3105 489

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	636	27302	1.0 (0.9, 1.2)	2.6 (2.4, 2.9)	3.3 (3.0, 3.5)	4.7 (4.0, 5.6)	6.6 (4.9, 8.8)	
Cementless	76	1189	2.1 (1.5, 3.2)	5.1 (4.0, 6.5)	6.0 (4.8, 7.6)	7.1 (5.7, 8.9)	7.1 (5.7, 8.9)	
Hybrid	31	698	0.9 (0.4, 2.0)	3.0 (1.9, 4.7)	3.8 (2.5, 5.7)	5.7 (3.9, 8.2)	6.9 (4.6, 10.2)	
TOTAL	743	29189						

Table KT34 Cumulative Percent Revision of Medial Pivot Design Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)

Note: Restricted to modern prostheses

Figure KT37 Cumulative Percent Revision of Medial Pivot Design Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)

HR - adjusted for age and gender Cementless vs Cemented Entire Period: HR=1.62 (1.27, 2.08),p<0.001

Cementless vs Hybrid Entire Period: HR=1.33 (0.87, 2.02),p=0.182

Hybrid vs Cemented Entire Period: HR=1.22 (0.84, 1.77),p=0.287

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Cemented	27302	21966	12236	4927	448	123	0
Cementless	1189	1131	954	750	338	113	0
Hybrid	698	615	507	446	254	83	0

BEARING SURFACE

Tibial Bearing Surface

There are two main polyethylene types used in primary total knee replacement procedures: cross-linked polyethylene (XLPE) and non cross-linked polyethylene (non XLPE). XLPE has been classified as ultrahigh molecular weight polyethylene that has been irradiated by high dose (≥50kGy) gamma or electron beam radiation. XLPE includes a sub-group which has antioxidant added.

There are 294,169 primary total knee procedures that have used XLPE. After 3 months, the XLPE group has a lower rate of revision compared to the non XLPE group (Table KT35 and Figure KT38). The major reason for this difference is a reduced cumulative incidence for loosening (Figure KT39).

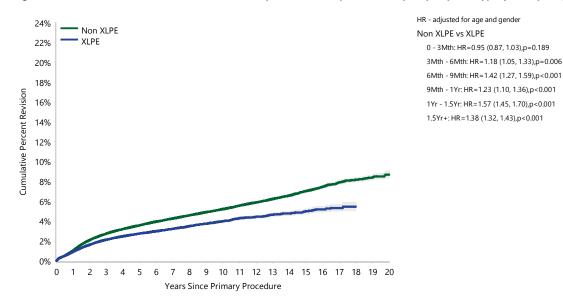
The difference between XLPE and non XLPE is more evident in younger patients. The 15 year cumulative percent revision rate for patients aged <65 years for XLPE is 7.1% and for non XLPE is 10.3%. For patients aged \geq 65 years, the 15 year cumulative percent revision for XLPE is 3.8% and for non XLPE is 5.1% (Table KT36 and Figure KT40).

There are prosthesis specific differences when XLPE is used.

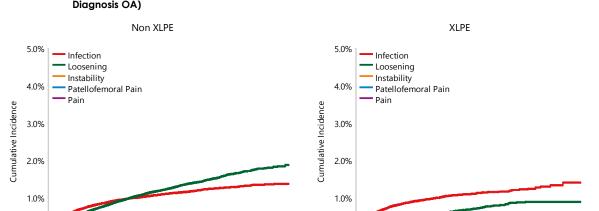
When considering the XLPE sub-types there is no difference when XLPE is compared to XLPE with antioxidant. There are only 13 prostheses using XLPE with antioxidant (Table KT37, Figure KT41 and Figure KT42).

Femoral Bearing Surface

In addition to the regularly used cobalt chrome metal, there are different materials used for the femoral bearing surface. These are often referred to as 'alternate surface' or 'ceramic surface components'. These can be made of a ceramacised metal or have a zirconia or titanium nitride coating. They are suggested for use in patients who have a metal allergy.


There are 61,659 procedures with an alternate surface femoral component. Procedures using an alternate surface femoral component have a higher rate of revision after 9 months, compared to when these are not used (Table KT38 and Figure KT43). There are more revisions for loosening and for patella causes where an alternate surface femoral component are used (Figure KT44).

There is variation in the revision rate depending on the type of material used in the alternate surface. Zirconia based alternate surface femoral components have a lower rate of revision compared to those with a titanium nitrate surface or those made of ceramicised metal. Ceramicised metal components have a lower rate of revision compared to those with a titanium nitrate coating (Table KT39 and Figure KT45).


Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Non XLPE	15856	359758	1.0 (1.0, 1.1)	2.8 (2.7, 2.8)	3.6 (3.5, 3.7)	5.2 (5.1, 5.3)	7.0 (6.9, 7.2)	8.7 (8.3, 9.1)
XLPE	7036	294169	0.9 (0.9, 1.0)	2.1 (2.1, 2.2)	2.8 (2.7, 2.8)	4.0 (3.9, 4.1)	5.0 (4.8, 5.3)	
TOTAL	22892	653927						

Note: Includes 51,330 procedures using XLPE with antioxidant Excludes 333 procedures with unknown polyethylene Restricted to modern prostheses

Figure KT38 Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Non XLPE	359758	338410	288646	236833	109474	28071	644
XLPE	294169	252939	175224	112193	22801	2934	0

0.0%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Years Since Primary Procedure

Note: Restricted to modern prostheses

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Years Since Primary Procedure

0.0%

0 2 3 4

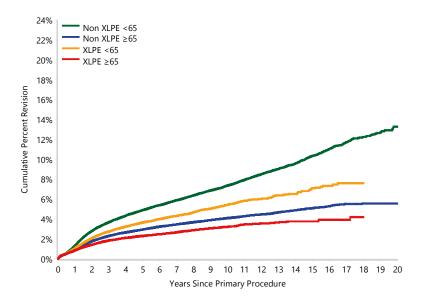

1

Table KT36 Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA)

Polyethylene Type	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Non XLPE		15856	359758	1.0 (1.0, 1.1)	2.8 (2.7, 2.8)	3.6 (3.5, 3.7)	5.2 (5.1, 5.3)	7.0 (6.9, 7.2)	8.7 (8.3, 9.1)
	<65	7774	119103	1.3 (1.2, 1.4)	3.7 (3.6, 3.8)	4.9 (4.8, 5.0)	7.4 (7.2, 7.5)	10.3 (10.1, 10.6)	13.3 (12.6, 14.0)
	≥65	8082	240655	0.9 (0.9, 1.0)	2.3 (2.2, 2.4)	2.9 (2.9, 3.0)	4.1 (4.0, 4.2)	5.1 (4.9, 5.2)	5.6 (5.4, 5.8)
XLPE		7036	294169	0.9 (0.9, 1.0)	2.1 (2.1, 2.2)	2.8 (2.7, 2.8)	4.0 (3.9, 4.1)	5.0 (4.8, 5.3)	
	<65	3190	99231	1.1 (1.0, 1.1)	2.7 (2.6, 2.8)	3.6 (3.5, 3.8)	5.4 (5.2, 5.6)	7.1 (6.6, 7.6)	
	≥65	3846	194938	0.8 (0.8, 0.9)	1.8 (1.8, 1.9)	2.3 (2.2, 2.4)	3.2 (3.1, 3.3)	3.8 (3.5, 4.0)	
TOTAL		22892	653927						

Note: Restricted to modern prostheses

Figure KT40 Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA)

HR - adjusted for gender

Non XLPE <65 vs Non XLPE ≥65 0 - 3Mth: HR=1.00 (0.89, 1.12),p=0.958 3Mth - 9Mth: HR=1.53 (1.39, 1.68),p<0.001 9Mth - 3.5Yr: HR=1.74 (1.67, 1.82),p<0.001 3.5Yr - 6Yr: HR=2.01 (1.86, 2.16),p<0.001 6Yr - 8.5Yr: HR=2.19 (2.00, 2.40),p<0.001 8.5Yr - 10Yr: HR=2.37 (2.05, 2.73),p<0.001 10Yr - 11.5Yr: HR=2.79 (2.36, 3.29),p<0.001 11.5Yr: HR=3.42 (2.99, 3.92),p<0.001

Non XLPE <65 vs XLPE <65

0 - 3Mth: HR=0.90 (0.80, 1.02),p=0.094 3Mth - 6Mth: HR=1.26 (1.09, 1.46),p=0.002 6Mth - 1Yr: HR=1.45 (1.32, 1.60),p<0.001 1Yr - 1.5Yr: HR=1.61 (1.47, 1.76),p<0.001 1.5Yr - 2Yr: HR=1.36 (1.23, 1.51),p<0.001 2Yr - 2.5Yr: HR=1.21 (1.08, 1.36),p=0.001 2.5Yr - 3.5Yr: HR=1.28 (1.15, 1.42),p<0.001 3.5Yr+: HR=1.54 (1.44, 1.65),p<0.001

Non XLPE ≥65 vs XLPE ≥65

0 - 6Mth: HR=0.96 (0.89, 1.04),p=0.376 6Mth - 9Mth: HR=1.45 (1.26, 1.66),p<0.001 9Mth - 1Yr: HR=1.25 (1.10, 1.41),p<0.001 1Yr - 2Yr: HR=1.47 (1.37, 1.59),p<0.001 2Yr+: HR=1.31 (1.24, 1.39),p<0.001

XLPE <65 vs XLPE ≥65

0 - 3Mth: HR=1.02 (0.92, 1.14),p=0.652 3Mth - 6Mth: HR=1.27 (1.10, 1.48),p=0.001 6Mth - 1.5Yr: HR=1.59 (1.46, 1.72),p<0.001 1.5Yr+: HR=1.83 (1.71, 1.95),p<0.001

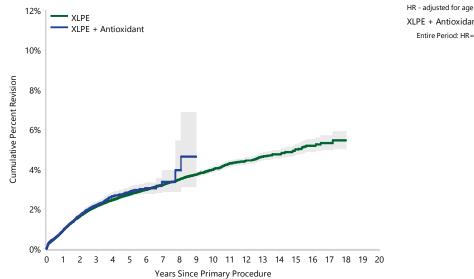
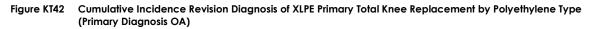
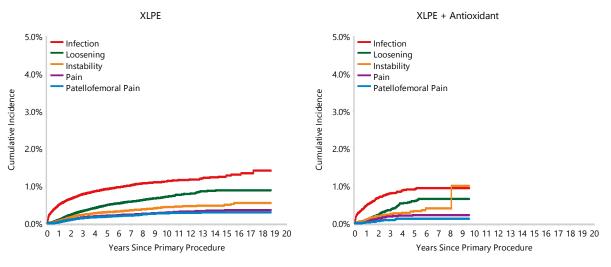

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Non XLPE	<65	119103	112100	96661	80961	40983	12071	319
	≥65	240655	226310	191985	155872	68491	16000	325
XLPE	<65	99231	85488	60292	39502	8735	1280	0
	≥65	194938	167451	114932	72691	14066	1654	0

Table K137 Cumulative Percent Revision of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)

Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
XLPE	6192	242839	0.9 (0.9, 1.0)	2.1 (2.1, 2.2)	2.7 (2.7, 2.8)	4.0 (3.9, 4.1)	5.0 (4.7, 5.3)	
XLPE + Antioxidant	844	51330	0.9 (0.8, 1.0)	2.2 (2.0, 2.4)	2.8 (2.6, 3.1)			
TOTAL	7036	294169						


Note: Restricted to modern prostheses



HR - adjusted for age and gender XLPE + Antioxidant vs XLPE Entire Period: HR=1.03 (0.96, 1.11),p=0.414

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
XLPE	242839	216144	159138	106888	22778	2934	0
XLPE + Antioxidant	51330	36795	16086	5305	23	0	0

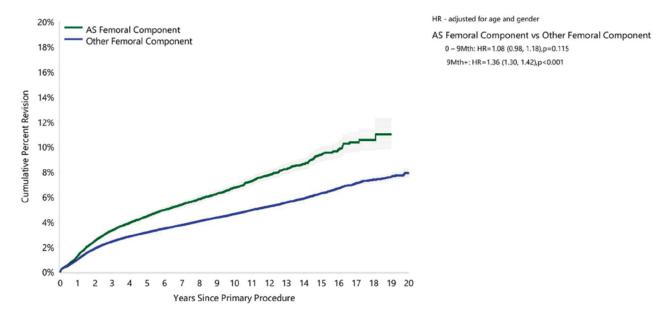
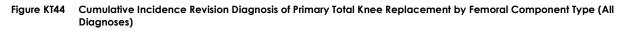
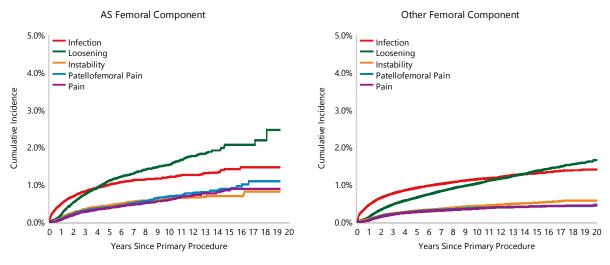

Note: Restricted to modern prostheses

Table KT38 Cumulative Percent Revision of Primary Total Knee Replacement by Femoral Bearing Surface (Primary Diagnosis OA)


Femoral Bearing Surface	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
AS Femoral Component	2856	61659	1.2 (1.1, 1.3)	3.3 (3.2, 3.5)	4.4 (4.3, 4.6)	6.7 (6.4, 7.0)	9.4 (8.8, 9.9)	
Other Femoral Component	20043	592601	1.0 (0.9, 1.0)	2.4 (2.4, 2.5)	3.1 (3.1, 3.2)	4.6 (4.5, 4.7)	6.3 (6.1, 6.4)	7.9 (7.5, 8.3)
TOTAL	22899	654260						


Note: Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
AS Femoral Component	61659	55283	42448	31257	10150	2006	1
Other Femoral Component	592601	536326	421555	317887	122186	29017	644

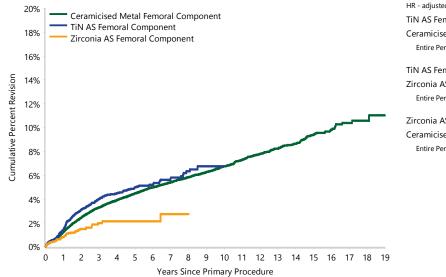

Note: Restricted to modern prostheses

Table KT39 Cumulative Percent Revision of AS Primary Total Knee Replacement by AS Femoral Material (Primary Diagnosis OA)

AS Femoral Material	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Ceramicised Metal Femoral Component	2581	52878	1.2 (1.1, 1.3)	3.3 (3.1, 3.5)	4.5 (4.3, 4.7)	6.8 (6.5, 7.0)	9.4 (8.9, 10.0)	
TiN AS Femoral Component	228	5172	1.4 (1.1, 1.8)	4.0 (3.5, 4.6)	5.0 (4.4, 5.7)	6.7 (5.7, 7.9)		
Zirconia AS Femoral Component	47	3609	0.8 (0.5, 1.2)	2.0 (1.4, 2.7)	2.1 (1.5, 2.9)			
TOTAL	2856	61659						

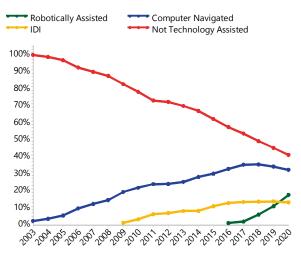
Note: Restricted to modern prostheses

Figure KT45 Cumulative Percent Revision of AS Primary Total Knee Replacement by AS Femoral Material (Primary Diagnosis OA)

HR - adjusted for age and gender TiN AS Femoral Component vs Ceramicised Metal Femoral Component Entire Period: HR=1.21 (1.06, 1.39),p=0.005

TiN AS Femoral Component vs Zirconia AS Femoral Component Entire Period: HR=2.01 (1.47, 2.76),p<0.001

Zirconia AS Femoral Component vs Ceramicised Metal Femoral Component Entire Period: HR=0.60 (0.45, 0.81),p<0.001


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Ceramicised Metal Femoral Component	52878	48203	38244	28727	10071	2006	1
TiN AS Femoral Component	5172	4635	3354	2253	68	0	0
Zirconia AS Femoral Component	3609	2445	850	277	11	0	0

TECHNOLOGY ASSISTANCE

Computer navigation, image derived instrumentation (IDI) and robotic assistance to aid implantation of knee replacements have been grouped as 'technology assisted' methods. Procedures not using these methods have decreased to 40% of primary knee procedures in 2020. The increase in use of individual technology assisted methods is shown in Figure KT46.

Results of each category of technology assistance are shown, but outcomes related to technology assistance vary with the prostheses used.

Figure KT46 Primary Total Knee Replacement by Technology Assistance (Primary Diagnosis OA)

Computer Navigation

There have been 160,724 primary total knee replacement procedures using computer navigation. In 2020, computer navigation was used in 31.3% of all primary total knee replacement procedures.

After 6 months, procedures using computer navigation have a lower rate of revision compared to non navigated procedures (Table KT40, Figure KT47 and Figure KT48).

Patients aged <65 years have a lower rate of revision when computer navigation is used compared to when it is not used. This effect is less consistent for patients aged ≥65 years (Table KT41 and Figure KT49).

Image Derived Instrumentation (IDI)

IDI is the use of custom-made pin guides or cutting blocks derived from CT or MRI images by 3D printing them specifically for each patient.

There have been 49,779 primary total knee replacement procedures undertaken using IDI since 2009. In 2020, IDI was used in 12.1% of all primary total knee replacement procedures.

IDI usage has a higher rate of revision compared to when IDI is not used (Table KT42 and Figure KT50). There is an increased proportion of revision for loosening when IDI is used (Figure KT51).

The effect of IDI on revision varies with age. In patients aged ≥ 65 years where IDI is used, there is a higher rate of revision after 3 months compared to when it is not used. There is no difference with IDI use for patients aged <65 years (Table KT43 and Figure KT52).

Robotic Assistance

Robotic assistance has been recorded for 17,353 total knee replacements since 2017, and in 2020 was used for 16.6% of procedures. There are 4 types of robotic assistance that are used with a small number of prostheses. The use of robotic assistance is associated with a lower rate of revision compared to when it is not used (Table KT44 and Figure KT53). There are fewer revisions for loosening and instability using robotic assistance (Figure KT54).

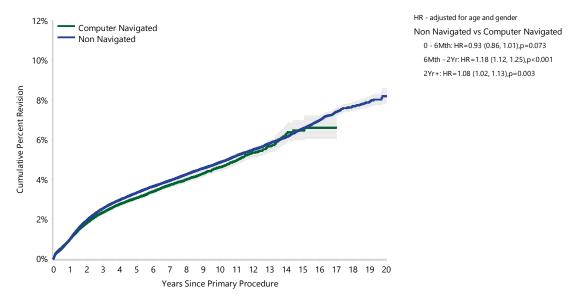
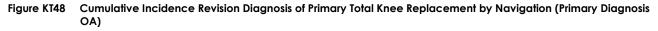
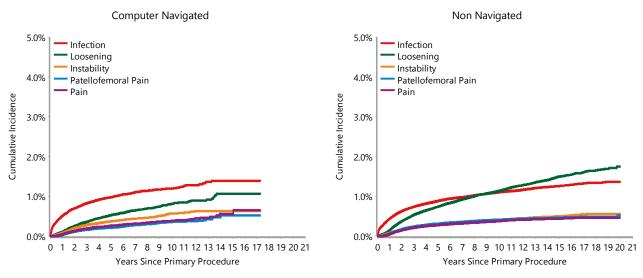

For patients aged ≥65 years, the use of robotic assistance leads to a lower rate of revision compared to when it is not used, but there is no difference for patients aged <65 years (Table KT45 and Figure KT55).

Table KT40	Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation (Primary Diagnosis
	OA)


Navigation	N N Revised Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Computer Navigated	4551 160724	1.0 (0.9, 1.0)	2.3 (2.3, 2.4)	3.1 (3.0, 3.2)	4.6 (4.4, 4.8)	6.5 (6.0, 7.0)	
Non Navigated	18348 493536	1.0 (1.0, 1.0)	2.5 (2.5, 2.6)	3.3 (3.3, 3.4)	4.8 (4.8, 4.9)	6.6 (6.4, 6.7)	8.2 (7.8, 8.6)
TOTAL	22899 654260						


Note: Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Computer Navigated	160724	141982	101442	66083	14993	664	0
Non Navigated	493536	449627	362561	283061	117343	30359	645

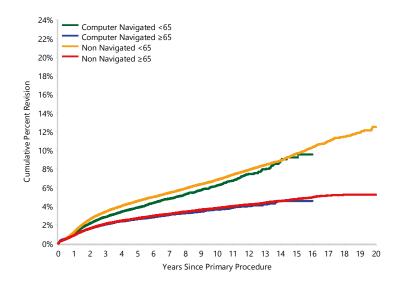

Note: Restricted to modern prostheses

Table KT41 Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation and Age (Primary Diagnosis OA)

Navigation	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Computer Navigated		4551	160724	1.0 (0.9, 1.0)	2.3 (2.3, 2.4)	3.1 (3.0, 3.2)	4.6 (4.4, 4.8)	6.5 (6.0, 7.0)	
	<65	2114	56234	1.1 (1.0, 1.2)	2.9 (2.7, 3.0)	3.8 (3.7, 4.0)	6.2 (5.9, 6.6)	9.2 (8.3, 10.2)	
	≥65	2437	104490	0.9 (0.8, 1.0)	2.1 (2.0, 2.2)	2.6 (2.5, 2.7)	3.6 (3.5, 3.8)	4.6 (4.1, 5.0)	
Non Navigated		18348	493536	1.0 (1.0, 1.0)	2.5 (2.5, 2.6)	3.3 (3.3, 3.4)	4.8 (4.8, 4.9)	6.6 (6.4, 6.7)	8.2 (7.8, 8.6)
	<65	8855	162237	1.2 (1.2, 1.3)	3.4 (3.3, 3.5)	4.6 (4.4, 4.7)	6.8 (6.7, 7.0)	9.7 (9.4, 9.9)	12.5 (11.8, 13.2)
	≥65	9493	331299	0.9 (0.8, 0.9)	2.1 (2.1, 2.2)	2.7 (2.6, 2.8)	3.8 (3.7, 3.9)	4.8 (4.6, 4.9)	5.2 (5.0, 5.4)
TOTAL		22899	654260						

Note: Restricted to modern prostheses

Figure KT49 Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation and Age (Primary Diagnosis OA)

 $\begin{aligned} &\mathsf{HR} \ \text{-} \ \text{adjusted for gender} \\ &\mathsf{Computer Navigated <65 vs Computer Navigated ≥65} \\ &\mathsf{0} \ \text{-} \ 6 \text{Mth: } \text{HR} \ \text{-} \ 0.95 \ (0.83, 1.09), p \ \text{=} \ 0.494 \\ &\mathsf{6 Mth} \ \text{-} \ 2.5 \text{Yr} \ \text{-} \ \text{HR} \ \text{=} \ 1.55 \ (1.43, 1.68), p \ \text{<} \ 0.001 \\ & 2.5 \text{Yr} \ \text{-} \ 3.5 \text{Yr} \ \text{HR} \ \text{=} \ 1.57 \ (1.36, 1.82), p \ \text{<} \ 0.001 \\ & 3.5 \text{Yr} \ \text{-} \ 5 \text{Yr} \ \text{HR} \ \text{=} \ 1.84 \ (1.58, 2.13), p \ \text{<} \ 0.001 \\ & 5 \text{Yr} \ \text{-} \ 7.5 \text{Yr} \ \text{HR} \ \text{=} \ 2.19 \ (1.90, 2.53), p \ \text{<} \ 0.001 \\ & 5 \text{Yr} \ \text{-} \ 8 \text{Yr} \ \text{HR} \ \text{=} \ 2.41 \ (1.66, \ 3.51), p \ \text{<} \ 0.001 \\ & 8 \text{Yr} \ \text{+} \ \text{HR} \ \text{=} \ 2.91 \ (2.45, \ 3.46), p \ \text{<} \ 0.001 \end{aligned}$

Computer Navigated <65 vs Non Navigated <65 Entire Period: HR=0.88 (0.84, 0.92),p<0.001

Computer Navigated \geq 65 vs Non Navigated \geq 65 0 - 6Mth: HR=1.17 (1.06, 1.29),p=0.001 6Mth+: HR=0.92 (0.88, 0.97),p=0.002

Non Navigated <65 vs Non Navigated ≥65 0 - 3Mth: HR=1.10 (1.01, 1.21),p=0.033 3Mth - 9Mth: HR=1.47 (1.36, 1.59),p<0.001 9Mth - 1.5Yr: HR=1.78 (1.67, 1.89),p<0.001 1.5Yr - 2Yr: HR=1.84 (1.68, 2.02),p<0.001 2Yr - 3Yr: HR=1.65 (1.53, 1.78),p<0.001 3Yr - 5.5Yr: HR=1.79 (1.57, 2.03),p<0.001 3.5Yr - 5Yr: HR=2.06 (1.89, 2.25),p<0.001 5Yr - 6Yr: HR=2.17 (1.96, 2.41),p<0.001 6Yr - 8Yr: HR=2.17 (1.96, 2.41),p<0.001 8.5Yr - 9Yr: HR=2.04 (1.60, 2.60),p<0.001 12.5Yr - 13Yr: HR=3.33 (2.64, 4.20),p<0.001 13Yr - 15Yr: HR=3.33 (2.64, 4.20),p<0.001 13Yr - 15Yr: HR=2.53 (1.46, 4.39),p<0.001 15Yr - 15.5Yr: HR=2.53 (1.46, 6.7),p<0.001

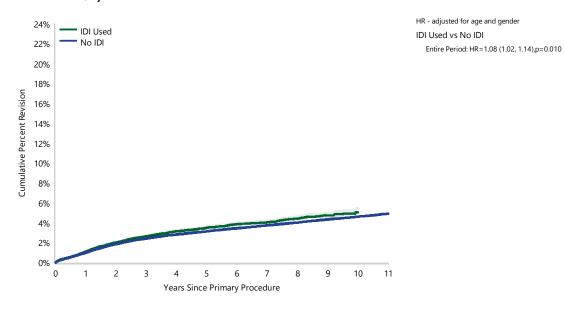
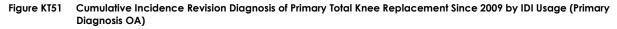
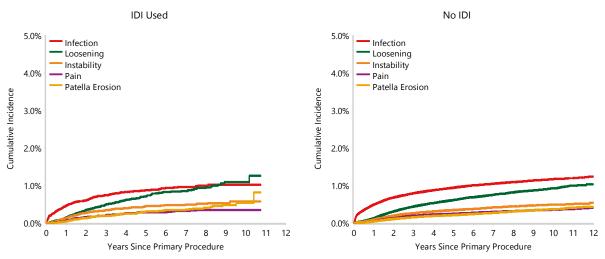

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	20 Yrs
Computer Navigated	<65	56234	49954	36351	24170	6096	309	0
	≥65	104490	92028	65091	41913	8897	355	0
Non Navigated	<65	162237	147740	120643	96330	43643	13050	320
	≥65	331299	301887	241918	186731	73700	17309	325

Table KT42 Cumulative Percent Revision of Primary Total Knee Replacement Since 2009 by IDI Usage (Primary Diagnosis OA)


IDI Usage	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	11 Yrs
IDI Used	1359	49779	1.1 (1.0, 1.2)	2.6 (2.5, 2.8)	3.5 (3.3, 3.7)	4.0 (3.8, 4.3)	5.1 (4.6, 5.6)	
No IDI	14316	484178	1.0 (1.0, 1.0)	2.4 (2.4, 2.5)	3.1 (3.1, 3.2)	3.7 (3.7, 3.8)	4.6 (4.5, 4.7)	4.9 (4.8, 5.0)
TOTAL	15675	533957						


Note: Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	11 Yrs
IDI Used	49779	42532	27357	14676	7016	646	21
No IDI	484178	431132	324014	227694	142266	44426	19444

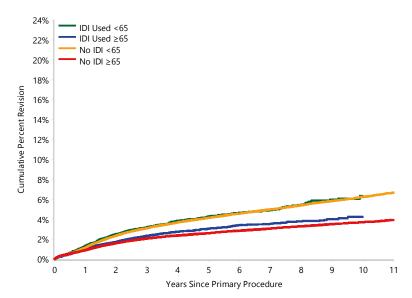

Note: Restricted to modern prostheses

Table KT43 Cumulative Percent Revision of Primary Total Knee Replacement Since 2009 by IDI Usage and Age (Primary Diagnosis OA)

IDI Usage	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	11 Yrs
IDI Used		1359	49779	1.1 (1.0, 1.2)	2.6 (2.5, 2.8)	3.5 (3.3, 3.7)	4.0 (3.8, 4.3)	5.1 (4.6, 5.6)	
	<65	609	17740	1.3 (1.2, 1.5)	3.2 (2.9, 3.5)	4.3 (3.9, 4.6)	4.9 (4.5, 5.4)	6.3 (5.5, 7.3)	
	≥65	750	32039	1.0 (0.9, 1.1)	2.3 (2.2, 2.5)	3.1 (2.8, 3.3)	3.5 (3.3, 3.8)	4.2 (3.7, 4.8)	
No IDI		14316	484178	1.0 (1.0, 1.0)	2.4 (2.4, 2.5)	3.1 (3.1, 3.2)	3.7 (3.7, 3.8)	4.6 (4.5, 4.7)	4.9 (4.8, 5.0)
	<65	6565	163520	1.2 (1.1, 1.2)	3.1 (3.0, 3.2)	4.1 (4.0, 4.2)	5.0 (4.9, 5.1)	6.2 (6.1, 6.4)	6.7 (6.5, 6.9)
	≥65	7751	320658	0.9 (0.9, 0.9)	2.1 (2.0, 2.1)	2.6 (2.5, 2.7)	3.1 (3.0, 3.1)	3.7 (3.6, 3.8)	3.9 (3.8, 4.0)
TOTAL		15675	533957						

Note: Restricted to modern prostheses

Figure KT52 Cumulative Percent Revision of Primary Total Knee Replacement Since 2009 by IDI Usage and Age (Primary Diagnosis OA)

 $\label{eq:HR} \begin{array}{l} \mbox{HR} - \mbox{adjusted for gender} \\ \mbox{IDI Used } < 65 \mbox{ vs IDI Used } \geq 65 \\ \mbox{Entire Period: HR} = 1.41 \ (1.27, 1.57), p < 0.001 \end{array}$

IDI Used <65 vs No IDI <65 Entire Period: HR=1.03 (0.95, 1.12),p=0.521

IDI Used ≥65 vs No IDI ≥65 0 - 3Mth: HR=0.74 (0.65, 0.83),p<0.001 3Mth - 1.5Yr: HR=1.26 (1.14, 1.39),p<0.001 1.5Yr+: HR=1.20 (1.09, 1.33),p<0.001

No IDI <65 vs No IDI ≥65

0 - 3Mth: HR=0.94 (0.85, 1.03),p=0.189 3Mth - 6Mth: HR=1.39 (1.22, 1.58),p<0.001 6Mth - 3Yr: HR=1.66 (1.59, 1.73),p<0.001 3Yr+: HR=1.92 (1.81, 2.03),p<0.001

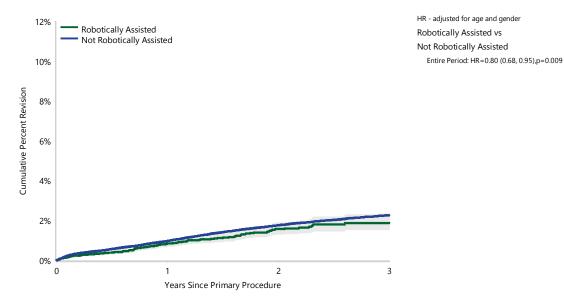
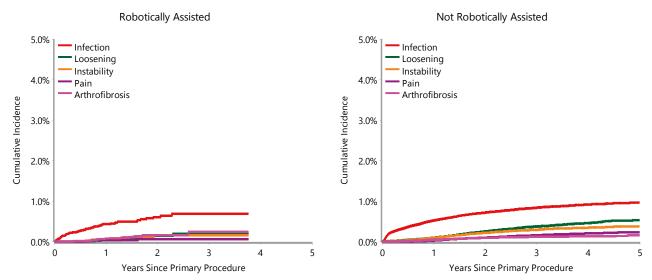

Number at R	isk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	11 Yrs
IDI Used	<65	17740	15210	10071	5728	2899	305	11
	≥65	32039	27322	17286	8948	4117	341	10
No IDI	<65	163520	145920	111623	80414	52344	17642	7871
	≥65	320658	285212	212391	147280	89922	26784	11573

Table KT44 Cumulative Percent Revision of Primary Total Knee Replacement Since 2017 by Robotic Assistance (Primary Diagnosis OA)


Robotic Assistance	N Revised	N Total	1 Yr	2 Yrs	3 Yrs
Robotically Assisted	150	17353	0.8 (0.7, 1.0)	1.6 (1.3, 1.9)	1.9 (1.5, 2.3)
Not Robotically Assisted	3261	199261	1.0 (0.9, 1.0)	1.8 (1.7, 1.8)	2.3 (2.2, 2.3)
TOTAL	3411	216614			

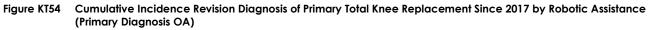

Note: Restricted to modern prostheses

Figure KT53 Cumulative Percent Revision of Primary Total Knee Replacement Since 2017 by Robotic Assistance (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs
Robotically Assisted	17353	8531	3037	408
Not Robotically Assisted	199261	152940	101581	50168

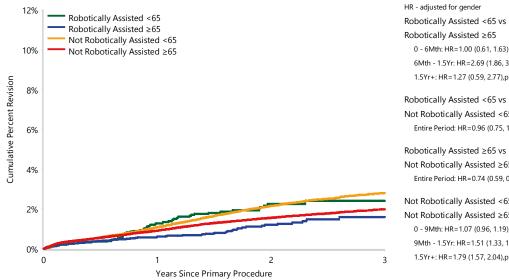

Note: Restricted to modern prostheses

Table KT45 Cumulative Percent Revision of Primary Total Knee Replacement Since 2017 by Robotic Assistance and Age (Primary Diagnosis OA)

Robotic Assistance	Age	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs
Robotically Assisted		150	17353	0.8 (0.7, 1.0)	1.6 (1.3, 1.9)	1.9 (1.5, 2.3)	
	<65	71	6106	1.3 (1.0, 1.7)	2.3 (1.7, 2.9)	2.4 (1.8, 3.1)	
	≥65	79	11247	0.6 (0.5, 0.8)	1.2 (0.9, 1.6)	1.6 (1.2, 2.2)	
Not Robotically Assisted	ł	3261	199261	1.0 (0.9, 1.0)	1.8 (1.7, 1.8)	2.3 (2.2, 2.3)	
	<65	1326	65932	1.1 (1.0, 1.2)	2.2 (2.0, 2.3)	2.8 (2.6, 3.0)	
	≥65	1935	133329	0.9 (0.9, 1.0)	1.6 (1.5, 1.6)	2.0 (1.9, 2.1)	
TOTAL		3411	216614				

Note: Restricted to modern prostheses

Figure KT55 Cumulative Percent Revision of Primary Total Knee Replacement Since 2017 by Robotic Assistance and Age (Primary Diagnosis OA)

Robotically Assisted ≥65 0 - 6Mth: HR=1.00 (0.61, 1.63),p=0.995 6Mth - 1.5Yr: HR=2.69 (1.86, 3.90),p<0.001 1.5Yr+: HR=1.27 (0.59, 2.77),p=0.541 Robotically Assisted <65 vs Not Robotically Assisted <65 Entire Period: HR=0.96 (0.75, 1.21),p=0.713 Robotically Assisted ≥65 vs Not Robotically Assisted ≥65 Entire Period: HR=0.74 (0.59, 0.92),p=0.007 Not Robotically Assisted <65 vs

Not Robotically Assisted ≥65 0 - 9Mth: HR=1.07 (0.96, 1.19),p=0.215 9Mth - 1.5Yr: HR = 1.51 (1.33, 1.71),p<0.001 1.5Yr+: HR=1.79 (1.57, 2.04),p<0.001

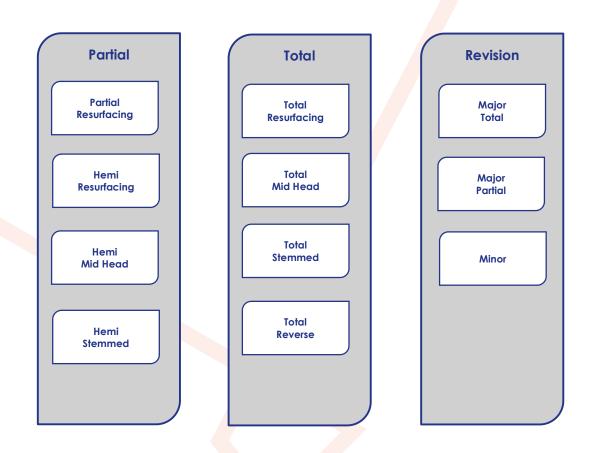
Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs
Robotically Assisted <65	6106	2902	1089	152	0
≥65	11247	5629	1948	256	0
Not Robotically Assisted <65	65932	50587	33980	16949	0
≥65	133329	102353	67601	33219	0

Shoulder Replacement

Shoulder Replacement

CATEGORIES OF SHOULDER REPLACEMENT

The Registry groups shoulder replacement into three broad categories: primary partial, primary total, and revision shoulder replacement.


A primary replacement is an initial procedure undertaken on a joint and involves replacing either part (partial) or all (total) of the articular surface.

Primary partial and primary total shoulder replacements are further categorised into subclasses depending on the type of prosthesis used. Partial shoulder subclasses include partial resurfacing, hemi resurfacing, hemi mid head and hemi stemmed replacement.

Total shoulder subclasses include total resurfacing, total mid head, total stemmed and total reverse shoulder replacement. Definitions for each of these classes are detailed in the subsequent sections. Revision shoulder replacements are reoperations of previous shoulder replacements where one or more of the prosthetic components are replaced, removed, or another component is added. Revisions include subsequent operations of primary partial, primary total, or previous revision procedures. Shoulder revision procedures are categorised into three subclasses: major total, major partial and minor shoulder replacement.

Detailed demographic information on shoulder replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2021

SHOULDER REPLACEMENT

USE OF SHOULDER REPLACEMENT

This report includes 67,614 shoulder replacements reported to the Registry with a procedure date up to and including 31 December 2020. This is an additional 7,827 shoulder procedures since the last report.

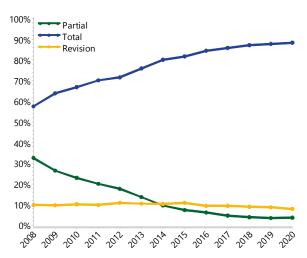
Registry shoulder data collection commenced in 2004 and full national collection was implemented by November 2007.

The number of shoulder replacement procedures undertaken in 2020 decreased by 137 (1.8%) compared to the previous year and has increased by 188.5% since 2008.

This is the first time the number of shoulder replacements has decreased, and this is due to the cancellation of elective surgery during COVID-19 restrictions.

The proportion of total shoulder replacements has increased from 57.6% in 2008 to 88.4% in 2020.

When considering all shoulder replacement procedures currently recorded by the Registry, primary total shoulder replacement is the most common, followed by primary partial and revision procedures (Table S1).


Table S1 Number of Shoulder Replacements

Shoulder Category	Number	Percent
Partial	7346	10.9
Total	53815	79.6
Revision	6453	9.5
TOTAL	67614	100.0

Since 2008, there has been a proportional increase in the use of total shoulder replacement, a major decline in the use of partial shoulder replacement and a small decrease in the proportion of revision procedures (Figure S1).

In 2020, the proportion of revision procedures has declined to 7.9%, this equates to 224 less revisions compared to the peak of 10.9% in 2012.

ASA SCORE AND BMI

Data are reported on shoulder replacement procedures for both the American Society of Anaesthesiologists Physical Status Classification (ASA score) and Body Mass Index (BMI). The Registry commenced collecting ASA score in 2012 and BMI data in 2015.

There are ASA score data on 46,245 procedures and BMI data on 35,643 shoulder replacement procedures. Since its initial collection, ASA score has been recorded in 94.0% of procedures. BMI data have been recorded in 88.7% of procedures since collection commenced.

In 2020, ASA score is reported in 99.8% of shoulder replacement procedures and BMI is reported in 96.1% of procedures.

In 2020, the percentage of procedures with ASA score reported for primary partial shoulder is 99.6%, primary total shoulder 99.8%, and revision shoulder replacement 99.7%. BMI data are reported for 94.2% of primary partial shoulder, 96.4% of primary total shoulder, and 94.0% of revision shoulder replacements.

ASA score and BMI are both known to impact the outcome of shoulder replacement surgery.

ASA SCORE

There are five ASA score classifications:7

- 1. A normal healthy patient
- 2. A patient with mild systemic disease
- 3. A patient with severe systemic disease
- 4. A patient with severe systemic disease that is a constant threat to life
- 5. A moribund patient who is not expected to survive without the operation

Differences in ASA scores by procedure category are presented in Table S2.

BMI

BMI for adults is classified by the World Health Organisation into six main categories:⁸

1.	Underweight	<18.50
2.	Normal	18.50 - 24.99
3.	Pre-obese	25.00 - 29.99
4.	Obese Class 1	30.00 - 34.99
5.	Obese Class 2	35.00 - 39.99
6.	Obese Class 3	≥40.00

For all shoulder replacements, the majority of procedures are undertaken in patients who are pre-obese or obese class 1 (61.5%). There is a slightly higher proportion of primary total shoulder replacement procedures where the patients are pre-obese or obese class 1 (61.8%), compared to partial shoulder replacement (59.3%), and revision shoulder replacement (60.4%) (Table S3).

⁷https://www.asahq.org/resources/clinical-information/asa-physicalstatus-classification-system

Table S2 ASA Score for Shoulder Replacement

ASA Score	Partial		Tot	al	Revision		TOTAL	
	N	Col%	Ν	Col%	N	Col%	Ν	Col%
ASA 1	291	11.4	1619	4.1	146	3.4	2056	4.4
ASA 2	1115	43.6	17717	44.9	1601	37.5	20433	44.2
ASA 3	1057	41.4	18997	48.2	2350	55.0	22404	48.4
ASA 4	92	3.6	1079	2.7	175	4.1	1346	2.9
ASA 5			6	0.0			6	0.0
TOTAL	2555	100.0	39418	100.0	4272	100.0	46245	100.0

Note: A further 21,369 procedures did not have ASA score recorded

Table S3 BMI Category for Shoulder Replacement

PMI Catagony	Partial		Tota	Total		Revision		TOTAL	
BMI Category	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%	
Underweight	19	1.2	235	0.8	33	1.0	287	0.8	
Normal	291	19.0	5127	16.6	564	17.9	5982	16.8	
Pre Obese	526	34.4	10558	34.1	1029	32.6	12113	34.0	
Obese Class 1	382	25.0	8567	27.7	874	27.7	9823	27.6	
Obese Class 2	196	12.8	4131	13.3	409	13.0	4736	13.3	
Obese Class 3	117	7.6	2341	7.6	244	7.7	2702	7.6	
TOTAL	1531	100.0	30959	100.0	3153	100.0	35643	100.0	

Note: BMI has not been presented for patients aged ≤19 years

A further 31,971 procedures did not have BMI recorded or the patient is aged \leq 19 years

CT SCAN AND GLENOID MORPHOLOGY

Data are reported on shoulder replacement procedures for both CT scans and glenoid morphology. The Registry commenced collection of CT scan usage and glenoid morphology in January 2017.

The number of procedures with CT scan usage data and glenoid morphology data by shoulder procedure category are listed in Table S4 and Table S5.

Overall, a CT scan was undertaken in 65.9% of shoulder replacements.

CT SCANS

There is a difference depending on the class of shoulder replacement. Total shoulder replacement procedures have a higher proportion of CT scans compared to revision shoulder replacement and partial shoulder replacement.

Table S4 Usage of CT Scan for Shoulder Replacement

GLENOID MORPHOLOGY

There are 5 glenoid morphology categories based on the Walch classification:⁹

- A1: Humeral head centred minor erosion
- A2: Humeral head centred major erosion
- B1: Humeral head posteriorly subluxated narrowing of the posterior joint space, subchondral sclerosis and osteophytes
- B2: Humeral head posteriorly subluxated posterior rim erosion with a biconcave glenoid
- C: Glenoid retroversion of more than 25 degrees, regardless of the erosion

The most common glenoid morphology category is A1 for all shoulder procedure categories. The second most common is A2 for total and revision shoulder replacement and B2 for partial shoulder replacement (Table S5).

	Partial		Total		Revision		TOTAL	
CT Scan Usage	N	Col%	N	Col%	N	Col%	N	Col%
Yes	434	43.2	16143	69.9	825	35.9	17402	65.9
No	539	53.6	6587	28.5	1324	57.6	8450	32.0
Unknown	32	3.2	360	1.6	150	6.5	542	2.1
TOTAL	1005	100.0	23090	100.0	2299	100.0	26394	100.0

Note: A further 41,220 procedures did not have CT scan usage recorded

Table S5 Glenoid Morphology for Shoulder Replacement

	Partial		То	Total		Revision		TOTAL	
Glenoid Morphology	Ν	Col%	N	Col%	N	Col%	Ν	Col%	
A1	261	41.8	8704	45.0	287	37.4	9252	44.6	
A2	105	16.8	4337	22.4	247	32.2	4689	22.6	
B1	69	11.0	2911	15.0	76	9.9	3056	14.7	
B2	136	21.8	2583	13.3	86	11.2	2805	13.5	
С	54	8.6	826	4.3	71	9.3	951	4.6	
TOTAL	625	100.0	19361	100.0	767	100.0	20753	100.0	

Note: 63 procedures have been excluded where a glenoid morphology of B3 was recorded A further 46,798 procedures did not have glenoid morphology recorded

⁹ Walch G, Badet R, Boulahia A, Khoury A. Morphologic study of the glenoid in primary glenohumeral osteoarthritis. J Arthroplasty. 1999 Sep 1;14(6):756-60

Primary Partial Shoulder Replacement Summary

INTRODUCTION

This section provides summary information on partial shoulder replacement. Previously, detailed information on partial shoulders was included in the Annual Report. Commencing this year, it is now provided as a separate supplementary report with the aim of streamlining the Annual Report. The Partial Shoulder Arthroplasty Supplementary Report is one of 15 supplementary reports that complete the AOANJRR Annual Report for 2021 and is available on the AOANJRR website.

CLASSES OF PARTIAL SHOULDER REPLACEMENT

The Registry subcategorises primary partial shoulder replacement into four main classes. These are defined by the type of prostheses used.

Partial resurfacing involves the use of one or more button prostheses to replace part of the natural articulating surface, on one or both sides of the shoulder joint.

Hemi resurfacing involves the use of a humeral prosthesis that replaces the humeral articular surface only, without resecting the head.

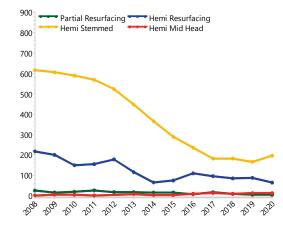
Hemi mid head involves resection of part of the humeral head and replacement with a humeral head and an epiphyseal fixation prosthesis.

Hemi stemmed involves the resection of the humeral head and replacement with a humeral head and a humeral stem prosthesis. A humeral stem prosthesis may have either metaphyseal or diaphyseal fixation.

USE OF PARTIAL SHOULDER REPLACEMENT

There have been 7,346 primary partial shoulder replacements reported to the Registry up to 31 December 2020. This is an additional 284 procedures compared to the number reported last year.

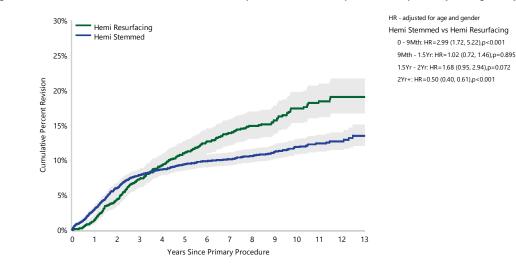
The most common class of primary partial shoulder replacement is hemi stemmed. This accounts for 72.6% of all partial shoulder replacements, followed by hemi resurfacing (23.7%), partial resurfacing (2.7%), and hemi mid head (1.1%) (Table SP1).


Table SP1 Primary Partial Shoulder Replacement by Class

Shoulder Class	Number	Percent
Partial Resurfacing	196	2.7
Hemi Resurfacing	1739	23.7
Hemi Stemmed	5332	72.6
Hemi Mid Head	79	1.1
TOTAL	7346	100.0

The use of the two main classes of primary partial shoulder replacement has declined over the last 8 years. The number of hemi resurfacing procedures decreased from 178 in 2012 to 64 in 2020. The number of hemi stemmed procedures decreased from 616 in 2008 to 196 in 2020 (Figure SP1).

Detailed demographic information on primary partial shoulder replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website: <u>https://aoanjrr.sahmri.com/annual-reports-</u> 2021


Figure SP1 Primary Partial Shoulder Replacement by Class

The cumulative percent revision varies depending on the shoulder class. Partial resurfacing and hemi mid head have only been used in small numbers (196 and 79 procedures, respectively). This makes the assessment of comparative performance difficult. However, there is a clear difference between the two more commonly used classes. Devices in these classes have a longer follow-up and the cumulative percent revision at 10 years for hemi resurfacing is higher than for hemi stemmed (17.4% compared to 11.9%, respectively) (Table SP2 and Figure SP2).

Table SP2	Cumulative Percent Revision of Primary Partial Shoulder Replacement by Class (All Diagnoses)
-----------	--

Shoulder Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Partial Resurfacing	12	196	0.5 (0.1, 3.7)	1.6 (0.5, 4.8)	2.9 (1.2, 6.8)	5.0 (2.5, 9.8)	6.0 (3.1, 11.5)	
Hemi Resurfacing	232	1739	1.4 (1.0, 2.1)	7.3 (6.1, 8.7)	11.0 (9.5, 12.7)	13.9 (12.2, 15.8)	17.4 (15.3, 19.7)	
Hemi Stemmed	501	5332	3.0 (2.6, 3.5)	7.9 (7.1, 8.6)	9.4 (8.6, 10.3)	10.1 (9.3, 11.1)	11.9 (10.8, 13.0)	
Hemi Mid Head	9	79	2.8 (0.7, 10.9)	12.2 (5.9, 24.2)	18.3 (9.5, 33.6)	18.3 (9.5, 33.6)		
TOTAL	754	7346						

Figure SP2 Cumulative Percent Revision of Primary Partial Shoulder Replacement by Class (All Diagnoses)

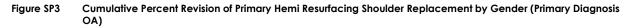
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Hemi Resurfacing	1739	1643	1358	1063	879	465	13
Hemi Stemmed	5332	4773	3862	3118	2319	1050	19

PRIMARY PARTIAL RESURFACING SHOULDER REPLACEMENT

The Registry has recorded 196 partial resurfacing shoulder replacement procedures. This is an additional 5 procedures compared to the number reported last year. The principal diagnosis for partial resurfacing shoulder procedures is instability for males (55.3%) and osteoarthritis for females (45.7%). This procedure is undertaken more commonly in males (76.5%). The mean age for males is 38.8 years compared to 55.1 years for females.

The Registry has recorded 12 revisions of primary partial resurfacing shoulder replacement. The cumulative percent revision at 10 years is 6.0% (Table SP2). The most common reason for revision is glenoid erosion. All were revised to a total shoulder replacement (8 of which were total stemmed).

PRIMARY HEMI RESURFACING SHOULDER REPLACEMENT


There have been 1,739 primary hemi resurfacing shoulder replacement procedures reported to the Registry. This is an additional 64 procedures compared to the previous report. The use of primary hemi resurfacing has declined by 55.8% since 2008. The procedure is more common in males (58.8%). The mean age is 60.2 years for males and 67.9 years for females. The principal diagnosis for primary hemi resurfacing shoulder replacement is osteoarthritis (88.3%).

The Registry has recorded 232 revisions of primary hemi resurfacing shoulder replacement. The cumulative percent revision at 10 years is 17.4% (Table SP2 and Figure SP2). The most common reasons for revision are glenoid erosion, pain, rotator cuff insufficiency, and instability/dislocation. The most common type of revision is to a total shoulder replacement, the majority of which were total reverse.

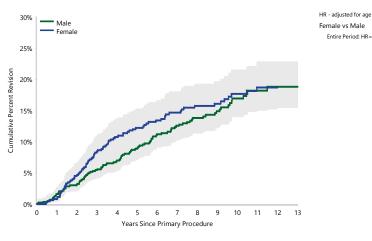

Females have a higher rate of revision than males (Table SP3 and Figure SP3).

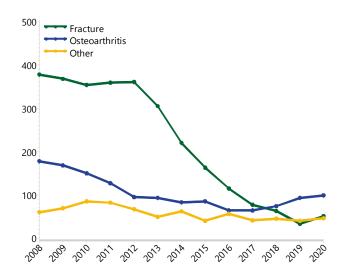
Table SP3	Cumulative Percent Revision of Primary Hemi Resurfacing Shoulder Replacement by Gender (Primary Diagnosis
	OA)

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	108	910	1.6 (0.9, 2.7)	5.5 (4.1, 7.2)	8.9 (7.0, 11.1)	12.5 (10.3, 15.3)	16.9 (14.0, 20.4)	
Female	89	625	0.8 (0.3, 1.9)	8.5 (6.5, 11.0)	12.2 (9.8, 15.3)	14.7 (11.9, 18.0)	17.7 (14.4, 21.5)	
TOTAL	197	1535						

Entire Period: HR=1.44 (1.06, 1.94),p=0.018

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	910	855	700	533	444	220	5
Female	625	601	494	396	320	183	5

PRIMARY HEMI MID HEAD SHOULDER REPLACEMENT


The Registry has recorded 79 primary hemi mid head shoulder replacement procedures. This is an additional 12 procedures compared to the number reported last year. The principal diagnosis is osteoarthritis (58.2%). This procedure is undertaken more commonly in males (62.0%). The mean age for males is 49.8 years and 64.7 years for females.

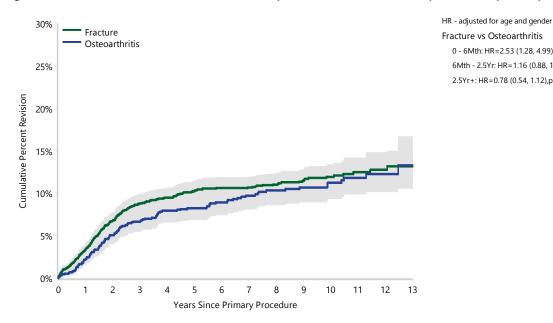
The Registry has recorded 9 revisions of primary hemi mid head shoulder replacement. The cumulative percent revision at 7 years is 18.3% (Table SP2). The most common reason for revision is glenoid erosion. The most common type of revision involves replacement of the humeral and glenoid components.

PRIMARY HEMI STEMMED SHOULDER REPLACEMENT

This year, the Registry is reporting on 5,332 primary hemi stemmed shoulder replacement procedures. This is an additional 203 procedures compared to the last report. This procedure is more commonly undertaken in females (69.5%). The mean age is 72.0 years for females and 63.5 years for males. The most common primary diagnosis is fracture (57.1%), followed by osteoarthritis (28.0%). In 2020, the number of primary hemi stemmed shoulder replacements undertaken for fracture decreased by 86.5% compared to 2008. In 2020, the number of primary hemi stemmed shoulder replacements undertaken for steoarthritis decreased by 44.4% compared to 2008 (Figure SP4).

Figure SP4 Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis

The cumulative percent revision at 10 years for primary hemi stemmed shoulder replacement procedures undertaken for fracture is 12.0% compared to 11.2% if undertaken for osteoarthritis. There is a higher rate of revision in the first 6 months when primary hemi stemmed shoulder replacement is performed for fracture compared to osteoarthritis. After this time, there is no difference (Table SP4 and Figure SP5).


The Registry has recorded 501 revisions of primary hemi stemmed shoulder replacement. Reasons for revision vary depending on the primary diagnosis. Rotator cuff insufficiency occurs more frequently in primary hemi stemmed shoulder replacement undertaken for fracture (26.8%), whereas glenoid erosion occurs more frequently in procedures undertaken for osteoarthritis (29.5%). The most common type of revision is to a total shoulder replacement for both primary diagnoses (71.9% for fracture and 57.4% for osteoarthritis). Most were revised to a total reverse shoulder replacement (97.8% when used for fracture and 86.5% for osteoarthritis). Glenoid component only revision occurs more frequently in procedures undertaken for 4.5% for fracture).

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Fracture	310	3046	3.4 (2.8, 4.1)	8.8 (7.8, 9.9)	10.3 (9.2, 11.5)	10.7 (9.6, 11.9)	12.0 (10.7, 13.4)	
Osteoarthritis	129	1492	2.3 (1.6, 3.2)	6.7 (5.4, 8.2)	8.3 (6.9, 9.9)	9.7 (8.1, 11.6)	11.2 (9.4, 13.4)	
Rotator Cuff Arthropathy	18	240	2.1 (0.9, 5.0)	5.5 (3.1, 9.5)	7.2 (4.4, 11.8)	7.2 (4.4, 11.8)		
Osteonecrosis	16	193	2.1 (0.8, 5.6)	5.2 (2.7, 9.8)	7.8 (4.4, 13.5)	9.9 (5.8, 16.4)	13.0 (7.8, 21.2)	
Tumour	15	173	3.6 (1.5, 8.5)	11.5 (6.0, 21.2)				
Other (4)	13	188	3.3 (1.5, 7.1)	5.6 (3.0, 10.1)	5.6 (3.0, 10.1)	5.6 (3.0, 10.1)	10.6 (5.7, 19.2)	
TOTAL	501	5332						

Table SP4 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis

Note: Only primary diagnoses with over 100 procedures have been listed

Figure SP5 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis

Number at Risk 3 Yrs 5 Yrs 7 Yrs 10 Yrs 14 Yrs 0 Yr 1 Yr Fracture 3046 2771 2303 1869 1398 595 8 5 1492 866 Osteoarthritis 1337 1060 639 336

Note: Only primary diagnoses with over 1,000 procedures have been listed

0 - 6Mth: HR=2.53 (1.28, 4.99),p=0.007 6Mth - 2.5Yr: HR=1.16 (0.88, 1.53),p=0.294

2.5Yr+: HR=0.78 (0.54, 1.12),p=0.182

Primary Total Shoulder Replacement

CLASSES OF TOTAL SHOULDER REPLACEMENT

The Registry subcategorises primary total shoulder replacement into four classes. These are defined by the type of prosthesis used.

Total resurfacing involves glenoid replacement and the use of a humeral prosthesis that replaces the humeral articular surface without resecting the head.

Total mid head involves glenoid replacement combined with resection of part of the humeral head and replacement with a humeral head and an epiphyseal fixation prosthesis.

Total stemmed involves glenoid replacement combined with resection of the humeral head and replacement with humeral head and humeral stem prostheses. A humeral stem prosthesis may have metaphyseal or diaphyseal fixation.

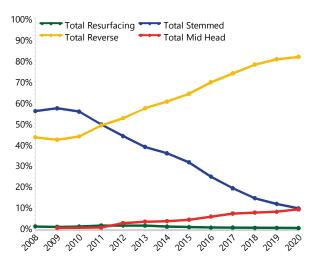
Total reverse involves glenoid replacement with a glenosphere prosthesis combined with resection of the humeral head and replacement with humeral cup and humeral stem prostheses. A humeral stem prosthesis may have metaphyseal or diaphyseal fixation.

Detailed demographic information on primary total shoulder replacement is available in the supplementary report 'Demographics of Hip, Knee & Shoulder Arthroplasty' on the AOANJRR website: https://aoanjir.sahmri.com/annual-reports-2021

USE OF TOTAL SHOULDER REPLACEMENT

The Registry has recorded 53,815 primary total shoulder replacement procedures. Of these, total reverse is the most common, followed by total stemmed. Total mid head and total resurfacing shoulder replacements are used infrequently (Table ST1).

The use of different prosthesis classes has changed over time with a major increase in the use of total reverse shoulder and a corresponding decline in the use of total stemmed shoulder replacement (Figure ST1).


Table ST1 Primary Total Shoulder Replacement by Class

Shoulder Class	Number	Percent
Total Resurfacing	235	0.4
Total Stemmed	14872	27.6
Total Reverse	35980	66.9
Total Mid Head	2728	5.1
TOTAL	53815	100.0

There is variation in the primary total shoulder replacement class used according to gender. Total reverse, total stemmed and total mid head are used more often in females but total resurfacing is used more often in males (Table ST2).

The mean age for females is higher than for males (Table ST3).

Figure ST1 Primary Total Shoulder Replacement by Class

Most patients are aged ≥65 years but the proportion in this age group varies depending on the class of shoulder replacement, with total reverse shoulders having the highest proportion (Table ST4).

Osteoarthritis is the most common primary diagnosis followed by rotator cuff arthropathy and fracture (Table ST5).

In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified. The cumulative percent revision varies by class with total reverse and total mid head having a lower cumulative percent revision than total stemmed shoulder replacement (Table ST6 and Figure ST2).

Table ST2 Primary Total Shoulder Replacement by Class and Gender

Shoulder Class	M	ale	Fer	nale	TOTAL		
Shoulder Class	Ν	Row%	N	Row%	Ν	Row%	
Total Resurfacing	140	59.6	95	40.4	235	100.0	
Total Stemmed	6347	42.7	8525	57.3	14872	100.0	
Total Reverse	13216	36.7	22764	63.3	35980	100.0	
Total Mid Head	1311	48.1	1417	51.9	2728	100.0	
TOTAL	21014	39.0	32801	61.0	53815	100.0	

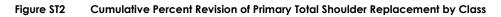
Table ST3	Age and Gender of I	Primary Total Should	der Replacement
	Age and benacion		act Keplacement

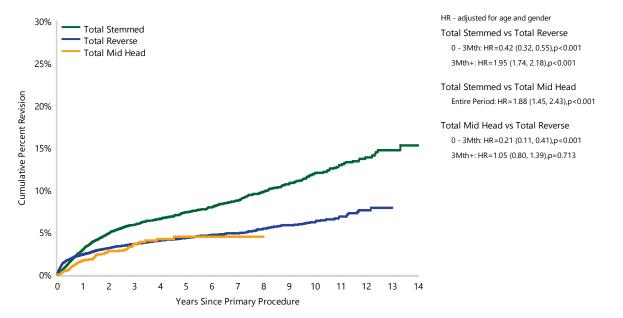
Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	21014	39.0%	14	96	71	70.2	9.0
Female	32801	61.0%	13	102	74	73.4	8.4
TOTAL	53815	100.0%	13	102	73	72.2	8.8

Table ST4 Primary Total Shoulder Replacement by Class and Age

Shoulder Class	<	<55		55-64		65-74		≥75		TOTAL	
Shoulder Class	N	Row%	Ν	Row%	Ν	Row%	N	Row%	Ν	Row%	
Total Resurfacing	33	14.0	77	32.8	106	45.1	19	8.1	235	100.0	
Total Stemmed	824	5.5	3461	23.3	6596	44.4	3991	26.8	14872	100.0	
Total Reverse	558	1.6	3638	10.1	13911	38.7	17873	49.7	35980	100.0	
Total Mid Head	245	9.0	748	27.4	1221	44.8	514	18.8	2728	100.0	
TOTAL	1660	3.1	7924	14.7	21834	40.6	22397	41.6	53815	100.0	

Table ST5 Primary Total Shoulder Replacement by Primary Diagnosis and Gender


Drimon / Diagnosia	Ma	le	Fem	ale	TOT	AL
Primary Diagnosis	N	Col%	N	Col%	N	Col%
Osteoarthritis	13579	64.6	19061	58.1	32640	60.7
Rotator Cuff Arthropathy	5811	27.7	7201	22.0	13012	24.2
Fracture	907	4.3	4706	14.3	5613	10.4
Rheumatoid Arthritis	212	1.0	717	2.2	929	1.7
Osteonecrosis	157	0.7	557	1.7	714	1.3
Instability	158	0.8	270	0.8	428	0.8
Other Inflammatory Arthritis	76	0.4	177	0.5	253	0.5
Tumour	107	0.5	105	0.3	212	0.4
Other	7	0.0	7	0.0	14	0.0
TOTAL	21014	100.0	32801	100.0	53815	100.0


Note: Instability includes instability and dislocation

Shoulder Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Total Stemmed	640	8324	3.0 (2.6, 3.4)	5.9 (5.4, 6.5) 7	.4 (6.8, 8.0)	8.8 (8.1, 9.6)	12.0 (10.9, 13.1)	15.3 (13.4, 17.4)
Total Reverse	1238	34017	2.4 (2.2, 2.6)	3.6 (3.4, 3.9) 4	.3 (4.1, 4.6)	4.9 (4.6, 5.2)	6.2 (5.7, 6.8)	
Total Mid Head	64	2406	1.6 (1.2, 2.3)	3.6 (2.8, 4.7) 4	.5 (3.4, 5.9)	4.5 (3.4, 5.9)		
TOTAL	1942	44747						

Table ST6 Cumulative Percent Revision of Primary Total Shoulder Replacement by Class

Note: Restricted to modern prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Total Stemmed	8324	7408	5533	3858	2269	1058	40
Total Reverse	34017	27344	16229	8746	4352	1213	16
Total Mid Head	2406	1773	802	240	98	0	0

PRIMARY TOTAL RESURFACING SHOULDER REPLACEMENT

DEMOGRAPHICS AND OUTCOME

There have been 235 primary total resurfacing shoulder replacements reported to the Registry. This is an additional 1 procedure compared to the previous report.

Primary total resurfacing shoulder replacement is undertaken more often in males and the mean age for males is younger than for females (Table ST7).

Osteoarthritis is the most common primary diagnosis (Table ST8).

The total resurfacing prostheses used are listed in Table ST9 and Table ST10.

The most common reason for revision is loosening (Table ST11). The most common type of revision is to a total shoulder replacement (Table ST12).

Table ST7 Age and Gender of Primary Total Resurfacing Shoulder Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	140	59.6%	35	83	63	62.2	9.8
Female	95	40.4%	46	86	67	67.0	6.7
TOTAL	235	100.0%	35	86	65	64.1	9.0

Table ST8 Primary Total Resurfacing Shoulder Replacement by Primary Diagnosis and Gender

Drimon (Diagnosis	М	ale	Fer	nale	TO	TAL
Primary Diagnosis	N	Col%	N	Col%	N	Col%
Osteoarthritis	136	97.1	90	94.7	226	96.2
Rheumatoid Arthritis	1	0.7	2	2.1	3	1.3
Fracture	1	0.7	1	1.1	2	0.9
Osteonecrosis	1	0.7			1	0.4
Rotator Cuff Arthropathy			1	1.1	1	0.4
Instability	1	0.7			1	0.4
Other Inflammatory Arthritis			1	1.1	1	0.4
TOTAL	140	100.0	95	100.0	235	100.0

Note: Instability includes instability and dislocation

Table ST9 Most Used Humeral Head Prostheses in Primary Total Resurfacing Shoulder Replacement

	2008		2017		2018		2019		2020
N	Model	N	Model	Ν	Model	Ν	Model	Ν	Model
5	SMR	8	Global CAP	9	Global CAP	4	Global CAP	1	Global CAP
4	Aequalis	2	Epoca RH						
2	Copeland								
1	Global CAP								
Most U	lsed								
12	(4) 100.0%	10	(2) 100.0%	9	(1) 100.0%	4	(1) 100.0%	1	(1) 100.0%

	2008		2017		2018		2019		2020
N	Model	Ν	Model	Ν	Model	Ν	Model	Ν	Model
4	Aequalis	8	Global	9	Global	4	Global	1	Global
3	SMR L1	2	Ероса						
2	Copeland								
2	SMR								
1	Global								
Most l	Jsed								
12	(5) 100.0%	10	(2) 100.0%	9	(1) 100.0%	4	(1) 100.0%	1	(1) 100.0%

Table ST10 Most Used Glenoid Prostheses in Primary Total Resurfacing Shoulder Replacement

Table STI1 Primary Total Resurfacing Shoulder Replacement by Reason for Revision

Reason for Revision	Number	Percent
Loosening	9	40.9
Instability/Dislocation	3	13.6
Implant Breakage Glenoid Insert	3	13.6
Infection	2	9.1
Rotator Cuff Insufficiency	2	9.1
Fracture	1	4.5
Implant Breakage Glenoid	1	4.5
Wear Glenoid Insert	1	4.5
TOTAL	22	100.0

Table ST12 Primary Total Resurfacing Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Humeral/Glenoid	11	50.0
Humeral Component	6	27.3
Insert Only	2	9.1
Head Only	1	4.5
Cement Spacer	1	4.5
Reoperation	1	4.5
TOTAL	22	100.0

Note: Humeral heads are replaced when the humeral component is revised

PRIMARY TOTAL MID HEAD SHOULDER REPLACEMENT

DEMOGRAPHICS AND OUTCOME

There have been 2,728 primary total mid head shoulder replacements reported to the Registry. This is an additional 604 procedures compared to the previous report.

The use of primary mid head shoulder replacement has increased by 740.9% since its first full year of use in 2012.

Primary total mid head shoulder replacement is undertaken more often in females who have an older mean age than males (Table ST13).

Osteoarthritis is the most common primary diagnosis (Table ST14). The most used total mid head prostheses are listed in Table ST15 and Table ST16. In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified.

The main reasons for revision are instability/dislocation, rotator cuff insufficiency, loosening, and infection (Table ST17).

The most common types of revision involve replacement of both the humeral and glenoid components with most being revised to a total reverse shoulder replacement (Table ST18).

The outcomes of the most commonly used prosthesis combinations are listed in Table ST19.

Table ST13 Age and Gender of Primary Total Mid Head Shoulder Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	1311	48.1%	32	95	65	64.7	9.1
Female	1417	51.9%	32	94	69	68.9	8.2
TOTAL	2728	100.0%	32	95	68	66.9	8.9

Table ST14 Primary Total Mid Head Shoulder Replacement by Primary Diagnosis and Gender

	Ma	ale	Fen	nale	TOTAL		
Primary Diagnosis	N	Col%	N	Col%	N	Col%	
Osteoarthritis	1263	96.3	1329	93.8	2592	95.0	
Osteonecrosis	12	0.9	38	2.7	50	1.8	
Rotator Cuff Arthropathy	18	1.4	12	0.8	30	1.1	
Rheumatoid Arthritis	4	0.3	18	1.3	22	0.8	
Instability	11	0.8	5	0.4	16	0.6	
Other Inflammatory Arthritis	2	0.2	11	0.8	13	0.5	
Fracture	1	0.1	4	0.3	5	0.2	
TOTAL	1311	100.0	1417	100.0	2728	100.0	

	2011		2017		2018		2019		2020
N	Model	Ν	Model	Ν	Model	Ν	Model	Ν	Model
2	Simpliciti	266	Affinis	270	Affinis	310	Affinis	367	Affinis
2	TESS	68	Simpliciti	108	Simpliciti	119	Simpliciti	162	Simpliciti
1	Affinis	27	SMR	39	Comprehensive	50	Comprehensive	32	Comprehensive
		22	Comprehensive	29	SMR	34	SMR	22	SMR
		8	Sidus	13	Global Icon	17	Global Icon	11	Global Icon
				10	Sidus			2	Equinoxe
								1	Sidus
Most U	lsed								
5	(3) 100.0%	391	(5) 100.0%	469	(6) 100.0%	530	(5) 100.0%	597	(7) 100.0%

Table ST15 Most Used Humeral Stem Prostheses in Primary Total Mid Head Shoulder Replacement

Table ST16 Most Used Glenoid Prostheses in Primary Total Mid Head Shoulder Replacement

	2011		2017		2018		2019		2020
N	Model	Ν	Model	Ν	Model	Ν	Model	N	Model
2	Aequalis	266	Affinis	257	Affinis	297	Affinis	343	Affinis
1	Affinis	53	Aequalis	81	Perform	120	Perform	162	Perform
1	Comprehensive	20	Comprehensive	38	Comprehensive	50	Comprehensive	35	Global
1	TESS	15	Perform	27	Aequalis	29	Global	33	Comprehensive
		14	SMR L1	27	Global	26	SMR L1	12	SMR L1
		13	SMR	15	SMR	8	SMR	9	SMR
		7	Anatomical Shoulder	14	SMR L1			2	Equinoxe
		2	Custom Made (Comprehensive)	7	Anatomical Shoulder			1	Custom Made (Lima)
		1	Bigliani/Flatow TM	1	Bigliani/Flatow				
				1	Bigliani/Flatow TM				
Most U	sed								
5	(4) 100.0%	391	(9) 100.0%	468	(10) 99.8%	530	(6) 100.0%	597	(8) 100.0%

Table ST17 Primary Total Mid Head Shoulder Replacement by Reason for Revision

Reason for Revision	Number	Percent
Instability/Dislocation	25	39.1
Rotator Cuff Insufficiency	14	21.9
Loosening	8	12.5
Infection	8	12.5
Pain	4	6.3
Malposition	1	1.6
Incorrect Sizing	1	1.6
Lysis	1	1.6
Other	2	3.1
TOTAL	64	100.0

Table ST18 Primary Total Mid Head Shoulder Replacement by Type of Revision

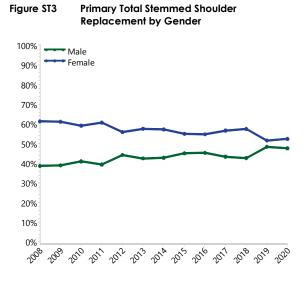
Type of Revision	Number	Percent
Humeral/Glenoid	44	68.8
Humeral Component	7	10.9
Head Only	5	7.8
Cement Spacer	4	6.3
Removal of Prostheses	2	3.1
Glenoid Component	1	1.6
Reoperation	1	1.6
TOTAL	64	100.0

Note: Restricted to modern prostheses

Note: Restricted to modern prostheses

Humeral Stem	Glenoid	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Affinis	Affinis	47	1649	1.5 (1.0, 2.3)	3.5 (2.6, 4.8)	4.5 (3.3, 6.1)	4.5 (3.3, 6.1)		
	Global	0	49	0.0 (0.0, 0.0)					
Comprehensive	Comprehensive	7	150	3.6 (1.5, 8.6)					
Global Icon	Global	0	41	0.0 (0.0, 0.0)					
SMR	SMR	3	49	4.6 (1.2, 17.0)	7.3 (2.4, 21.0)				
	SMR L1	4	75	3.0 (0.8, 11.6)	9.5 (3.2, 26.4)				
Simpliciti	Perform	2	379	0.7 (0.2, 3.0)					
Other (6)		1	14	7.7 (1.1, 43.4)	7.7 (1.1, 43.4)				
TOTAL		64	2406						

Table ST19 Cumulative Percent Revision of Primary Total Mid Head Shoulder Replacement by Prosthesis Combination


Note: Only prostheses with >10 procedures have been listed Restricted to modern prostheses

PRIMARY TOTAL STEMMED SHOULDER REPLACEMENT

DEMOGRAPHICS

There have been 14,872 total stemmed shoulder replacements reported to the Registry. This is an additional 641 procedures compared to the previous report.

Although the proportional use in males has increased since 2008, the majority of procedures are undertaken in females. The mean age of females is older than males (Figure ST3 and Table ST20).

Almost 50% of procedures are undertaken in the 65-74 year age group (Figure ST4).

Osteoarthritis is the most common primary diagnosis (Table ST21).

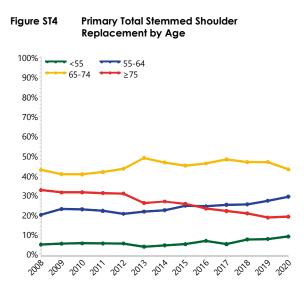
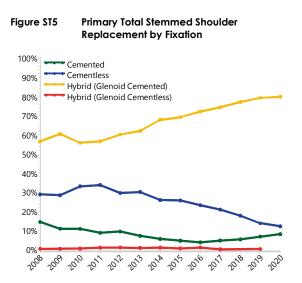


Table ST20 Age and Gender of Primary Total Stemmed Shoulder Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	6347	42.7%	21	93	67	66.9	9.0
Female	8525	57.3%	19	96	71	70.4	8.5
TOTAL	14872	100.0%	19	96	69	68.9	8.9

Table ST21 Primary Total Stemmed Shoulder Replacement by Primary Diagnosis and Gender


Drimon / Diagnosia	Ma	ale	Fem	nale	TOT	AL
Primary Diagnosis	N	Col%	Ν	Col%	N	Col%
Osteoarthritis	6077	95.7	7937	93.1	14014	94.2
Rheumatoid Arthritis	64	1.0	191	2.2	255	1.7
Osteonecrosis	66	1.0	180	2.1	246	1.7
Fracture	34	0.5	93	1.1	127	0.9
Other Inflammatory Arthritis	29	0.5	58	0.7	87	0.6
Rotator Cuff Arthropathy	41	0.6	41	0.5	82	0.6
Instability	29	0.5	16	0.2	45	0.3
Tumour	4	0.1	6	0.1	10	0.1
Other	3	0.0	3	0.0	6	0.0
TOTAL	6347	100.0	8525	100.0	14872	100.0

Note: Instability includes dislocation

The most common type of fixation, which continues to increase in use, is hybrid fixation (cementless humerus and cemented glenoid) (Figure ST5).

Hybrid fixation with a cemented glenoid has increased from 55.8% in 2010 to 79.9% in 2020.

The 10 most used humeral stem and glenoid prostheses are listed in Table ST22 and Table ST23.

	2008		2017		2018		2019		2020
Ν	Model	N	Model	N	Model	N	Model	Ν	Model
298	SMR	199	SMR	176	Ascend Flex	175	Ascend Flex	137	Ascend Flex
167	Aequalis	179	Global AP	146	Comprehensive	128	Global Unite	110	Global Unite
117	Global Advantage	178	Global Unite	146	SMR	119	Comprehensive	92	Comprehensive
91	Global AP	135	Comprehensive	137	Global Unite	119	SMR	89	Equinoxe
40	Bigliani/Flatow	122	Ascend Flex	134	Global AP	105	Equinoxe	89	SMR
37	Bigliani/Flatow TM	71	Equinoxe	80	Equinoxe	81	Global AP	75	Global AP
32	Solar	69	Bigliani/Flatow TM	36	Bigliani/Flatow TM	29	Bigliani/Flatow TM	19	Global Advantage
27	Affinis	49	Aequalis	16	Global Advantage	10	Global Advantage	9	Bigliani/Flatow TM
11	Univers 3D	25	Global Advantage	14	Turon	6	MSS	5	Turon
10	Cofield 2	20	Turon	11	Aequalis	5	Turon	2	Affinis
10 Mo	st Used								
830	(10) 97.9%	1047	(10) 97.9%	896	(10) 99.4%	777	(10) 99.2%	627	(10) 99.8%
Remai	nder								
18	(7) 2.1%	23	(5) 2.1%	5	(3) 0.6%	6	(2) 0.8%	1	(1) 0.2%
TOTAL									
848	(17) 100.0%	1070	(15) 100.0%	901	(13) 100.0%	783	(12) 100.0%	628	(11) 100.0%

 Table ST22
 10 Most Used Humeral Stem Prostheses in Primary Total Stemmed Shoulder Replacement

Table ST23	10 Most Used Glenoid Prostheses in Primary Total Stemmed Shoulder Replacement
------------	---

	2008		2017		2018		2019		2020
Ν	Model	N	Model	Ν	Model	N	Model	Ν	Model
237	SMR L1	381	Global	287	Global	221	Global	204	Global
209	Global	172	SMR L1	153	Perform	179	Perform	137	Perform
167	Aequalis	131	Comprehensive	139	Comprehensive	114	Comprehensive	89	Comprehensive
79	Bigliani/Flatow	97	Aequalis	129	SMR L1	105	Equinoxe	89	Equinoxe
57	SMR	86	Perform	80	Equinoxe	98	SMR L1	73	SMR L1
32	Solar	71	Equinoxe	34	Aequalis	23	Bigliani/Flatow	15	SMR
27	Affinis	37	Bigliani/Flatow TM	21	Bigliani/Flatow	18	SMR	8	Bigliani/Flatow
11	Univers 3D	32	Bigliani/Flatow	16	Bigliani/Flatow TM	6	Bigliani/Flatow TM	5	Turon
10	Cofield 2	23	SMR	14	SMR	6	MSS	2	Affinis
7	Promos	20	Turon	14	Turon	5	Custom Made (Comprehensive)	2	Alliance
10 Mo	st Used								
836	(10) 98.6%	1050	(10) 98.1%	887	(10) 98.4%	775	(10) 99.0%	624	(10) 99.4%
Remai	nder								
12	(6) 1.4%	20	(8) 1.9%	14	(5) 1.6%	8	(3) 1.0%	4	(4) 0.6%
TOTAL									
848	(16) 100.0%	1070	(18) 100.0%	901	(15) 100.0%	783	(13) 100.0%	628	(14) 100.0%

OUTCOME FOR ALL DIAGNOSES

Primary Diagnosis

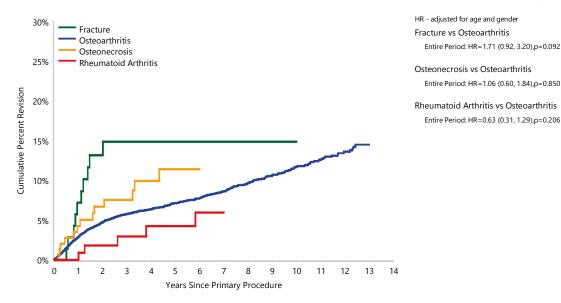
The Registry recognises that the usage and availability of prostheses change with time. In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified. This change to the assessment of the overall cumulative percent revision has been made to ensure that it reflects the use of currently available prostheses.

At 10 years, the cumulative percent revision for primary total stemmed shoulder replacement undertaken for osteoarthritis is 11.7%. There is no difference in the rate of revision when osteoarthritis is compared to other reasons for revision. However, the number of procedures undertaken for other diagnoses is small (Table ST24 and Figure ST6).

Reason for Revision

The most common reason for revision is rotator cuff insufficiency followed by instability/ dislocation, and loosening (Table ST25 and Figure ST7).

Type of Revision


The most common type of revision is of the humeral component only. This may include the revision of a humeral component (epiphysis and/or humeral stem) and additional minor components, such as the humeral head/glenosphere and/or removal of the glenoid component (Table ST26). Almost all are revised to a total reverse shoulder replacement with retention of the original humeral stem on most occasions (87.5%).

Primary Diagnosis	Ν	Ν	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
	Revised	Total		5 113	5 113	7 113	10 113	14 113
Osteoarthritis	591	7850	2.9 (2.5, 3.3)	5.8 (5.3, 6.4)	7.2 (6.6, 7.8)	8.6 (7.9, 9.4)	11.7 (10.7, 12.9)	
Osteonecrosis	13	150	4.3 (1.9, 9.3)	7.6 (4.1, 13.7)	11.4 (6.7, 19.3)			
Rheumatoid Arthritis	8	116	0.9 (0.1, 6.3)	3.0 (1.0, 9.0)	4.3 (1.6, 11.1)	6.0 (2.5, 14.2)		
Fracture	10	72	7.2 (3.1, 16.5)	14.9 (8.3, 26.0)	14.9 (8.3, 26.0)	14.9 (8.3, 26.0)	14.9 (8.3, 26.0)	
Rotator Cuff Arthropathy	9	57	7.4 (2.8, 18.4)	14.1 (7.0, 27.6)	17.3 (8.9, 32.2)	17.3 (8.9, 32.2)		
Other Inflammatory Arthritis	4	45	4.7 (1.2, 17.3)	4.7 (1.2, 17.3)	7.7 (2.5, 22.3)	7.7 (2.5, 22.3)	16.1 (5.2, 43.7)	
Other (3)	5	34	6.3 (1.6, 23.0)	15.1 (5.8, 36.0)	21.1 (9.0, 45.0)			
TOTAL	640	8324						

Table \$124 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Primary Diagnosis

Note: Only primary diagnoses with over 30 procedures have been listed Restricted to modern prostheses

Figure ST6 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Primary Diagnosis

Number at Risk 14 Yrs 0 Yr 1 Yr 3 Yrs 5 Yrs 7 Yrs 10 Yrs Fracture 72 64 47 39 21 9 0 Osteoarthritis 7850 7001 5241 3655 2151 996 36 50 25 Osteonecrosis 150 124 84 14 1 **Rheumatoid Arthritis** 116 108 84 62 42 24 2

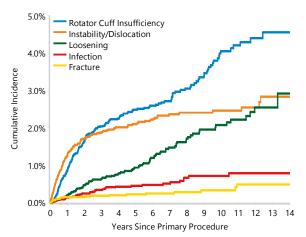
Note: Only primary diagnoses with over 70 procedures have been listed Restricted to modern prostheses

 Table ST25
 Primary Total Stemmed Shoulder

 Replacement by Reason for Revision

Reason for Revision	Number	Percent
Rotator Cuff Insufficiency	216	33.8
Instability/Dislocation	172	26.9
Loosening	100	15.6
Infection	39	6.1
Fracture	21	3.3
Arthrofibrosis	13	2.0
Pain	13	2.0
Malposition	9	1.4
Incorrect Sizing	9	1.4
Wear Glenoid Insert	9	1.4
Lysis	7	1.1
Implant Breakage Glenoid	7	1.1
Dissociation	6	0.9
Implant Breakage Glenoid Insert	5	0.8
Metal Related Pathology	5	0.8
Progression Of Disease	2	0.3
Other	7	1.1
TOTAL	640	100.0

Table ST26 Primary Total Stemmed Shoulder Replacement by Type of Revision


Type of Revision	Number	Percent
Humeral Component	358	55.9
Humeral/Glenoid	164	25.6
Head Only	54	8.4
Glenoid Component	28	4.4
Cement Spacer	20	3.1
Reoperation	5	0.8
Removal of Prostheses	5	0.8
Minor Components	3	0.5
Head/Insert	2	0.3
Reinsertion of Components	1	0.2
TOTAL	640	100.0

Note: Humeral heads are replaced when the humeral component is revised Restricted to modern prostheses

Note: Restricted to modern prostheses

Figure ST7 Cumulative Incidence Revision Diagnosis of Primary Total Stemmed Shoulder Replacement

Total Stemmed

OUTCOME FOR OSTEOARTHRITIS - PATIENT CHARACTERISTICS

Age and Gender

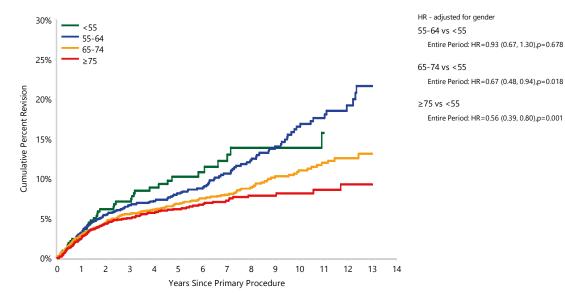
Patients aged \geq 65 years have a lower rate of revision compared to patients aged <55 years (Table ST27 and Figure ST8).

There is no difference in the rate of revision between males and females (Table ST28 and Figure ST9).

There is no difference in the rate of revision between males and females.

ASA and BMI

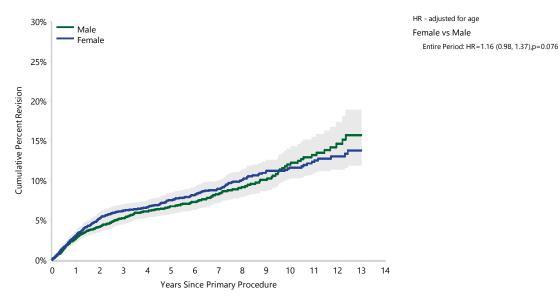
Most patients have an ASA score of 2 or 3, and fewer patients have an ASA score of 1. ASA score does not affect the rate of revision (Table ST29 and Figure ST10). The most common reasons for revision by ASA score are presented in Figure ST11. The most common BMI categories are preobese and obese class 1. BMI is not a risk factor for revision (Table ST30 and Figure ST12). The most common reasons for revision by BMI category are shown in Figure ST13.


Glenoid Morphology

The Registry can now report on the early outcome of 2,221 primary total stemmed shoulder replacement procedures for osteoarthritis by glenoid morphology category. The distribution of the different morphology categories is presented in Table ST31. The category of glenoid morphology is not a risk factor for revision (Figure ST14).

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<55	42	438	3.1 (1.8, 5.4)	7.1 (4.9, 10.2)	10.2 (7.4, 14.1)	12.2 (8.8, 16.8)	13.9 (10.0, 19.1)	
55-64	179	1915	3.2 (2.5, 4.1)	6.7 (5.6, 8.0)	8.2 (6.9, 9.7)	10.6 (9.0, 12.6)	16.5 (13.8, 19.7)	
65-74	248	3525	2.9 (2.4, 3.5)	5.6 (4.8, 6.4)	6.8 (6.0, 7.8)	8.0 (7.0, 9.1)	11.0 (9.5, 12.8)	
≥75	122	1972	2.5 (1.9, 3.3)	5.0 (4.1, 6.1)	6.2 (5.1, 7.4)	7.2 (6.0, 8.7)	8.1 (6.7, 9.8)	
TOTAL	591	7850						

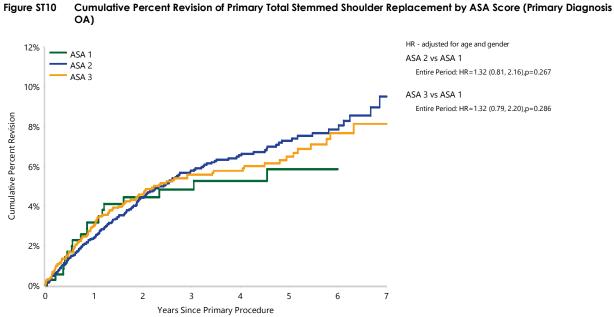
Table ST27 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Age (Primary Diagnosis OA)



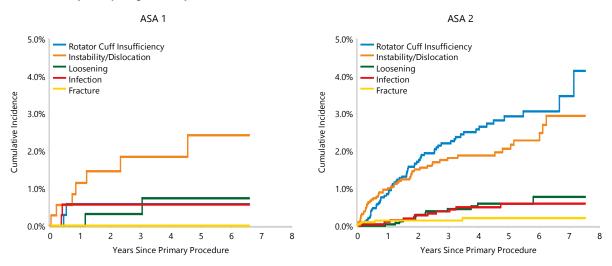
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<55	438	377	266	178	108	55	2
55-64	1915	1682	1237	860	487	244	9
65-74	3525	3157	2341	1622	951	441	19
≥75	1972	1785	1397	995	605	256	6

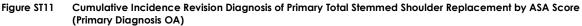
Table \$128 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Gender (Primary Diagnosis OA)

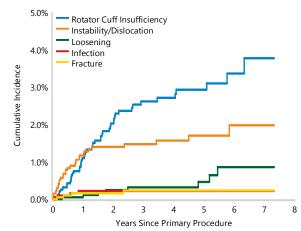
Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	249	3506	2.7 (2.2, 3.3)	5.2 (4.5, 6.1)	6.7 (5.9, 7.7)	8.2 (7.2, 9.5)	12.0 (10.2, 14.0)	
Female	342	4344	3.0 (2.5, 3.6)	6.2 (5.5, 7.0)	7.5 (6.7, 8.4)	8.9 (8.0, 10.0)	11.6 (10.3, 13.1)	
TOTAL	591	7850						



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	3506	3103	2307	1572	900	407	16
Female	4344	3898	2934	2083	1251	589	20


eng								
ASA Score	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	7 Yrs
ASA 1	18	365	3.2 (1.8, 5.7)	4.4 (2.7, 7.3)	4.8 (3.0, 7.8)	5.3 (3.3, 8.4)	5.9 (3.7, 9.3)	
ASA 2	171	2917	2.4 (1.9, 3.0)	4.4 (3.7, 5.3)	5.8 (4.9, 6.8)	6.5 (5.6, 7.7)	7.3 (6.2, 8.5)	9.5 (7.7, 11.7)
ASA 3	107	1966	3.0 (2.3, 3.9)	4.6 (3.7, 5.7)	5.6 (4.6, 6.8)	5.8 (4.7, 7.0)	6.5 (5.3, 7.9)	8.1 (6.4, 10.2)
ASA 4	1	57	2.0 (0.3, 13.1)	2.0 (0.3, 13.1)	2.0 (0.3, 13.1)	2.0 (0.3, 13.1)	2.0 (0.3, 13.1)	
ASA 5	0	1						
TOTAL	297	5306						


 Table ST29
 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by ASA Score (Primary Diagnosis OA)


Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	7 Yrs			
			071	010	101	100	10			

ASA 1	365	314	271	219	181	128	16
ASA 2	2917	2518	2074	1645	1218	840	145
ASA 3	1966	1682	1366	1053	806	521	84

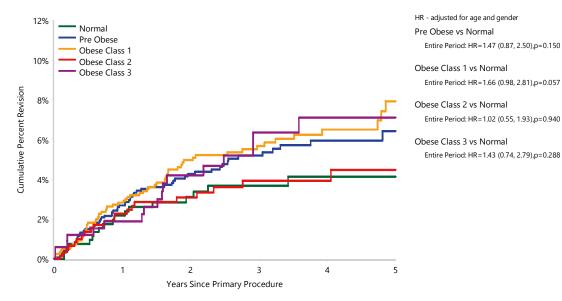
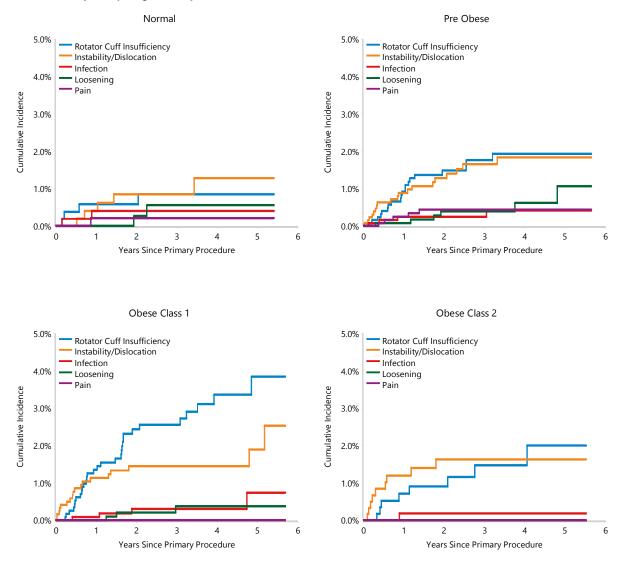
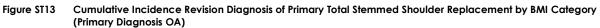
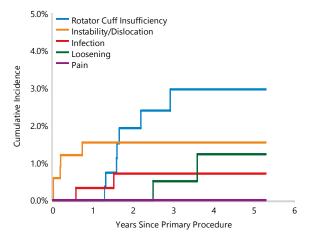


Table ST30 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by BMI Category (Primary Diagnosis OA)

BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs
Underweight	0	8	0.0 (0.0, 0.0)				
Normal	18	535	2.2 (1.2, 3.9)	3.1 (1.9, 5.1)	3.7 (2.3, 5.9)	4.1 (2.6, 6.6)	4.1 (2.6, 6.6)
Pre Obese	61	1318	2.7 (1.9, 3.8)	4.3 (3.2, 5.6)	5.2 (4.0, 6.7)	6.0 (4.6, 7.7)	6.4 (4.9, 8.5)
Obese Class 1	65	1226	2.8 (2.0, 4.0)	5.0 (3.8, 6.5)	5.7 (4.4, 7.3)	6.5 (5.0, 8.4)	7.9 (5.9, 10.6)
Obese Class 2	21	612	2.3 (1.3, 3.9)	3.1 (1.9, 5.0)	3.9 (2.5, 6.1)	3.9 (2.5, 6.1)	4.5 (2.8, 7.0)
Obese Class 3	17	338	1.9 (0.8, 4.1)	4.2 (2.4, 7.3)	6.4 (3.9, 10.3)	7.1 (4.4, 11.4)	7.1 (4.4, 11.4)
TOTAL	182	4037					


Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

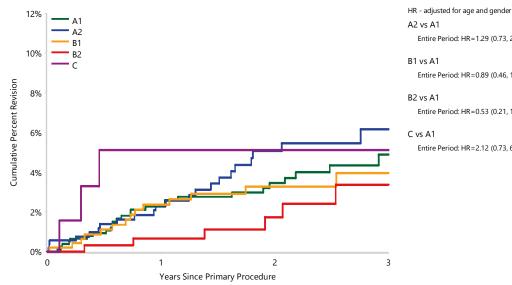

Figure ST12 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by BMI Category (Primary Diagnosis OA)


Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs
Normal	535	454	359	254	162	85
Pre Obese	1318	1093	830	580	361	163
Obese Class 1	1226	1012	782	557	346	163
Obese Class 2	612	507	393	277	180	77
Obese Class 3	338	275	218	154	106	50

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

Obese Class 3

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses


Table ST31 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Glenoid Morphology (Primary Diagnosis OA)

Glenoid Morphology	N Revised	N Total	1 Yr	2 Yrs	3 Yrs
A1	26	794	2.3 (1.4, 3.7)	3.5 (2.3, 5.2)	4.9 (3.2, 7.4)
A2	22	534	2.3 (1.3, 4.2)	5.1 (3.3, 7.8)	6.2 (4.0, 9.5)
B1	14	478	2.4 (1.3, 4.4)	3.3 (1.9, 5.6)	4.0 (2.3, 6.9)
B2	6	350	0.7 (0.2, 2.7)	1.7 (0.6, 4.7)	3.4 (1.4, 7.8)
С	4	65	5.1 (1.7, 15.1)	5.1 (1.7, 15.1)	5.1 (1.7, 15.1)
TOTAL	72	2221			

Note: Restricted to modern prostheses

3 procedures have been excluded where a glenoid morphology of B3 was recorded

Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Glenoid Morphology (Primary Figure ST14 Diagnosis OA)

B1 vs A1 Entire Period: HR=0.89 (0.46, 1.71),p=0.717 B2 vs A1

Entire Period: HR=1.29 (0.73, 2.27),p=0.383

Entire Period: HR=0.53 (0.21, 1.29),p=0.159

C vs A1

Entire Period: HR=2.12 (0.73, 6.17),p=0.168

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs
A1	794	600	389	168
A2	534	398	250	97
B1	478	365	227	88
B2	350	262	154	62
С	65	42	20	9

OUTCOME FOR OSTEOARTHRITIS - PROSTHESIS CHARACTERISTICS

Fixation

Cementless fixation has a higher rate of revision compared to both cemented and hybrid (glenoid cemented) fixation. There is no difference between cemented and hybrid (glenoid cemented) fixation (Table ST32 and Figure ST15).

The revision rate is increased if the glenoid is cementless.

Glenoid Type and Design

An analysis was undertaken to determine the impact of glenoid type. There are three broad glenoid types: modular metal backed, non modular metal backed and all-polyethylene. Cemented all-polyethylene glenoids are the most common type of glenoid used. These prostheses have a lower rate of revision compared to modular metal backed glenoids over the entire period and when compared to non modular metal backed glenoid prostheses in the first 1.5 years. Modular metal backed glenoids have a higher rate of revision compared to non modular metal backed glenoids (Table ST33 and Figure ST16).

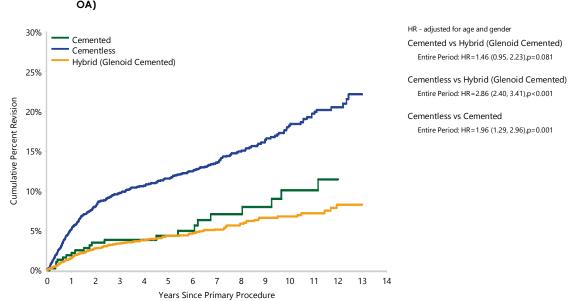
When a modular metal backed glenoid was revised, most retained the metal glenoid component (base plate) and replaced the modular insert with a glenosphere. The humeral stem was also revised in only a small number of revisions.

Pegged and keeled all-polyethylene glenoid prostheses were also compared. The majority of all-polyethylene glenoid prostheses are pegged. There is no difference in the rate of revision between these prostheses (Table ST34 and Figure ST17).

The most common type of polyethylene used is non XLPE. XLPE increased in use up to 2015 but has remained relatively constant since that time (Figure ST18). Glenoid prostheses using XLPE have a lower rate of revision compared to non XLPE (Table ST35 and Figure ST19).

XLPE glenoids have a lower rate of revision than non XLPE glenoids.

This is also the case when only cemented allpolyethylene glenoids using non XLPE and XLPE are compared (Table ST36 and Figure ST20). However, it remains uncertain if these differences are due to the XLPE or the prosthesis with which it is used. Prosthesis combinations with both XLPE and non XLPE are provided in Table ST37.


Humeral Heads

Humeral head sizes <44mm have the highest rate of revision. This rate of revision decreases with increasing humeral head size. Humeral heads >50mm have the lowest rate of revision (Table ST38 and Figure ST21). The cumulative incidence for the most common reasons for revision of the different head sizes is shown in Figure ST22.

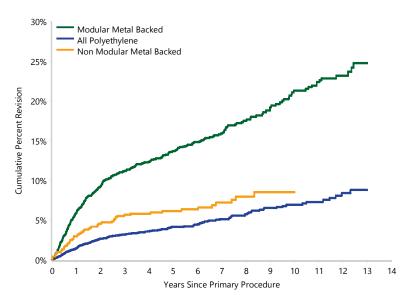
The outcomes of the most commonly used prosthesis combinations are listed in Table ST39. The most commonly used cementless prosthesis combinations are listed in Table ST40. The most commonly used prosthesis combinations with hybrid (glenoid cemented) fixation are listed in Table ST41.

Table ST32	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Fixation (Primary Diagnosis
	OA)

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Cemented	24	393	1.9 (0.9, 3.9)	3.8 (2.2, 6.5)	4.3 (2.6, 7.3)	7.1 (4.3, 11.4)	10.1 (6.3, 16.0)	
Cementless	371	2730	5.2 (4.4, 6.1)	9.7 (8.7, 11.0)	11.5 (10.4, 12.9)	13.5 (12.2, 15.0)	18.2 (16.2, 20.4)	
Hybrid (Glenoid Cemented)	189	4675	1.5 (1.2, 1.9)	3.4 (2.9, 4.0)	4.3 (3.7, 5.1)	5.1 (4.4, 6.0)	6.8 (5.7, 8.0)	
Hybrid (Glenoid Cementless)	7	52	5.8 (1.9, 16.9)	7.9 (3.0, 19.7)	15.6 (7.7, 30.4)	15.6 (7.7, 30.4)		
TOTAL	591	7850						

Figure ST15	Cumulative Percent Revision of Primary	⁷ Total Stemmed Shoulder Replacement by	Fixation (Primary Diagnosis
	04)		

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Cemented	393	336	235	168	116	79	4
Cementless	2730	2503	2110	1634	1005	424	10
Hybrid (Glenoid Cemented)	4675	4114	2852	1824	1012	487	22


Note: Only fixations with over 100 procedures have been listed Restricted to modern prostheses

Glenoid Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Modular Metal Backed	334	2121	6.0 (5.0, 7.1)	11.2 (9.9, 12.7)	13.7 (12.2, 15.3)	15.9 (14.2, 17.7)	21.3 (19.0, 23.9)	
All Polyethylene	198	4817	1.5 (1.2, 1.9)	3.2 (2.7, 3.8)	4.1 (3.5, 4.8)	5.1 (4.4, 6.0)	6.9 (5.9, 8.2)	
Non Modular Metal Backed	59	912	3.0 (2.0, 4.3)	5.7 (4.3, 7.5)	6.1 (4.7, 8.0)	7.2 (5.5, 9.4)	8.5 (6.4, 11.3)	
TOTAL	591	7850						

Table ST33 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)

Note: Restricted to modern prostheses

Figure ST16 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)

HR - adjusted for age and gender Modular Metal Backed vs All Polyethylene Entire Period: HR=3.34 (2.80, 3.98),p<0.001

Modular Metal Backed vs Non Modular Metal Backed Entire Period: HR=2.24 (1.70, 2.96),p<0.001

Non Modular Metal Backed vs All Polyethylene 0 - 1.5Yr: HR=1.71 (1.18, 2.48),p=0.004 1.5Yr - 2.5Yr: HR=1.07 (0.49, 2.34),p=0.855 2.5Yr+: HR=1.37 (0.83, 2.26),p=0.219

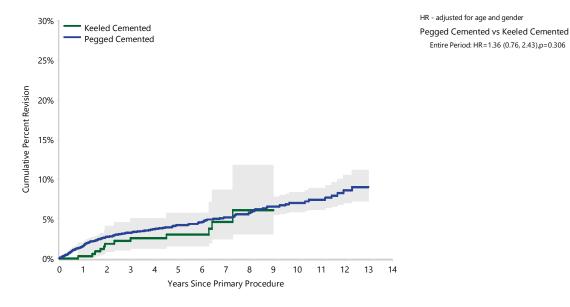
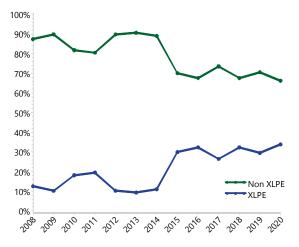

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Modular Metal Backed	2121	1915	1572	1214	749	371	10
All Polyethylene	4817	4273	3003	1950	1124	565	26
Non Modular Metal Backed	912	813	666	491	278	60	0

Table ST34 Cumulative Percent Revision of All-Polyethylene Cemented Primary Total Stemmed Shoulder Replacement by Glenoid Design (Primary Diagnosis OA)

Glenoid Design	N Revised	N I Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Keeled Cemented	12	382	0.3 (0.0, 2.0)	2.6 (1.3, 5.1)	3.0 (1.6, 5.7)	4.6 (2.4, 8.7)		
Pegged Cemented	186	4428	1.6 (1.2, 2.0)	3.3 (2.7, 3.9)	4.2 (3.6, 5.0)	5.2 (4.4, 6.1)	7.0 (5.9, 8.3)	
TOTAL	198	4810						

Note: Restricted to modern prostheses


Figure ST17 Cumulative Percent Revision of All-Polyethylene Cemented Primary Total Stemmed Shoulder Replacement by Glenoid Design (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Keeled Cemented	382	338	268	194	73	33	6
Pegged Cemented	4428	3931	2733	1755	1050	532	20

Note: Restricted to modern prostheses

Figure ST18 Primary Total Stemmed Shoulder Replacement by Polyethylene Type (All Diagnoses)

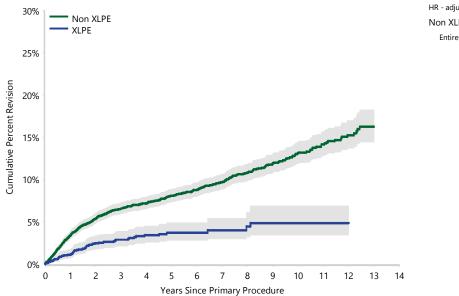


Table ST35Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement using All Types of Glenoids by
Polyethylene Type (Primary Diagnosis OA)

Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Non XLPE	537	6076	3.4 (2.9, 3.9)	6.6 (5.9, 7.3)	8.1 (7.3, 8.9)	9.7 (8.8, 10.6)	13.1 (11.9, 14.4)	
XLPE	53	1754	1.1 (0.7, 1.8)	2.9 (2.1, 3.9)	3.7 (2.8, 4.9)	4.0 (3.0, 5.4)	4.9 (3.4, 6.9)	
TOTAL	590	7830						

Note: Restricted to modern prostheses

Figure ST19 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement using All Types of Glenoids by Polyethylene Type (Primary Diagnosis OA)

HR - adjusted for age and gender
Non XLPE vs XLPE
Entire Period: HR=2.48 (1.87, 3.28),p<0.001

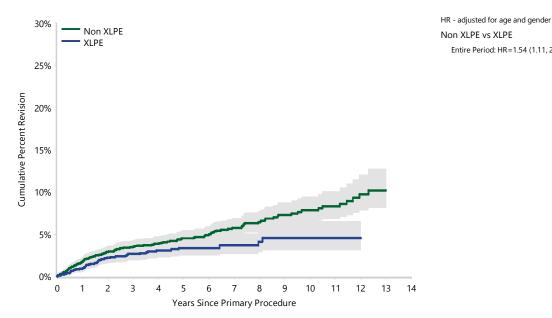

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Non XLPE	6076	5457	4199	3067	1876	866	31
XLPE	1754	1527	1030	578	275	130	5

Table ST36 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement using All-Polyethylene Glenoids by Polyethylene Type (Primary Diagnosis OA)

Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Non XLPE	150	3073	1.7 (1.3, 2.3)	3.5 (2.9, 4.3)	4.5 (3.8, 5.4)	5.7 (4.8, 6.9)	7.8 (6.5, 9.5)	
XLPE	48	1742	1.0 (0.6, 1.6)	2.7 (1.9, 3.6)	3.4 (2.5, 4.6)	3.7 (2.7, 5.0)	4.6 (3.2, 6.6)	
TOTAL	198	4815						

Note: Restricted to modern prostheses

Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement using All-Polyethylene Glenoids Figure ST20 by Polyethylene Type (Primary Diagnosis OA)

0 Yr Number at Risk 10 Yrs 14 Yrs 1 Yr 3 Yrs 5 Yrs 7 Yrs Non XLPE 3073 2755 1975 1372 849 435 21 XLPE 1742 275 5 1518 1028 578 130

Note: Restricted to modern prostheses

Primary Total Stemmed Shoulder Replacement using All-Polyethylene Glenoids by Polyethylene Type and Table ST37 Prosthesis Combination (All Diagnoses)

		Non XLPE			XLPE			TOTAL	
Prosthesis Combination	Ν	Row%	Col%	Ν	Row%	Col%	N	Row%	Col%
Global Unite/Global	24	2.7	3.0	881	97.3	50.7	905	100.0	35.5
Global Advantage/Global	560	77.5	69.1	163	22.5	9.4	723	100.0	28.4
SMR/SMR	30	6.4	3.7	440	93.6	25.3	470	100.0	18.4
Global AP/Global	20	7.4	2.5	250	92.6	14.4	270	100.0	10.6
Affinis/Affinis	177	97.3	21.8	5	2.7	0.3	182	100.0	7.1
TOTAL	811	31.8	100.0	1739	68.2	100.0	2550	100.0	100.0

Note: Restricted to modern prostheses

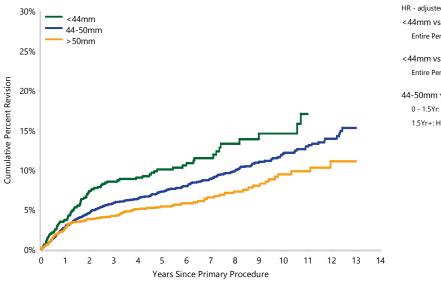
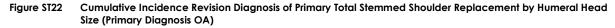

Entire Period: HR=1.54 (1.11, 2.13),p=0.009

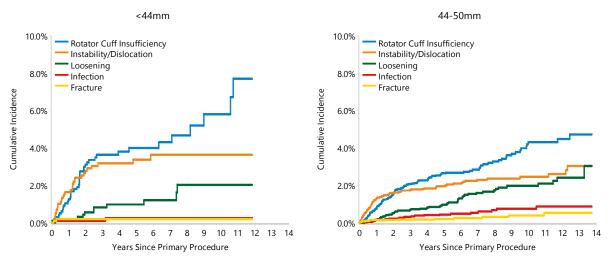
Table ST38 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)

Humeral Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<44mm	97	1014	3.7 (2.7, 5.1)	8.6 (6.9, 10.6)	10.1 (8.2, 12.4)	11.5 (9.3, 14.2)	14.6 (11.5, 18.4)	
44-50mm	380	4845	2.8 (2.4, 3.3)	5.9 (5.2, 6.6)	7.3 (6.5, 8.1)	8.9 (7.9, 9.9)	12.0 (10.7, 13.5)	
>50mm	114	1990	2.6 (2.0, 3.4)	4.2 (3.4, 5.2)	5.4 (4.4, 6.6)	6.6 (5.3, 8.0)	9.5 (7.6, 11.8)	
TOTAL	591	7849						

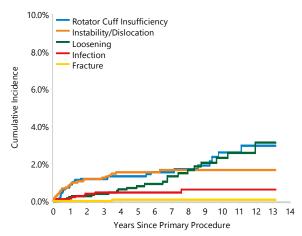
Note: Excludes 1 procedure with unknown head size Restricted to modern prostheses

Figure ST21 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)


HR - adjusted for age and gender <44mm vs >50mm Entire Period: HR=2.05 (1.49, 2.83),p<0.001


<44mm vs 44-50mm Entire Period: HR=1.41 (1.12, 1.78),p=0.003

44-50mm vs >50mm 0 - 1.5Yr: HR=1.29 (0.97, 1.72),p=0.077 1.5Yr+: HR=1.67 (1.25, 2.24),p<0.001


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<44mm	1014	878	609	403	214	84	3
44-50mm	4845	4370	3308	2355	1391	647	23
>50mm	1990	1753	1324	897	546	265	10

Note: Excludes 1 procedure with unknown head size

Humeral Stem	Glenoid	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Affinis	Affinis	14	182	0.0 (0.0, 0.0)	1.7 (0.6, 5.2)	4.7 (2.4, 9.3)	5.4 (2.8, 10.1)	8.2 (4.8, 13.8)	
Ascend Flex	Perform	9	772	0.6 (0.2, 1.5)	1.3 (0.6, 2.5)	1.6 (0.8, 3.1)			
Bigliani/Flatow TM	Bigliani/Flatow	27	449	1.8 (0.9, 3.6)	4.2 (2.7, 6.6)	5.0 (3.3, 7.6)	6.1 (4.1, 9.1)	7.8 (5.3, 11.4)	
	Bigliani/Flatow TM	40	642	2.3 (1.4, 3.9)	4.7 (3.3, 6.7)	5.1 (3.6, 7.1)	6.2 (4.5, 8.6)	7.2 (5.1, 10.0)	
Comprehensive	Comprehensive	32	688	3.6 (2.4, 5.3)	4.6 (3.2, 6.6)	5.3 (3.7, 7.5)	5.3 (3.7, 7.5)		
Equinoxe	Equinoxe	32	483	3.2 (1.9, 5.3)	7.0 (4.8, 10.2)	9.3 (6.3, 13.8)			
Global AP	Global	5	270	0.8 (0.2, 3.2)					
Global Advantage	Global	47	723	1.3 (0.7, 2.4)	3.5 (2.3, 5.1)	4.0 (2.7, 5.8)	5.4 (3.9, 7.5)	7.2 (5.3, 9.9)	
Global Unite	Global	16	905	0.6 (0.2, 1.4)	1.6 (0.9, 2.9)	2.7 (1.6, 4.7)			
SMR	SMR	24	470	1.9 (1.0, 3.7)	4.4 (2.9, 6.8)	4.7 (3.1, 7.1)	5.0 (3.3, 7.5)	5.9 (3.9, 8.7)	
	SMR L1	327	2088	5.9 (4.9, 7.0)	11.1 (9.8, 12.6)	13.5 (12.0, 15.1)	15.7 (14.1, 17.6)	21.2 (18.8, 23.8)	
Turon	Turon	6	112	2.7 (0.9, 8.1)	4.7 (2.0, 10.9)	4.7 (2.0, 10.9)			
Other (8)		12	66	7.9 (3.4, 18.0)	13.0 (6.7, 24.3)	20.1 (11.5, 33.8)	20.1 (11.5, 33.8)	24.3 (13.9, 40.5)	
TOTAL		591	7850						

Table \$T39 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Note: Only combinations with over 50 procedures have been listed Restricted to modern prostheses

Table ST40 Cumulative Percent Revision of Cementless Primary Total Stemmed Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Humeral Stem	Glenoid	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Bigliani/Flatow TM	Bigliani/Flatow TM	38	615	2.1 (1.2, 3.6)	4.6 (3.2, 6.6)	5.0 (3.5, 7.1)	6.2 (4.4, 8.6)	7.2 (5.1, 10.1)	
Comprehensive	Custom Made (Comprehensive)	5	12	25.0 (8.8, 59.2)					
Equinoxe	Equinoxe	5	36	11.1 (4.3, 26.9)	14.0 (6.1, 30.4)	14.0 (6.1, 30.4)			
SMR	SMR L1	321	2057	5.9 (4.9, 7.0)	11.1 (9.8, 12.6)	13.4 (11.9, 15.0)	15.6 (14.0, 17.5)	21.1 (18.7, 23.7)	
Other (5)		2	10	10.0 (1.5, 52.7)	10.0 (1.5, 52.7)	10.0 (1.5, 52.7)	10.0 (1.5, 52.7)	32.5 (8.1, 83.8)	
TOTAL		371	2730						

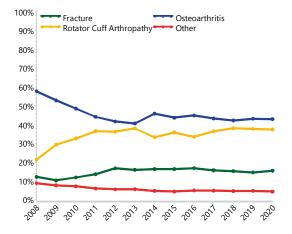
Note: Only prostheses with over 10 procedures have been listed Restricted to modern prostheses

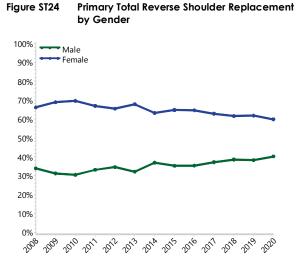
Table ST41 Cumulative Percent Revision of Hybrid (Glenoid Cemented) Primary Total Stemmed Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Humeral Stem	Glenoid	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Affinis	Affinis	14	177	0.0 (0.0, 0.0)	1.7 (0.6, 5.3)	4.8 (2.4, 9.4)	5.5 (2.9, 10.3)	8.3 (4.9, 13.9)	
Ascend Flex	Perform	9	692	0.6 (0.2, 1.7)	1.4 (0.7, 2.8)	1.7 (0.9, 3.4)			
Bigliani/Flatow TM	Bigliani/Flatow	20	418	1.2 (0.5, 2.9)	3.3 (1.9, 5.6)	4.2 (2.6, 6.7)	5.0 (3.1, 7.9)	6.2 (3.9, 9.6)	
Comprehensive	Comprehensive	32	680	3.6 (2.4, 5.4)	4.7 (3.3, 6.7)	5.4 (3.8, 7.7)	5.4 (3.8, 7.7)		
Equinoxe	Equinoxe	27	424	2.6 (1.4, 4.8)	6.8 (4.4, 10.3)	9.6 (6.2, 14.9)			
Global AP	Global	5	260	0.8 (0.2, 3.3)					
Global Advantage	Global	35	599	1.2 (0.6, 2.5)	3.7 (2.4, 5.6)	4.1 (2.7, 6.1)	5.1 (3.5, 7.5)	6.7 (4.6, 9.5)	
Global Unite	Global	15	820	0.6 (0.3, 1.5)	1.6 (0.9, 2.9)	2.8 (1.6, 4.8)			
SMR	SMR	22	453	2.0 (1.1, 3.8)	4.2 (2.6, 6.5)	4.4 (2.8, 6.8)	4.7 (3.1, 7.3)	5.6 (3.7, 8.6)	
Turon	Turon	5	105	1.9 (0.5, 7.5)	4.1 (1.5, 10.5)	4.1 (1.5, 10.5)			
Other (8)		5	47	2.3 (0.3, 15.1)	6.9 (2.3, 20.0)	12.7 (5.4, 28.0)	12.7 (5.4, 28.0)	12.7 (5.4, 28.0)	
TOTAL		189	4675						

Note: Only combinations with over 50 procedures have been listed Restricted to modern prostheses

PRIMARY TOTAL REVERSE SHOULDER REPLACEMENT


DEMOGRAPHICS


There have been 35,980 primary total reverse shoulder replacement procedures reported to the Registry. This is an increase of 5,650 procedures compared to the previous report.

Osteoarthritis is the most common diagnosis for primary total reverse shoulder replacement followed by rotator cuff arthropathy, and fracture. There has been little change in the proportion of these three diagnoses during the last 8 years (Table ST42 and Figure ST23).

Primary total reverse shoulder replacement is more commonly undertaken in females and there has been minimal change in gender distribution since 2008 (Figure ST24).

Figure ST23 Primary Total Reverse Shoulder Replacement by Primary Diagnosis

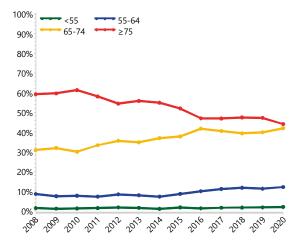
Females have a higher mean age (Table ST43). The proportional use in patients aged ≥75 years has declined in recent years and is now very similar to the proportional use in the 65-74 year age group (Figure ST25).

The majority of procedures use cementless fixation followed by hybrid (humerus cemented) fixation. There has been little variation in the type of fixation used since 2008 (Figure ST26).

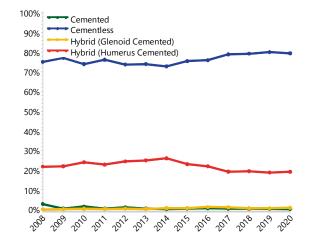
The most common primary diagnoses are osteoarthritis, rotator cuff arthropathy, and fracture.

The most commonly used humeral stems are listed in Table ST44. The most used glenoid prostheses are listed in Table ST45.

AOANJRR | 2021 ANNUAL REPORT


Table ST42 Primary Total Reverse Shoulder Replacement by Primary Diagnosis and Gender

Drimon Diamonia	Ma	ale	Fem	ale	TOT	AL
Primary Diagnosis	N	Col%	N	Col%	N	Col%
Osteoarthritis	6103	46.2	9705	42.6	15808	43.9
Rotator Cuff Arthropathy	5752	43.5	7147	31.4	12899	35.9
Fracture	871	6.6	4608	20.2	5479	15.2
Rheumatoid Arthritis	143	1.1	506	2.2	649	1.8
Osteonecrosis	78	0.6	339	1.5	417	1.2
Instability	117	0.9	249	1.1	366	1.0
Tumour	103	0.8	99	0.4	202	0.6
Other Inflammatory Arthritis	45	0.3	107	0.5	152	0.4
Other	4	0.0	4	0.0	8	0.0
TOTAL	13216	100.0	22764	100.0	35980	100.0


Table ST43	Age and Gender of Primary	y Total Reverse Shoulder Replacement
	rige and centaer of finnar	

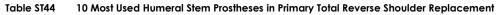

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	13216	36.7%	14	96	73	72.4	8.2
Female	22764	63.3%	13	102	75	74.9	8.0
TOTAL	35980	100.0%	13	102	74	74.0	8.1

Figure ST25 Primary Total Reverse Shoulder Replacement by Age

Figure ST26 Primary Total Reverse Shoulder Replacement by Fixation

	2008		2017		2018		2019		2020
N	Model	Ν	Model	N	Model	N	Model	N	Model
263	SMR	1026	Delta Xtend	1074	SMR	1103	SMR	1018	SMR
252	Delta Xtend	936	SMR	1064	Delta Xtend	976	Delta Xtend	828	Equinoxe
76	Aequalis	371	Aequalis	496	Comprehensive	676	Equinoxe	767	Comprehensive
42	Trabecular Metal	364	Comprehensive	495	Equinoxe	645	Comprehensive	755	Delta Xtend
21	Delta CTA	350	RSP	420	RSP	482	Ascend Flex	559	Ascend Flex
2	Custom Made (Lima)	332	Equinoxe	375	Ascend Flex	403	RSP	345	Aequalis
1	Generic Humeral Stem	262	Affinis	357	Aequalis	382	Aequalis	323	Affinis
1	Promos	203	Trabecular Metal	324	Affinis	341	Affinis	275	RSP
		161	Ascend Flex	183	Trabecular Metal	180	Trabecular Metal	243	AltiVate Reverse
		125	Global Unite	95	Global Unite	159	Global Unite	177	Global Unite
10 Mo:	st Used								
658	(8) 100.0%	4130	(10) 99.3%	4883	(10) 99.1%	5347	(10) 97.5%	5290	(10) 96.2%
Remair	nder								
0	(0) 0%	30	(4) 0.7%	44	(6) 0.9%	137	(5) 2.5%	210	(6) 3.8%
TOTAL									
658	(8) 100.0%	4160	(14) 100.0%	4927	(16) 100.0%	5484	(15) 100.0%	5500	(16) 100.0%

	2008		2017		2018		2019		2020
N	Model	Ν	Model	N	Model	Ν	Model	Ν	Model
264	SMR L1	1151	Delta Xtend	1157	Delta Xtend	1134	Delta Xtend	971	SMR L1
252	Delta Xtend	930	SMR L1	1046	SMR L1	1051	SMR L1	930	Delta Xtend
76	Aequalis	532	Aequalis	701	Aequalis	763	Aequalis	828	Equinoxe
42	Trabecular Metal	373	Comprehensive Reverse	519	Comprehensive Reverse	688	Comprehensive Reverse	783	Comprehensive Reverse
21	Delta CTA	351	RSP	495	Equinoxe	676	Equinoxe	770	Aequalis
1	Generic Metaglene	332	Equinoxe	431	RSP	482	RSP	518	RSP
1	Promos	262	Affinis	323	Affinis	341	Affinis	323	Affinis
1	SMR	191	Trabecular Metal	154	Trabecular Metal	136	Trabecular Metal	138	Trabecular Metal
		12	Custom Made (Comprehensive)	31	Perform Reversed	101	Perform Reversed	136	Perform Reversed
		11	Mets	19	Custom Made (Comprehensive)	34	SMR Axioma	37	MSS
10 M	ost Used								
658	(8) 100.0%	4145	(10) 99.6%	4876	(10) 99.0%	5406	(10) 98.6%	5434	(10) 98.8%
Rema	inder								
0	(0) 0%	15	(4) 0.4%	51	(7) 1.0%	78	(6) 1.4%	66	(7) 1.2%
ΤΟΤΑ	L								
658	(8) 100.0%	4160	(14) 100.0%	4927	(17) 100.0%	5484	(16) 100.0%	5500	(17) 100.0%

Table ST45 10 Most Used Glenoid Prostheses in Primary Total Reverse Shoulder Replacement

OUTCOME FOR ALL DIAGNOSES

In order to keep Registry data contemporaneous, only procedures using prostheses that have been available and used in 2020 (described as modern prostheses) are included in the analyses, unless clearly specified. As with primary stemmed total shoulder replacement, all outcomes analyses have been confined to total reverse shoulder prostheses used in 2020, irrespective of primary diagnoses.

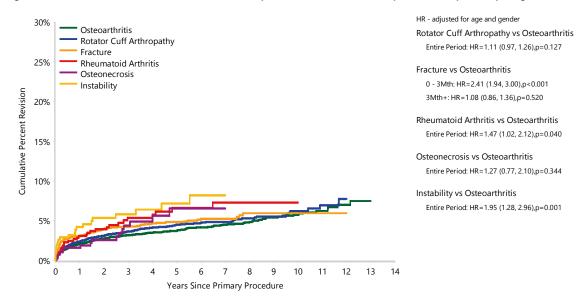
Primary Diagnosis

Procedures undertaken for instability and rheumatoid arthritis have a higher risk of revision compared to those undertaken for osteoarthritis. Fracture also has a higher rate of revision compared to osteoarthritis, but only in the first 3 months (Table ST46 and Figure ST27).

Reason for Revision

Instability/dislocation is the most common reason for revision followed by infection, loosening, and fracture (Table ST47 and Figure ST28).

Type of Revision


The most common types of revision are humeral component only, replacement of both cup (liner) and glenosphere, and cup only revisions (Table ST48). When only the humeral component is revised, this may be associated with exchange of the epiphysis and/or humeral stem and additional minor components such as the liner.

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Osteoarthritis	488	14926	2.1 (1.9, 2.3)	3.2 (2.9, 3.5)	3.7 (3.4, 4.1)	4.5 (4.0, 5.0)	5.8 (5.0, 6.6)	
Rotator Cuff Arthropathy	438	12239	2.4 (2.1, 2.7)	3.6 (3.3, 4.0)	4.5 (4.0, 5.0)	4.8 (4.3, 5.4)	6.2 (5.2, 7.3)	
Fracture	212	5171	3.1 (2.6, 3.6)	4.2 (3.7, 4.8)	4.8 (4.2, 5.6)	5.2 (4.5, 6.1)	5.9 (4.9, 7.2)	
Rheumatoid Arthritis	31	591	3.1 (1.9, 4.9)	5.4 (3.6, 7.8)	6.6 (4.5, 9.6)	7.3 (5.0, 10.7)	7.3 (5.0, 10.7)	
Osteonecrosis	16	392	1.6 (0.7, 3.5)	4.4 (2.5, 7.6)	6.5 (3.9, 10.9)	6.5 (3.9, 10.9)		
Instability	23	348	4.2 (2.5, 7.0)	5.8 (3.7, 9.1)	7.1 (4.6, 11.1)	8.2 (5.2, 12.9)		
Other (3)	30	350	4.2 (2.5, 7.1)	10.0 (6.6, 15.0)	11.9 (7.9, 17.7)			
TOTAL	1238	34017						

Table ST46 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Primary Diagnosis

Note: Only primary diagnoses with over 300 procedures have been listed Restricted to modern prostheses

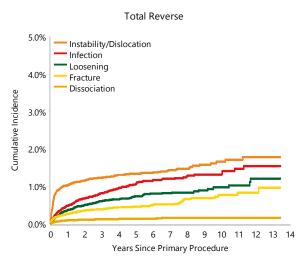
Figure ST27 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Primary Diagnosis

Number at Risk 3 Yrs 10 Yrs 14 Yrs 0 Yr 1 Yr 5 Yrs 7 Yrs Osteoarthritis Rotator Cuff Arthropathy Fracture **Rheumatoid Arthritis** Osteonecrosis Instability

Note: Only primary diagnoses with over 300 procedures have been listed Restricted to modern prostheses

Reason for Revision	Number	Percent
Instability/Dislocation	421	34.0
Infection	290	23.4
Loosening	206	16.6
Fracture	144	11.6
Dissociation	41	3.3
Pain	23	1.9
Malposition	16	1.3
Lysis	14	1.1
Incorrect Sizing	11	0.9
Arthrofibrosis	11	0.9
Metal Related Pathology	10	0.8
Implant Breakage Glenoid	7	0.6
Rotator Cuff Insufficiency	6	0.5
Wear Humeral Cup	4	0.3
Tumour	3	0.2
Heterotopic Bone	3	0.2
Implant Breakage Humeral	2	0.2
Wear Glenoid Insert	1	0.1
Implant Breakage Glenoid Insert	1	0.1
Other	24	1.9
TOTAL	1238	100.0

Table ST47 Primary Total Reverse Shoulder Replacement by Reason for Revision


Table ST48 Primary Total Reverse Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Humeral Component	270	21.8
Cup/Head	263	21.2
Cup Only	237	19.1
Humeral Head Only	131	10.6
Cement Spacer	102	8.2
Glenoid Component	89	7.2
Humeral/Glenoid	87	7.0
Removal of Prostheses	24	1.9
Reoperation	10	0.8
Minor Components	10	0.8
Glenosphere Only	8	0.6
Cement Only	3	0.2
Head/Insert	2	0.2
Reinsertion of Components	2	0.2
TOTAL	1238	100.0

Note: Restricted to modern prostheses

Note: Restricted to modern prostheses

Figure ST28 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement

Note: Restricted to modern prostheses

OUTCOME FOR OSTEOARTHRITIS – PATIENT CHARACTERISTICS

Age and Gender

Primary total reverse shoulder replacement, when used for the management of osteoarthritis, is most commonly used in patients aged ≥75 years. Older patients have a lower rate of revision (Table ST49 and Figure ST29).

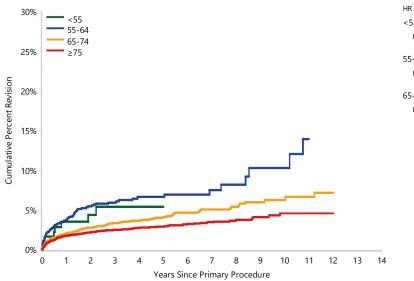
Males have a higher rate of revision compared to females in the first 9 months (Table ST50 and Figure ST30). The increase in the rate of revision is due to a higher cumulative incidence of instability/dislocation and infection (Figure ST31).

Males have a higher rate of revision compared to females. The increase in the rate of revision is due to a higher cumulative incidence of instability/dislocation and infection.

ASA and BMI

Patients with ASA scores 3 and 4 have higher rates of revision compared to patients with an ASA 2 score (Table ST51 and Figure ST32). The most common reasons for revision for the different ASA scores are presented in Figure ST33. The rate of revision for instability/ dislocation increases with increasing ASA score.

There is no difference in the rate of revision when pre-obese and obese classes 1, 2, and 3 patients are compared to patients with a normal BMI (Table ST52 and Figure ST34). The most common reasons for revision for the different BMI categories are shown in Figure ST35.


Glenoid Morphology

The Registry has glenoid morphology data on 6,077 primary total reverse shoulder replacements undertaken for osteoarthritis. The distribution of the different morphology categories is presented in Table ST53. The category of glenoid morphology is not a risk factor for revision (Figure ST36).

Table ST49 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis OA)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<55	9	185	3.5 (1.6, 7.7)	5.4 (2.7, 10.7)	5.4 (2.7, 10.7)			
55-64	85	1419	3.7 (2.8, 4.9)	5.9 (4.7, 7.5)	6.7 (5.3, 8.3)	7.5 (5.8, 9.7)	10.3 (7.2, 14.6)	
65-74	200	5825	2.0 (1.7, 2.4)	3.4 (2.9, 3.9)	4.0 (3.5, 4.7)	5.1 (4.3, 6.0)	6.3 (5.1, 7.7)	
≥75	194	7497	1.8 (1.5, 2.1)	2.5 (2.1, 2.9)	2.9 (2.5, 3.4)	3.5 (2.9, 4.1)	4.6 (3.7, 5.8)	
TOTAL	488	14926						

HR - adjusted for gender $<\!55 \text{ vs} \geq \!75$ Entire Period: HR=1.69 (0.87, 3.31),p=0.123

55-64 vs ≥75 Entire Period: HR=2.17 (1.68, 2.81),p<0.001

65-74 vs ≥75 Entire Period: HR=1.27 (1.04, 1.54),p=0.020

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<55	185	140	82	43	25	8	1
55-64	1419	1103	611	314	159	59	0
65-74	5825	4706	2870	1514	751	251	2
≥75	7497	6207	3882	2229	1135	346	5

Tuble 3130 Complaine Leicen kevision of Linday Tola kevelse shoulder kepiacement by Genael (Linday Diagnosis OA	Table ST50	Cumulative Percent Revision of Primary Total Rev	verse Shoulder Replacement by Gender (Primary Diagnosis OA)
---	------------	--	---

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	270	5808	3.4 (3.0, 4.0)	4.7 (4.1, 5.3)	5.5 (4.8, 6.2)	6.0 (5.2, 6.8)	6.8 (5.7, 8.0)	
Female	218	9118	1.2 (1.0, 1.5)	2.2 (1.9, 2.6)	2.6 (2.3, 3.1)	3.6 (3.0, 4.2)	5.0 (4.1, 6.2)	
TOTAL	488	14926						

Figure \$130 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosi
--

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	5808	4590	2724	1462	699	222	2
Female	9118	7566	4721	2638	1371	442	6

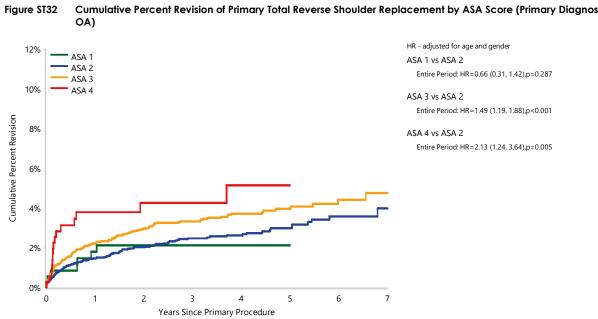
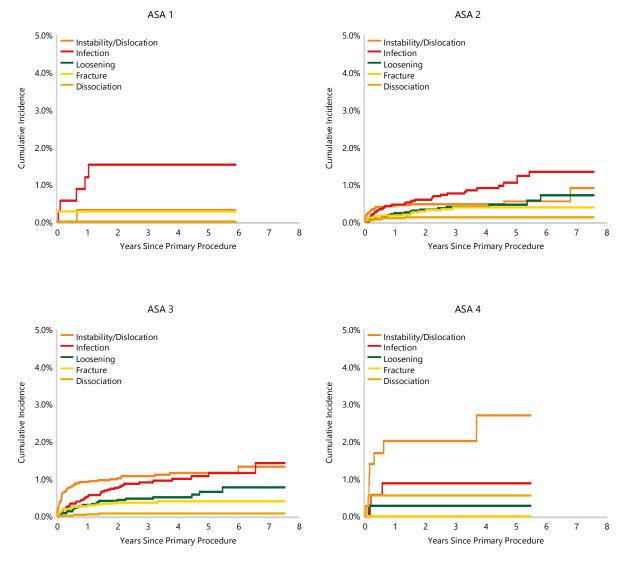


Figure ST31 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis OA)

Note: Restricted to modern prostheses


Table ST51	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Primary Diagnosis
	OA)

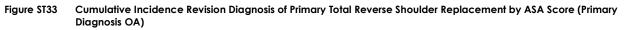
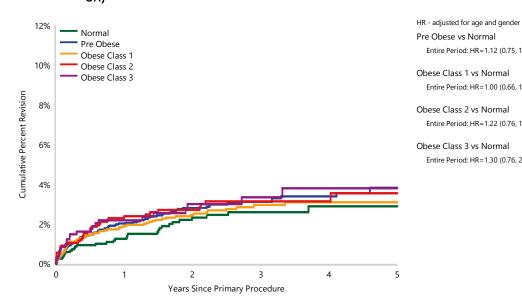

ASA Score	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	7 Yrs
ASA 1	7	359	1.8 (0.8, 3.9)	2.1 (1.0, 4.4)	2.1 (1.0, 4.4)	2.1 (1.0, 4.4)	2.1 (1.0, 4.4)	
ASA 2	122	5317	1.5 (1.2, 1.8)	2.0 (1.7, 2.5)	2.5 (2.0, 3.0)	2.6 (2.2, 3.2)	3.0 (2.4, 3.6)	4.0 (3.0, 5.2)
ASA 3	188	6235	2.2 (1.9, 2.6)	3.0 (2.5, 3.5)	3.3 (2.9, 3.9)	3.7 (3.2, 4.3)	4.0 (3.4, 4.6)	4.8 (3.8, 5.9)
ASA 4	15	366	3.8 (2.2, 6.4)	4.3 (2.5, 7.1)	4.3 (2.5, 7.1)	5.1 (3.0, 8.8)	5.1 (3.0, 8.8)	
ASA 5	0	1						
TOTAL	332	12278						

Figure SI 32	Cumulative Percent Revision of Primary 10	otal Reverse Shoulder Replacement by ASA Score (Primary Diagnosis	
	OA)		

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	7 Yrs
ASA 1	359	301	240	166	118	69	13
ASA 2	5317	4271	3276	2407	1599	985	183
ASA 3	6235	4790	3485	2390	1564	906	144
ASA 4	366	270	205	143	96	54	14

Note: Restricted to modern prostheses


Table ST52 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis OA)

BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs
Underweight	3	59	3.5 (0.9, 13.3)	5.9 (1.9, 17.5)	5.9 (1.9, 17.5)	5.9 (1.9, 17.5)	
Normal	32	1548	1.2 (0.8, 2.0)	2.3 (1.6, 3.4)	2.6 (1.8, 3.7)	2.9 (2.0, 4.2)	2.9 (2.0, 4.2)
Pre Obese	94	3497	2.0 (1.6, 2.6)	2.8 (2.3, 3.5)	3.1 (2.5, 3.9)	3.4 (2.7, 4.2)	3.8 (3.0, 4.9)
Obese Class 1	67	2776	1.9 (1.4, 2.5)	2.5 (1.9, 3.2)	3.0 (2.3, 3.8)	3.1 (2.4, 4.0)	3.1 (2.4, 4.0)
Obese Class 2	38	1429	2.4 (1.7, 3.4)	2.7 (1.9, 3.8)	3.1 (2.3, 4.4)	3.1 (2.3, 4.4)	3.5 (2.5, 5.1)
Obese Class 3	23	830	2.2 (1.4, 3.5)	3.0 (1.9, 4.6)	3.3 (2.2, 5.2)	3.8 (2.4, 5.9)	3.8 (2.4, 5.9)
TOTAL	257	10139					

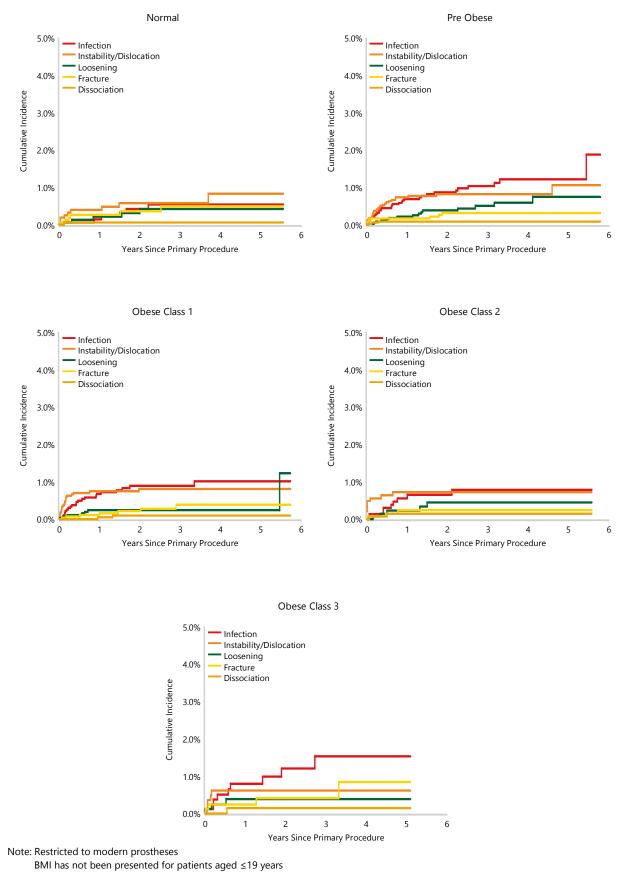
Note: Restricted to modern prostheses

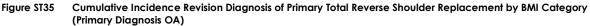
BMI has not been presented for patients aged ≤19 years

Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis Figure ST34 OA)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs
Normal	1548	1171	843	554	275	107
Pre Obese	3497	2636	1845	1182	621	242
Obese Class 1	2776	2117	1450	869	489	185
Obese Class 2	1429	1024	705	447	243	93
Obese Class 3	830	602	411	250	129	48

Note: Restricted to modern prostheses


BMI has not been presented for patients aged \leq 19 years


Entire Period: HR=1.12 (0.75, 1.67),p=0.587

Entire Period: HR=1.00 (0.66, 1.53),p=0.990

Entire Period: HR=1.22 (0.76, 1.96),p=0.411

Entire Period: HR=1.30 (0.76, 2.24),p=0.338

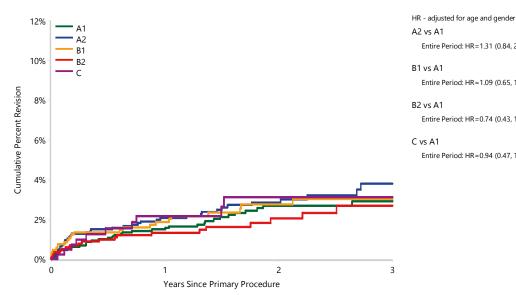
Table ST53 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (Primary Diagnosis OA)

Glenoid Morphology	N Revised	N Total	1 Yr	2 Yrs	3 Yrs
A1	37	1798	1.5 (1.0, 2.2)	2.7 (1.9, 3.7)	2.9 (2.1, 4.1)
A2	41	1605	2.1 (1.5, 3.0)	2.9 (2.1, 4.0)	3.8 (2.7, 5.4)
B1	24	1065	1.9 (1.2, 3.0)	2.7 (1.8, 4.2)	3.0 (2.0, 4.6)
B2	21	1174	1.3 (0.8, 2.2)	2.0 (1.3, 3.3)	2.7 (1.6, 4.4)
С	10	435	2.2 (1.1, 4.3)	3.1 (1.6, 5.8)	3.1 (1.6, 5.8)
TOTAL	133	6077			

Note: Restricted to modern prostheses

35 procedures have been excluded where a glenoid morphology of B3 was recorded

Figure ST36 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (Primary Diagnosis OA)


A2 vs A1

Entire Period: HR=1.31 (0.84, 2.05),p=0.229

Entire Period: HR=1.09 (0.65, 1.83),p=0.731

Entire Period: HR=0.74 (0.43, 1.27),p=0.272

Entire Period: HR=0.94 (0.47, 1.90),p=0.867

Number at Risk 0 Yr 1 Yr 2 Yrs 3 Yrs 1798 A1 1257 726 294 1605 A2 1095 613 240 Β1 1065 679 379 156 B2 1174 789 428 150 С 435 280 158 60

OUTCOME FOR OSTEOARTHRITIS – PROSTHESIS CHARACTERISTICS

Fixation

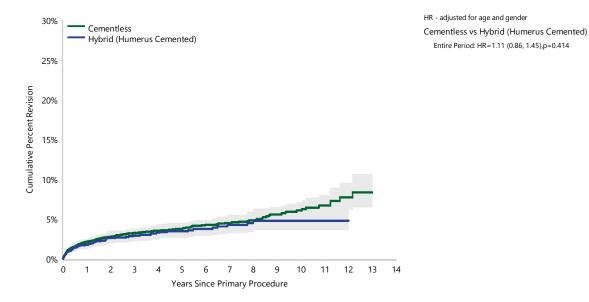
Fixation is not a risk factor for revision of primary total reverse shoulder replacement. There is no difference between hybrid (humerus cemented) and cementless humeral stems (Table ST54 and Figure ST37).

Type of Polyethylene

Non XLPE is the most common type of polyethylene used in primary total reverse shoulder replacement for the management of osteoarthritis. There is no difference in the cumulative percent revision when the different types of polyethylene are compared (Table ST55 and Figure ST38). The reasons for revision for the different polyethylene types are presented in Figure ST39.

Glenosphere Size

Glenosphere sizes <38mm have a higher rate of revision compared to 38-40mm and >40mm sizes (Table ST57 and Figure ST40). The cumulative incidence for the most common reasons for revision of the three different glenosphere sizes is presented in Figure ST41. Glenosphere sizes <38mm have a higher rate of revision.


The outcomes of the most commonly used primary total reverse shoulder prostheses are listed in Table ST58.

The outcomes for the most used prosthesis combinations using cementless fixation are listed in Table ST59. The most commonly used prosthesis combinations using hybrid (humerus cemented) fixation are listed in Table ST60.

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Cemented	2	87	0.0 (0.0, 0.0)	1.3 (0.2, 9.1)	3.3 (0.8, 12.9)	3.3 (0.8, 12.9)	3.3 (0.8, 12.9)	
Cementless	418	12739	2.1 (1.9, 2.4)	3.2 (2.9, 3.6)	3.8 (3.4, 4.2)	4.5 (4.0, 5.1)	6.1 (5.2, 7.1)	
Hybrid (Glenoid Cemented)	2	64	1.6 (0.2, 10.6)	3.7 (0.9, 14.5)	3.7 (0.9, 14.5)			
Hybrid (Humerus Cemented)	66	2036	1.8 (1.3, 2.5)	2.9 (2.2, 3.8)	3.5 (2.7, 4.5)	4.3 (3.3, 5.5)	4.8 (3.6, 6.3)	
TOTAL	488	14926					_	

Table ST54 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA)

Figure ST37 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Cementless	12739	10264	6118	3251	1546	503	8
Hybrid (Humerus Cemented)	2036	1758	1230	794	482	140	0

Note: Only fixations with over 100 procedures have been listed Restricted to modern prostheses

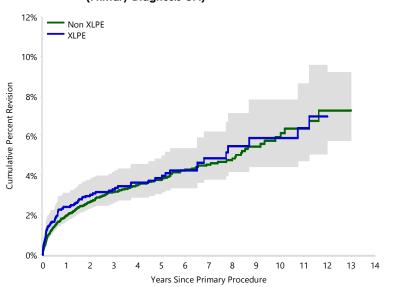
HR - adjusted for age and gender

Entire Period: HR=0.89 (0.71, 1.13),p=0.354

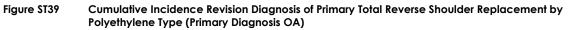
Non XLPE vs XLPE

Iddle 2155	(Primary Diag	gnosis OA)	Primary Torc	a keverse snot	uaer kepiace	ment by Polye	enviene iype	
Polyeth	iylene Type	N N Revised Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Y

Polyethylene Type	Revised	Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Non XLPE	317	9470	2.0 (1.7, 2.3)	3.2 (2.8, 3.6)	3.8 (3.3, 4.2)	4.6 (4.0, 5.2)	5.9 (5.0, 7.0)	
XLPE	89	2481	2.4 (1.9, 3.1)	3.3 (2.6, 4.2)	3.9 (3.1, 4.9)	4.9 (3.8, 6.2)	5.9 (4.4, 7.8)	
TOTAL	406	11951						


Development Development of Defense and the Development of Development by Developm

Note: Restricted to modern prostheses


........

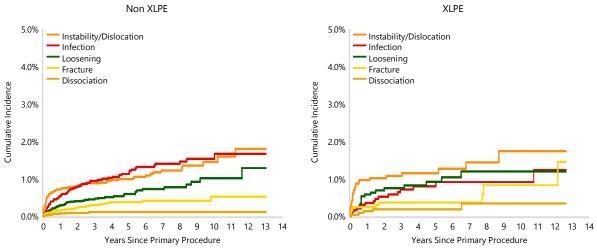
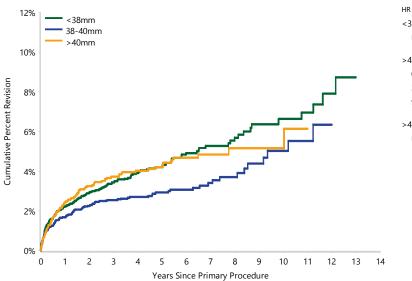

Table CTCC

Figure ST38 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (Primary Diagnosis OA)

10 Yrs Number at Risk 3 Yrs 0 Yr 1 Yr 5 Yrs 7 Yrs 14 Yrs Non XLPE 9470 7826 4950 2876 1546 463 4 XLPE 2481 1960 1279 766 407 195 4

Note: Restricted to modern prostheses


Table ST56 Table no longer provided

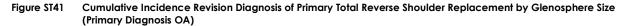
g								
Glenosphere Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<38mm	198	5166	2.2 (1.8, 2.7)	3.4 (2.9, 4.0)	4.2 (3.6, 4.9)	5.3 (4.5, 6.2)	6.6 (5.5, 8.0)	
38-40mm	153	5870	1.7 (1.4, 2.0)	2.6 (2.2, 3.0)	2.9 (2.5, 3.5)	3.4 (2.8, 4.1)	5.0 (3.8, 6.6)	
>40mm	130	3668	2.4 (2.0, 3.0)	3.7 (3.1, 4.5)	4.2 (3.5, 5.1)	4.9 (4.0, 5.9)	5.2 (4.1, 6.4)	
TOTAL	481	14704						

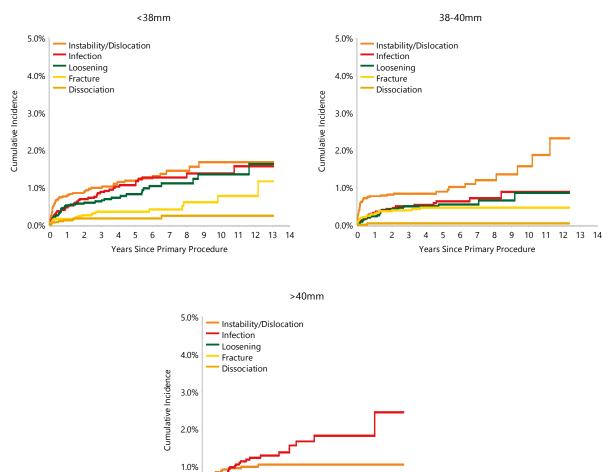
Table ST57 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA)

Note: Excludes 222 procedures with unknown glenosphere size Restricted to modern prostheses

Figure ST40 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA)

- HR adjusted for age and gender
- <38mm vs 38-40mm
- Entire Period: HR=1.40 (1.13, 1.73),p=0.001


>40mm vs 38-40mm

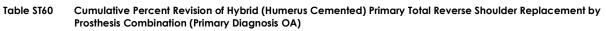

0 - 3Mth: HR=0.77 (0.52, 1.13),p=0.180 3Mth - 9Mth: HR=1.19 (0.76, 1.86),p=0.450 9Mth+: HR=0.98 (0.70, 1.37),p=0.914

>40mm vs <38mm Entire Period: HR=0.68 (0.53, 0.86),p=0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<38mm	5166	4242	2782	1668	914	349	8
38-40mm	5870	4805	2919	1535	719	218	0
>40mm	3668	2993	1743	897	437	97	0

Note: Excludes 222 procedures with unknown glenosphere size Restricted to modern prostheses

_				_	_	_	_	_	_
Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	64	1338	2.0 (1.4, 2.9)	3.4 (2.5, 4.6)	4.1 (3.1, 5.5)	5.8 (4.5, 7.6)	7.7 (5.6, 10.6)	
	Perform Reversed	0	40	0.0 (0.0, 0.0)					
Affinis	Affinis	13	547	1.6 (0.8, 3.2)	2.8 (1.6, 4.9)				
AltiVate Reverse	RSP	1	122						
Ascend Flex	Aequalis	22	787	2.0 (1.2, 3.3)	3.9 (2.5, 6.0)	4.6 (2.8, 7.5)			
	Perform Reversed	1	82	2.2 (0.3, 14.4)					
Comprehensive	Comprehensive Reverse	19	1208	1.2 (0.7, 2.0)	1.8 (1.1, 2.9)	2.6 (1.5, 4.5)			
	Custom Made (Comprehensive)	0	34	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Delta Xtend	Delta Xtend	134	4171	1.8 (1.5, 2.3)	2.7 (2.3, 3.3)	3.1 (2.6, 3.8)	3.8 (3.1, 4.6)	5.0 (4.0, 6.3)	
Equinoxe	Equinoxe	34	1396	2.0 (1.4, 3.0)	3.2 (2.3, 4.6)	3.7 (2.5, 5.4)			
Global Unite	Delta Xtend	8	264	0.9 (0.2, 3.4)	4.3 (2.1, 8.5)	4.3 (2.1, 8.5)			
MSS	MSS	0	40	0.0 (0.0, 0.0)					
RSP	RSP	21	588	2.9 (1.8, 4.7)	3.8 (2.5, 5.9)				
SMR	Custom Made (Lima)	3	25	13.1 (4.4, 35.7)					
	SMR Axioma	4	67	3.5 (0.9, 13.3)	10.2 (3.7, 26.2)				
	SMR L1	130	3459	2.7 (2.2, 3.3)	3.6 (3.0, 4.3)	3.9 (3.2, 4.7)	4.7 (3.8, 5.8)	5.7 (4.4, 7.4)	
Trabecular Metal	Comprehensive Reverse	2	68	1.5 (0.2, 10.3)	8.1 (1.6, 35.3)				
	Trabecular Metal	24	646	1.8 (1.0, 3.2)	2.9 (1.8, 4.7)	4.4 (2.9, 6.6)	4.4 (2.9, 6.6)	5.4 (3.3, 8.7)	
Other (10)		8	44	19.1 (9.4, 36.5)	19.1 (9.4, 36.5)				
TOTAL		488	14926						


Table ST58 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Note: Only combinations with over 25 procedures have been listed Restricted to modern prostheses

Table ST59 Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	54	1028	2.1 (1.4, 3.2)	3.8 (2.7, 5.2)	4.5 (3.3, 6.0)	6.5 (4.9, 8.6)	8.5 (5.9, 12.1)	
	Perform Reversed	0	35	0.0 (0.0, 0.0)					
Affinis	Affinis	8	322	1.4 (0.5, 3.7)	2.8 (1.3, 5.9)				
AltiVate Reverse	RSP	1	113						
Ascend Flex	Aequalis	21	724	2.0 (1.2, 3.4)	4.1 (2.6, 6.4)	4.9 (2.9, 8.1)			
	Perform Reversed	1	73	2.5 (0.4, 16.5)					
Comprehensive	Comprehensive Reverse	18	1161	1.2 (0.7, 2.1)	1.9 (1.1, 3.1)	2.3 (1.3, 3.9)			
	Custom Made (Comprehensive)	0	33	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Delta Xtend	Delta Xtend	102	3000	2.0 (1.6, 2.6)	3.0 (2.4, 3.7)	3.4 (2.7, 4.1)	3.9 (3.1, 4.8)	5.8 (4.3, 7.7)	
Equinoxe	Equinoxe	31	1333	2.0 (1.3, 3.0)	3.1 (2.1, 4.5)	3.5 (2.3, 5.4)			
Global Unite	Delta Xtend	6	233	1.0 (0.2, 3.8)	3.5 (1.6, 7.8)	3.5 (1.6, 7.8)			
MSS	MSS	0	40	0.0 (0.0, 0.0)					
RSP	RSP	18	499	3.0 (1.8, 5.0)	3.9 (2.4, 6.2)				
SMR	Custom Made (Lima)	3	25	13.1 (4.4, 35.7)					
	SMR Axioma	3	65	3.5 (0.9, 13.6)	6.8 (2.1, 20.6)				
	SMR L1	124	3367	2.6 (2.1, 3.2)	3.5 (2.9, 4.2)	3.8 (3.2, 4.6)	4.6 (3.7, 5.7)	5.7 (4.3, 7.4)	
Trabecular Metal	Comprehensive Reverse	2	65	1.6 (0.2, 10.7)	8.1 (1.6, 35.3)				
	Trabecular Metal	20	586	1.8 (1.0, 3.3)	2.6 (1.6, 4.4)	4.0 (2.5, 6.2)	4.0 (2.5, 6.2)	5.1 (2.9, 8.9)	
Other (8)		6	37	15.8 (6.8, 34.4)	15.8 (6.8, 34.4)				
TOTAL		418	12739						

Note: Only combinations with over 25 procedures have been listed Restricted to modern prostheses

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	10	289	1.8 (0.7, 4.2)	2.2 (1.0, 5.0)	3.3 (1.7, 6.7)	4.0 (2.1, 7.8)		
Affinis	Affinis	4	207	2.0 (0.8, 5.2)	2.0 (0.8, 5.2)				
Ascend Flex	Aequalis	1	59	1.8 (0.2, 11.8)	1.8 (0.2, 11.8)	1.8 (0.2, 11.8)			
Comprehensive	Comprehensive Reverse	1	41	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	7.1 (1.0, 40.9)			
Delta Xtend	Delta Xtend	31	1112	1.4 (0.8, 2.3)	2.3 (1.5, 3.4)	2.6 (1.7, 3.7)	3.5 (2.4, 5.1)	3.8 (2.6, 5.6)	
Equinoxe	Equinoxe	3	61	3.9 (1.0, 14.6)	6.7 (2.2, 19.8)				
Global Unite	Delta Xtend	2	29	0.0 (0.0, 0.0)	10.9 (2.8, 37.8)	10.9 (2.8, 37.8)			
RSP	RSP	3	85	2.4 (0.6, 9.4)	3.9 (1.3, 11.5)	3.9 (1.3, 11.5)			
SMR	SMR L1	5	67	4.6 (1.5, 13.6)	8.3 (3.5, 18.9)	8.3 (3.5, 18.9)	8.3 (3.5, 18.9)		
Trabecular Metal	Trabecular Metal	4	51	2.0 (0.3, 13.1)	6.7 (2.2, 19.6)	9.9 (3.8, 24.6)	9.9 (3.8, 24.6)	9.9 (3.8, 24.6)	
Other (11)		2	35	8.3 (2.0, 31.1)					
TOTAL		66	2036						

Note: Only combinations with over 25 procedures have been listed Restricted to modern prostheses

OUTCOME FOR ROTATOR CUFF ARTHROPATHY – PATIENT CHARACTERISTICS

Age and Gender

For the diagnosis of rotator cuff arthropathy, age is not a risk factor for revision (Table ST61 and Figure ST42).

Males have a higher rate of revision compared to females (Table ST62 and Figure ST43).

The increase in the rate of revision is due to a higher cumulative incidence of instability/ dislocation and infection (Figure ST44).

ASA and BMI

There is no difference in the rate of revision when patients with ASA scores 2 and 3 are compared to patients with an ASA score of 1. Patients with an ASA score of 4 have a higher risk of revision than those with an ASA score of 1 (Table ST63 and Figure ST45). The most common reasons for revision for the different ASA scores are presented in Figure ST46.

Pre-obese patients have a lower risk of revision compared to patients with a normal BMI. There is no difference in the rate of revision when patients in obese class 1, 2, and 3 are compared to patients with a normal BMI (Table ST64 and Figure ST47). The most common reasons for revision for the different BMI categories are shown in Figure ST48. The rate of revision for instability/ dislocation increases with increasing BMI class.

Glenoid Morphology

The rate of instability/dislocation increases with increasing BMI class.

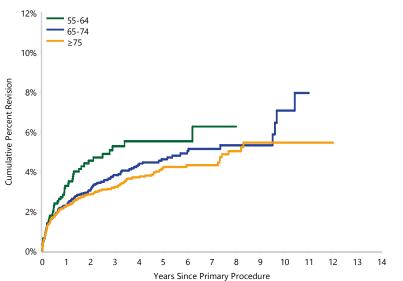

The Registry has glenoid morphology data on 6,123 primary total reverse shoulder replacements undertaken for rotator cuff arthropathy. The distribution of the different morphology categories is presented in Table ST65. The category of glenoid morphology is not a risk factor for revision (Figure ST49).

Table ST61 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Rotator Cuff Arthropathy)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<55	5	116	3.5 (1.3, 9.1)					
55-64	50	1102	3.3 (2.3, 4.6)	5.3 (4.0, 7.0)	5.5 (4.1, 7.4)	6.3 (4.4, 8.8)		
65-74	178	4880	2.3 (1.9, 2.8)	3.8 (3.2, 4.5)	4.6 (3.9, 5.4)	5.1 (4.3, 6.1)	7.1 (5.2, 9.6)	
≥75	205	6141	2.3 (1.9, 2.7)	3.2 (2.8, 3.7)	4.2 (3.6, 4.8)	4.3 (3.7, 5.0)	5.5 (4.5, 6.6)	
TOTAL	438	12239						

Note: Restricted to modern prostheses

Figure ST42 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Rotator Cuff Arthropathy)

HR - adjusted for gender 55-64 vs ≥75 Entire Period: HR=1.30 (0.95, 1.77),p=0.102

55-64 vs 65-74 Entire Period: HR=1.21 (0.88, 1.66),p=0.232

65-74 vs ≥75 Entire Period: HR=1.07 (0.87, 1.31),p=0.508

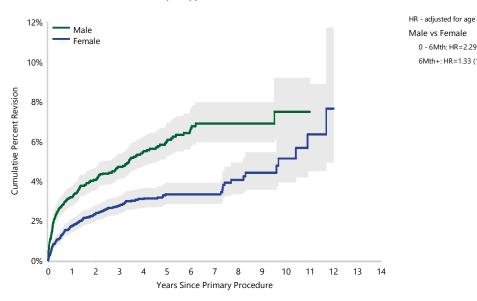
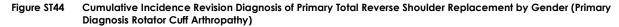
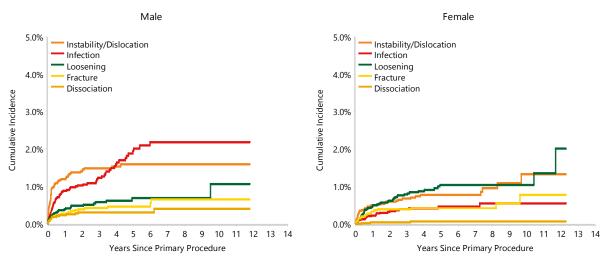

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
55-64	1102	843	451	202	94	24	0
65-74	4880	3835	2167	1142	587	130	5
≥75	6141	5051	2994	1650	802	181	1

Table ST62 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Rotator Cuff Arthropathy)

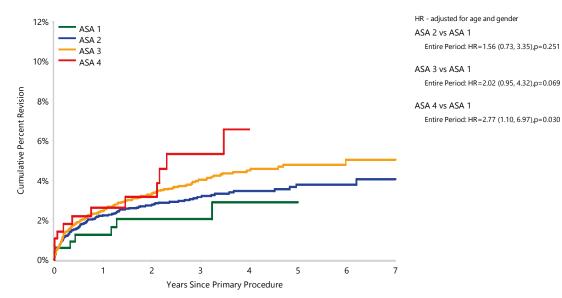
Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	253	5488	3.2 (2.7, 3.7)	4.7 (4.1, 5.4)	6.0 (5.2, 6.8)	6.9 (6.0, 7.9)	7.5 (6.1, 9.2)	
Female	185	6751	1.7 (1.4, 2.1)	2.8 (2.4, 3.2)	3.3 (2.8, 3.9)	3.3 (2.8, 3.9)	5.1 (3.9, 6.7)	
TOTAL	438	12239						


Note: Restricted to modern prostheses

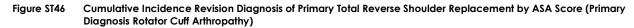


0 - 6Mth: HR=2.29 (1.72, 3.04),p<0.001 6Mth+: HR=1.33 (1.02, 1.74),p=0.034

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	5488	4277	2338	1180	551	124	5
Female	6751	5537	3312	1832	940	213	1


Note: Restricted to modern prostheses

ASA Score	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	7 Yrs
ASA 1	7	334	1.3 (0.5, 3.3)	2.0 (0.9, 4.5)	2.0 (0.9, 4.5)	2.9 (1.3, 6.4)	2.9 (1.3, 6.4)	
ASA 2	130	4529	2.2 (1.8, 2.7)	2.8 (2.3, 3.3)	3.2 (2.6, 3.8)	3.4 (2.9, 4.1)	3.8 (3.1, 4.6)	4.1 (3.2, 5.1)
ASA 3	183	5328	2.5 (2.1, 2.9)	3.3 (2.8, 3.9)	4.0 (3.4, 4.7)	4.5 (3.8, 5.2)	4.8 (4.1, 5.6)	5.0 (4.2, 6.0)
ASA 4	13	282	2.6 (1.3, 5.4)	3.2 (1.6, 6.3)	5.3 (2.9, 9.7)	6.6 (3.6, 12.0)		
ASA 5	0	1						
TOTAL	333	10474						


Table ST63 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Primary Diagnosis Rotator Cuff Arthropathy)

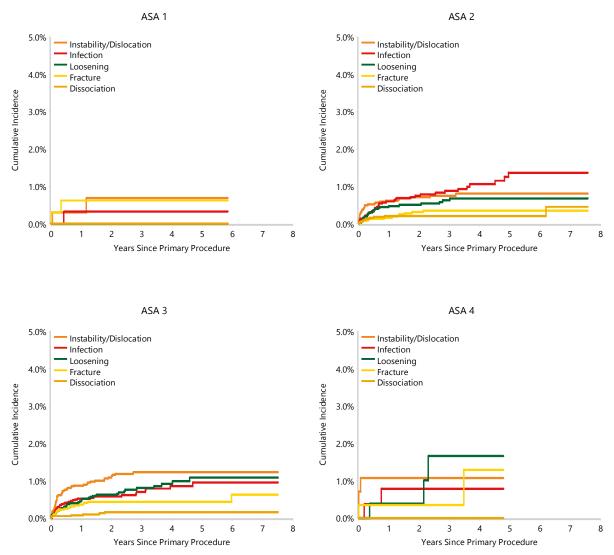
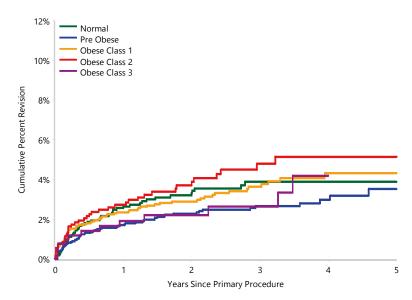

Note: Restricted to modern prostheses

Figure ST45 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Primary Diagnosis Rotator Cuff Arthropathy)

Number at Risk 0 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 7 Yrs ASA 1 ASA 2 ASA 3 ASA 4


Table \$T64 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis Rotator Cuff Arthropathy)

BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs
Underweight	1	60	1.7 (0.2, 11.6)	1.7 (0.2, 11.6)	1.7 (0.2, 11.6)	1.7 (0.2, 11.6)
Normal	49	1567	2.6 (1.9, 3.6)	3.3 (2.5, 4.4)	3.9 (2.9, 5.2)	3.9 (2.9, 5.2)
Pre Obese	70	3107	1.7 (1.3, 2.3)	2.3 (1.8, 2.9)	2.7 (2.1, 3.4)	3.0 (2.3, 3.9)
Obese Class 1	75	2475	2.4 (1.8, 3.1)	2.9 (2.3, 3.7)	3.6 (2.9, 4.6)	4.3 (3.3, 5.6)
Obese Class 2	40	1076	2.7 (1.9, 3.9)	3.9 (2.8, 5.4)	4.8 (3.5, 6.6)	5.1 (3.7, 7.2)
Obese Class 3	13	514	1.9 (1.0, 3.7)	2.2 (1.2, 4.1)	2.6 (1.4, 4.8)	4.2 (2.2, 7.9)
TOTAL	248	8799				

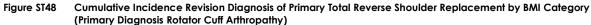
Note: Restricted to modern prostheses

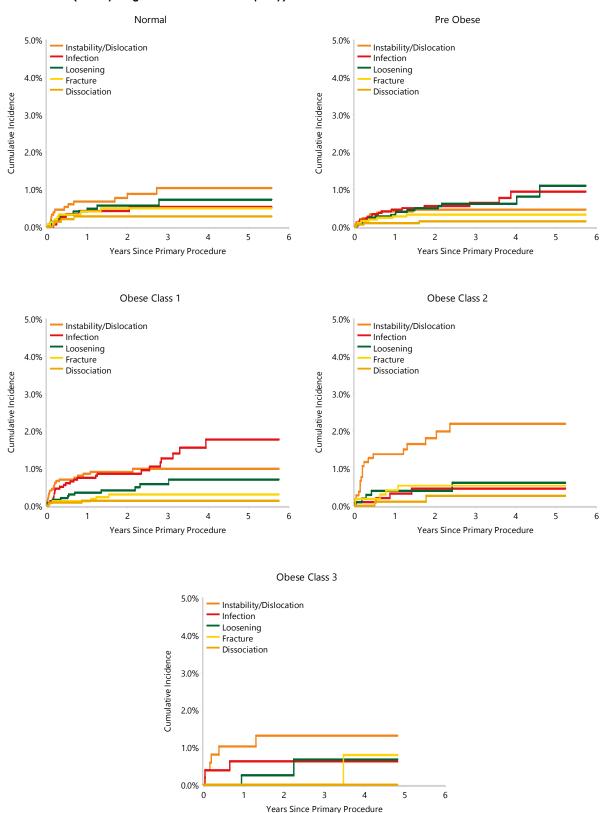
BMI has not been presented for patients aged ≤19 years

Figure ST47 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis Rotator Cuff Arthropathy)

HR - adjusted for age and gender Pre Obese vs Normal Entire Period: HR=0.68 (0.47, 0.98),p=0.037

Obese Class 1 vs Normal Entire Period: HR=0.92 (0.64, 1.32),p=0.638


Obese Class 2 vs Normal Entire Period: HR=1.16 (0.76, 1.77),p=0.497

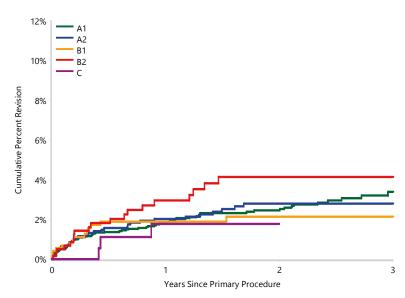

Obese Class 3 vs Normal Entire Period: HR=0.83 (0.45, 1.54),p=0.551

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs
Normal	1567	1194	834	493	261
Pre Obese	3107	2333	1598	990	477
Obese Class 1	2475	1814	1254	753	390
Obese Class 2	1076	786	537	314	149
Obese Class 3	514	379	248	154	80

Note: Restricted to modern prostheses

BMI has not been presented for patients aged ≤19 years

BMI has not been presented for patients aged ≤19 years


Table ST65 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (Primary Diagnosis Rotator Cuff Arthropathy)

Glenoid Morphology	N Revised	N Total	1 Yr	2 Yrs	3 Yrs
A1	75	3157	1.8 (1.4, 2.4)	2.5 (1.9, 3.1)	3.4 (2.6, 4.4)
A2	32	1425	2.0 (1.4, 3.0)	2.8 (2.0, 4.0)	2.8 (2.0, 4.0)
B1	14	738	1.9 (1.1, 3.2)	2.2 (1.3, 3.6)	2.2 (1.3, 3.6)
B2	19	590	3.0 (1.8, 4.9)	4.1 (2.6, 6.5)	4.1 (2.6, 6.5)
С	4	213	1.8 (0.6, 5.4)	1.8 (0.6, 5.4)	
TOTAL	144	6123			

Note: Restricted to modern prostheses

11 procedures have been excluded where a glenoid morphology of B3 was recorded

Figure ST49 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (Primary Diagnosis Rotator Cuff Arthropathy)

HR - adjusted for age and gender A2 vs A1

Entire Period: HR=1.01 (0.67, 1.53),p=0.956

B1 vs A1

0 - 3Mth: HR=1.07 (0.50, 2.27),p=0.863 3Mth+: HR=0.64 (0.27, 1.49),p=0.301

B2 vs A1

Entire Period: HR=1.48 (0.89, 2.44),p=0.130

C vs A1

Entire Period: HR=0.85 (0.31, 2.31),p=0.743

2 Yrs Number at Risk 3 Yrs 0 Yr 1 Yr 2174 1312 491 A1 3157 A2 970 548 217 1425 B1 738 484 283 120 B2 590 385 205 75 С 77 213 140 33

OUTCOME FOR ROTATOR CUFF ARTHROPATHY – PROSTHESIS CHARACTERISTICS

Fixation

Fixation is not a risk factor for revision (Table ST66 and Figure ST50).

Type of Polyethylene

Non XLPE is the most common type of polyethylene used in primary total reverse shoulder replacement for the management of rotator cuff arthropathy. There is no difference in the cumulative percent revision when the different types of polyethylene are compared (Table ST67 and Figure ST51). The reasons for revision of the different polyethylene types are presented in Figure ST52.

Glenosphere Size

Glenosphere size does not affect the risk of revision when total reverse shoulder replacement is used for the management of rotator cuff arthropathy (Table ST69 and Figure ST53). The cumulative incidence of the most common reasons for revision for the different glenosphere sizes is presented in Figure ST54.

The outcomes of the most commonly used prosthesis combinations are listed in Table ST70. The most commonly used prosthesis combinations using cementless fixation for rotator cuff arthropathy are listed in Table ST71. The most commonly used prosthesis combinations using hybrid (humerus cemented) fixation for rotator cuff arthropathy are listed in Table ST72.

HR - adjusted for age and gender

Cementless vs Hybrid (Humerus Cemented)


Entire Period: HR=1.05 (0.76, 1.45),p=0.772

Table ST66 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy)

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Cemented	1	22	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)		
Cementless	394	10924	2.4 (2.1, 2.7)	3.6 (3.3, 4.1)	4.6 (4.1, 5.1)	4.9 (4.4, 5.5)	6.3 (5.2, 7.5)	
Hybrid (Glenoid Cemented)	3	83	3.8 (1.2, 11.4)	3.8 (1.2, 11.4)				
Hybrid (Humerus Cemented)	40	1210	2.3 (1.6, 3.4)	3.5 (2.5, 4.8)	3.7 (2.6, 5.0)	4.2 (3.0, 5.8)	5.0 (3.3, 7.5)	
TOTAL	438	12239						

Note: Restricted to modern prostheses

Figure ST50 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy)

Number at Risk 0 Yr 3 Yrs 5 Yrs 7 Yrs 10 Yrs 14 Yrs 1 Yr Cementless 10924 8744 5024 2605 1267 293 6 Hybrid (Humerus Cemented) 993 582 391 216 42 0 1210

Note: Only fixations with over 100 procedures have been listed Restricted to modern prostheses

Table ST67 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (Primary Diagnosis Rotator Cuff Arthropathy)

Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Non XLPE	296	8027	2.3 (2.0, 2.7)	3.7 (3.2, 4.1)	4.5 (4.0, 5.1)	4.9 (4.3, 5.6)	6.1 (5.1, 7.3)	
XLPE	56	1641	2.4 (1.7, 3.3)	3.1 (2.3, 4.2)	4.7 (3.5, 6.3)	4.7 (3.5, 6.3)	7.0 (4.5, 10.6)	
TOTAL	352	9668						

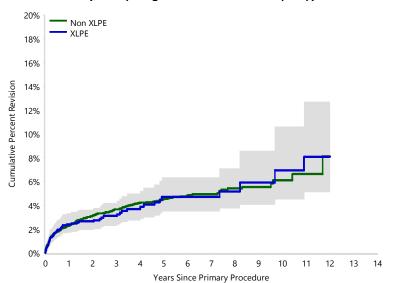
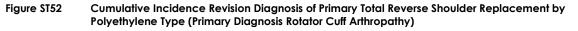

Note: Restricted to modern prostheses

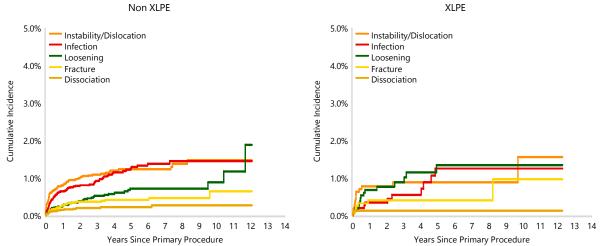
Figure ST51 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (Primary Diagnosis Rotator Cuff Arthropathy)


HR - adjusted for age and gender

Entire Period: HR=1.01 (0.75, 1.34),p=0.970

Non XLPE vs XLPE

Number at Risk 0 Yr 3 Yrs 5 Yrs 10 Yrs 14 Yrs 1 Yr 7 Yrs 2 Non XLPE 8027 6579 3934 2211 1145 247 XLPE 1641 693 421 236 4 1232 86



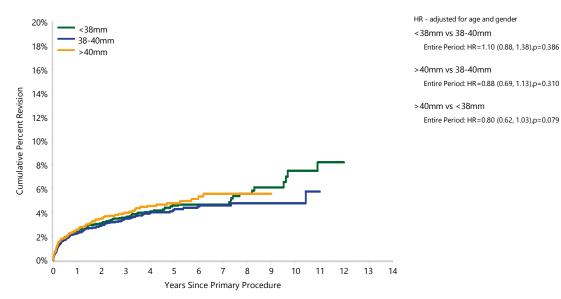

Table ST68Table no longer provided

Table ST69	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary
	Diagnosis Rotator Cuff Arthropathy)

Glenosphere Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<38mm	152	4032	2.5 (2.0, 3.1)	3.6 (3.0, 4.3)	4.6 (3.8, 5.5)	4.7 (3.9, 5.6)	7.5 (5.7, 9.8)	
38-40mm	164	4794	2.3 (1.9, 2.7)	3.5 (3.0, 4.1)	4.2 (3.6, 5.0)	4.6 (3.9, 5.5)	4.8 (4.0, 5.7)	
>40mm	121	3234	2.5 (2.0, 3.2)	4.0 (3.3, 4.8)	4.8 (4.0, 5.8)	5.6 (4.5, 6.9)		
TOTAL	437	12060						

Note: Excludes 179 procedures with unknown glenosphere size Restricted to modern prostheses

Figure ST53 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Rotator Cuff Arthropathy)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<38mm	4032	3266	1903	1078	610	170	6
38-40mm	4794	3917	2377	1276	601	132	0
>40mm	3234	2537	1370	658	280	35	0

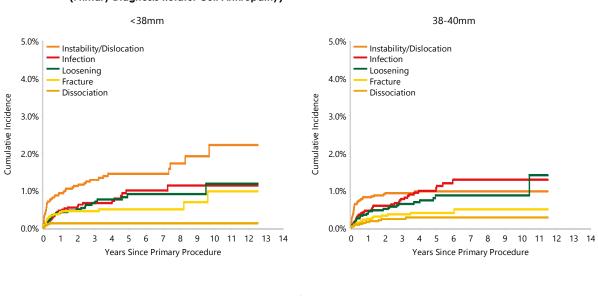
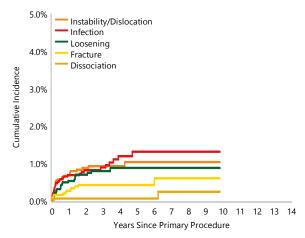



Figure ST54 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Rotator Cuff Arthropathy)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	48	1058	2.4 (1.6, 3.5)	3.7 (2.6, 5.1)	4.8 (3.5, 6.5)	5.0 (3.7, 6.8)	7.8 (5.3, 11.4)	
	Perform Reversed	0	43	0.0 (0.0, 0.0)					
Affinis	Affinis	13	532	2.2 (1.2, 4.0)	3.3 (1.9, 5.7)				
AltiVate Reverse	RSP	5	159	4.1 (1.4, 11.9)					
Ascend Flex	Aequalis	21	723	2.3 (1.3, 3.8)	3.9 (2.5, 6.0)	3.9 (2.5, 6.0)			
	Perform Reversed	2	81	2.7 (0.7, 10.6)					
Comprehensive	Comprehensive Reverse	13	883	1.1 (0.6, 2.1)	1.5 (0.8, 2.8)	3.8 (1.5, 9.7)			
	Trabecular Metal	1	27	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Delta Xtend	Delta Xtend	124	3517	2.0 (1.6, 2.5)	3.2 (2.6, 3.9)	3.9 (3.3, 4.7)	4.5 (3.7, 5.4)	4.6 (3.8, 5.6)	
Equinoxe	Equinoxe	23	937	1.8 (1.1, 3.0)	2.9 (1.8, 4.5)				
Global Unite	Delta Xtend	11	236	2.3 (1.0, 5.5)	4.7 (2.4, 8.8)				
RSP	RSP	20	614	2.8 (1.7, 4.5)	3.7 (2.4, 5.7)				
SMR	SMR L1	112	2648	3.1 (2.5, 3.8)	4.2 (3.4, 5.1)	4.9 (4.0, 5.9)	5.1 (4.2, 6.2)	7.1 (4.9, 10.3)	
Trabecular Metal	Comprehensive Reverse	4	71	3.1 (0.8, 11.7)	13.3 (3.9, 40.1)				
	Trabecular Metal	38	638	4.0 (2.7, 5.8)	5.4 (3.9, 7.5)	5.9 (4.3, 8.2)	6.3 (4.5, 8.7)		
Other (9)		3	72	4.5 (1.5, 13.4)	4.5 (1.5, 13.4)				
TOTAL		438	12239						

Table \$170 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Rotator Cuff Arthropathy)

Note: Only combinations with over 25 procedures have been listed Restricted to modern prostheses

Table \$171 Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Rotator Cuff Arthropathy)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	37	871	2.2 (1.4, 3.4)	3.4 (2.3, 4.9)	4.8 (3.4, 6.7)	4.8 (3.4, 6.7)	7.6 (4.8, 11.7)	
	Perform Reversed	0	32	0.0 (0.0, 0.0)					
Affinis	Affinis	9	311	2.1 (0.9, 4.5)	3.8 (1.9, 7.4)				
AltiVate Reverse	RSP	5	146						
Ascend Flex	Aequalis	20	652	2.3 (1.4, 4.0)	4.1 (2.7, 6.4)				
	Perform Reversed	2	76	3.0 (0.7, 11.4)					
Comprehensive	Comprehensive Reverse	13	872	1.1 (0.6, 2.1)	1.5 (0.8, 2.8)	3.9 (1.5, 9.7)			
	Trabecular Metal	1	27	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Delta Xtend	Delta Xtend	108	2962	2.1 (1.6, 2.7)	3.3 (2.7, 4.1)	4.1 (3.4, 5.0)	4.7 (3.8, 5.7)	4.7 (3.8, 5.7)	
Equinoxe	Equinoxe	23	907	1.9 (1.1, 3.1)	3.0 (1.9, 4.7)				
Global Unite	Delta Xtend	10	218	2.5 (1.0, 5.9)	4.4 (2.2, 8.7)				
RSP	RSP	17	561	2.5 (1.4, 4.2)	3.5 (2.2, 5.5)				
SMR	SMR L1	106	2553	3.0 (2.4, 3.7)	4.1 (3.3, 5.0)	4.8 (3.9, 5.9)	5.0 (4.1, 6.2)	7.1 (4.8, 10.5)	
Trabecular Metal	Comprehensive Reverse	4	70	3.1 (0.8, 11.9)	13.4 (4.0, 40.1)				
	Trabecular Metal	37	598	4.1 (2.7, 6.0)	5.6 (4.0, 7.8)	6.2 (4.4, 8.6)	6.6 (4.7, 9.1)		
Other (8)		2	68	3.0 (0.7, 11.3)	3.0 (0.7, 11.3)				
TOTAL		394	10924						

Note: Only combinations with over 25 procedures have been listed Restricted to modern prostheses

Table ST72 Cumulative Percent Revision of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Rotator Cuff Arthropathy)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	11	183	3.3 (1.5, 7.3)	5.2 (2.7, 9.7)	5.2 (2.7, 9.7)	6.3 (3.4, 11.6)		
Affinis	Affinis	4	203	2.5 (0.9, 6.5)					
Ascend Flex	Aequalis	0	69	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Delta Xtend	Delta Xtend	15	539	1.5 (0.8, 3.0)	2.7 (1.6, 4.7)	3.1 (1.8, 5.2)	3.5 (2.1, 5.9)		
Equinoxe	Equinoxe	0	28	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
RSP	RSP	3	50	6.4 (2.1, 18.6)	6.4 (2.1, 18.6)				
SMR	SMR L1	4	39	7.8 (2.6, 22.2)	10.6 (4.1, 26.0)	10.6 (4.1, 26.0)	10.6 (4.1, 26.0)		
Trabecular Metal	Trabecular Metal	1	36	2.8 (0.4, 18.1)	2.8 (0.4, 18.1)	2.8 (0.4, 18.1)	2.8 (0.4, 18.1)		
Other (9)		2	63	2.1 (0.3, 14.2)	5.3 (1.3, 20.0)				
TOTAL		40	1210						

Note: Only combinations with over 25 procedures have been listed Restricted to modern prostheses

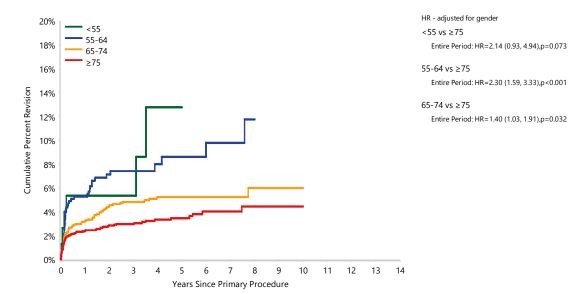
OUTCOME FOR FRACTURE – PATIENT CHARACTERISTICS

Age and Gender

For the diagnosis of fracture, patients aged 55-64 and 65-74 years have a higher risk of revision than patients aged ≥75 years (Table ST73 and Figure ST55).

Males have a higher rate of revision than females in the first 3 months (Table ST74 and Figure ST56). The higher rate of revision for males is due to an increased incidence of revision for instability/dislocation (Figure ST57).

ASA and BMI


There is no difference in revision rates when comparing patients with ASA scores 3 and 4 to patients with an ASA score of 2 (Table ST75 and Figure ST58). The most common reasons for revision for the different ASA scores are presented in Figure ST59. There is no difference in the rate of revision when pre-obese and obese classes 1, 2, and 3 patients are compared to patients with a normal BMI (Table ST76 and Figure ST60). The most common reasons for revision for the different BMI categories are shown in Figure ST61.

Glenoid Morphology

The Registry has glenoid morphology data on 2,094 primary total reverse shoulder replacements undertaken for fracture. The distribution of the different morphology categories is presented in Table ST77. Almost all are in the A1 category, so it is not possible at this time to make a meaningful comparison of outcomes based on the different types of glenoid morphology.

Table \$173 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Fracture)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<55	6	77	5.3 (2.0, 13.6)	5.3 (2.0, 13.6)	12.8 (5.3, 29.1)			
55-64	44	616	5.3 (3.7, 7.4)	7.4 (5.5, 10.0)	8.6 (6.2, 11.8)	9.8 (6.8, 14.0)		
65-74	83	1877	3.2 (2.5, 4.2)	4.8 (3.9, 6.0)	5.2 (4.2, 6.5)	5.2 (4.2, 6.5)	6.0 (4.4, 8.2)	
≥75	79	2601	2.4 (1.9, 3.1)	3.0 (2.4, 3.8)	3.5 (2.7, 4.4)	4.0 (3.1, 5.2)	4.4 (3.3, 6.0)	
TOTAL	212	5171						

Figure \$155 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Fracture)

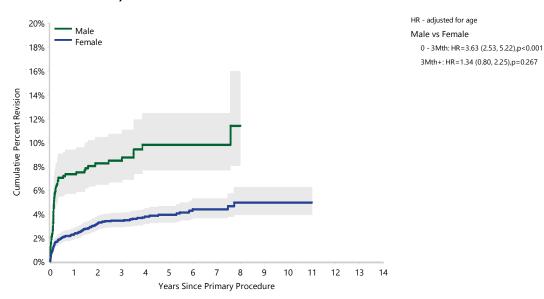
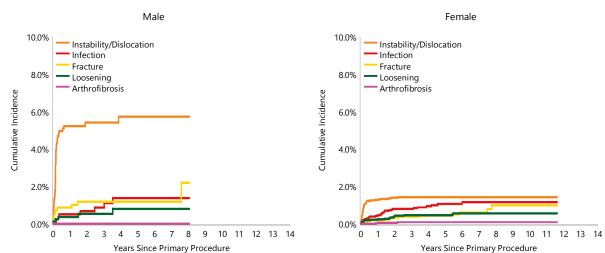

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<55	77	54	29	12	4	2	0
55-64	616	450	232	105	53	19	0
65-74	1877	1490	881	440	184	43	0
≥75	2601	2060	1215	641	293	57	1

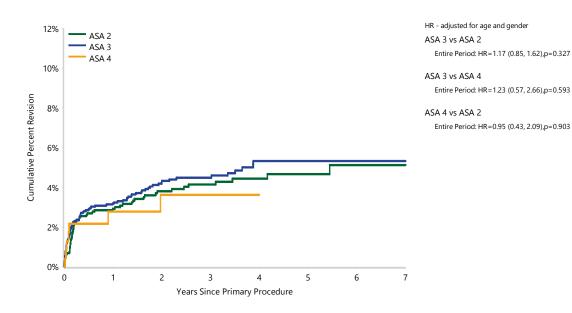
Table ST74 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Fracture)

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Male	69	826	7.3 (5.7, 9.3)	8.4 (6.6, 10.7)	9.8 (7.7, 12.4)	9.8 (7.7, 12.4)		
Female	143	4345	2.3 (1.9, 2.8)	3.4 (2.9, 4.1)	3.9 (3.3, 4.6)	4.4 (3.6, 5.3)	4.9 (3.9, 6.2)	
TOTAL	212	5171						

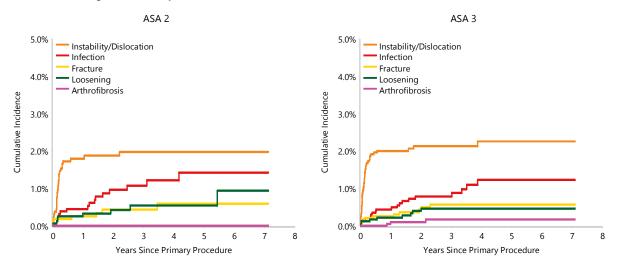
Note: Restricted to modern prostheses

Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 7 Yrs 10 Yrs 14 Yrs Male 826 589 334 154 67 15 0 Female 4345 3465 2023 1044 467 106 1




Figure ST57 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Fracture)

Note: Restricted to modern prostheses


Table ST75	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Primary Diagnosis
	Fracture)

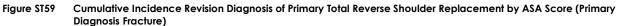
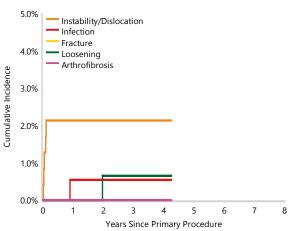

ASA Score	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	7 Yrs
ASA 1	4	104	3.9 (1.5, 10.1)	3.9 (1.5, 10.1)	3.9 (1.5, 10.1)			
ASA 2	62	1607	2.9 (2.2, 3.9)	3.8 (2.9, 4.9)	4.1 (3.2, 5.3)	4.4 (3.4, 5.7)	4.7 (3.6, 6.1)	5.1 (3.8, 6.9)
ASA 3	99	2406	3.2 (2.5, 4.0)	4.3 (3.5, 5.2)	4.5 (3.7, 5.5)	5.3 (4.3, 6.6)	5.3 (4.3, 6.6)	5.3 (4.3, 6.6)
ASA 4	7	237	2.8 (1.2, 6.1)	3.6 (1.7, 7.7)	3.6 (1.7, 7.7)	3.6 (1.7, 7.7)		
TOTAL	172	4354						

Figure ST58 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Primary Diagnosis Fracture)



2 Yrs 4 Yrs Number at Risk 0 Yr 5 Yrs 1 Yr 3 Yrs 7 Yrs ASA 2 1607 1248 959 705 451 269 50 ASA 3 2406 1817 868 569 320 48 1318 ASA 4 237 155 115 70 45 28 2

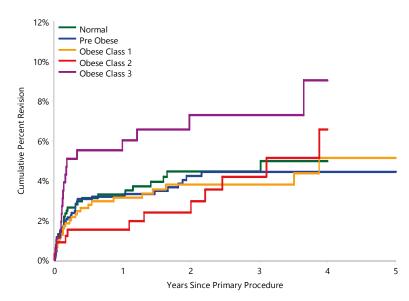


Table S176 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis Fracture)

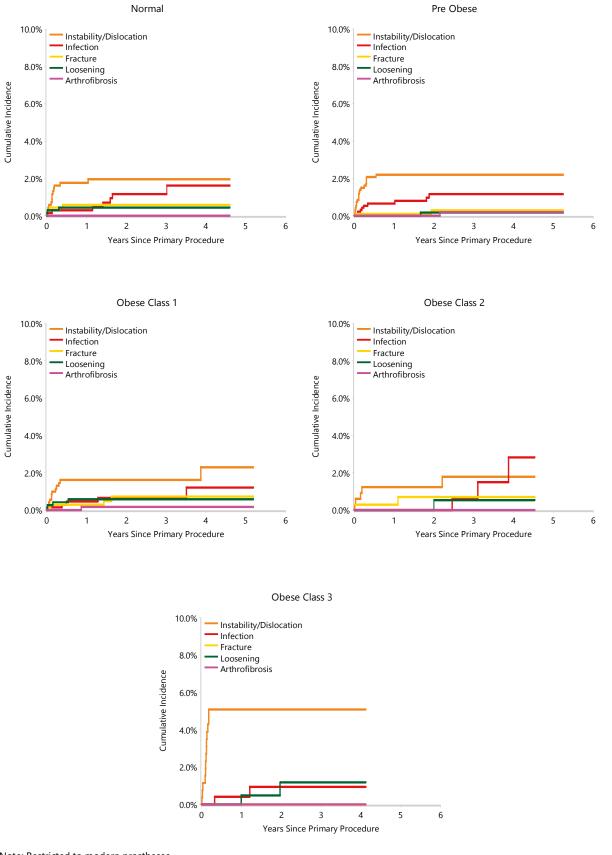
BMI Category	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs
Underweight	1	64	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)
Normal	28	698	3.3 (2.2, 5.0)	4.5 (3.0, 6.5)	4.5 (3.0, 6.5)	5.0 (3.3, 7.4)
Pre Obese	36	947	3.2 (2.2, 4.6)	4.2 (3.0, 5.9)	4.4 (3.2, 6.2)	4.4 (3.2, 6.2)
Obese Class 1	26	717	3.1 (2.1, 4.8)	3.8 (2.5, 5.6)	3.8 (2.5, 5.6)	5.1 (3.2, 8.1)
Obese Class 2	12	336	1.5 (0.6, 3.6)	3.0 (1.5, 5.9)	4.2 (2.2, 7.9)	6.6 (3.4, 12.4)
Obese Class 3	18	262	6.0 (3.7, 9.8)	7.3 (4.5, 11.6)	7.3 (4.5, 11.6)	9.0 (5.3, 15.2)
TOTAL	121	3024				

Note: BMI has not been presented for patients aged ≤19 years Restricted to modern prostheses

Figure ST60 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis Fracture)

HR - adjusted for age and gender Pre Obese vs Normal Entire Period: HR=0.87 (0.53, 1.43),p=0.580

Obese Class 1 vs Normal Entire Period: HR=0.81 (0.47, 1.39),p=0.447


Obese Class 2 vs Normal Entire Period: HR=0.80 (0.40, 1.58),p=0.511

Obese Class 3 vs Normal Entire Period: HR=1.47 (0.80, 2.72),p=0.216

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs
Normal	698	487	328	185	85
Pre Obese	947	707	480	316	155
Obese Class 1	717	514	372	231	121
Obese Class 2	336	240	175	108	61
Obese Class 3	262	187	126	75	45

Note: Restricted to modern prostheses

BMI has not been presented for patients aged ≤19 years

Figure ST61 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis Fracture)

Note: Restricted to modern prostheses

BMI has not been presented for patients aged \leq 19 years

Table ST77 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (Primary Diagnosis Fracture)

Glenoid Morphology	N Revised	N Total	1 Yr	2 Yrs	3 Yrs
A1	60	1773	2.9 (2.2, 3.8)	3.8 (2.9, 5.0)	4.1 (3.2, 5.4)
A2	9	169	4.3 (2.1, 8.8)	7.0 (3.5, 13.7)	
B1	2	80	1.4 (0.2, 9.2)	4.4 (1.0, 18.3)	
B2	1	51	0.0 (0.0, 0.0)	3.7 (0.5, 23.5)	3.7 (0.5, 23.5)
С	0	21	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	
TOTAL	72	2094			

Note: Restricted to modern prostheses

OUTCOME FOR FRACTURE – PROSTHESIS CHARACTERISTICS

Fixation

When cementless fixation is compared to hybrid fixation (humerus cemented) there is no difference in the cumulative percent revision when total reverse shoulder replacement is used for the management of fracture (Table ST78 and Figure ST62

There is no difference in the rate of revision when cementless and hybrid fixation are compared.

Type of Polyethylene

Non XLPE is the most common type of polyethylene used in primary total reverse shoulder replacement for the management of fracture. There is no difference in the cumulative percent revision when the different types of polyethylene are compared (Table ST79 and Figure ST63).

The reasons for revision for the different polyethylene types are presented in Figure ST64.

Glenosphere Size

Glenosphere sizes >40mm have a higher risk of revision compared to <38mm sizes (Table ST81 and Figure ST65). The reasons for revision of the different glenosphere sizes are presented in Figure ST66.

Glenosphere sizes >40mm have a higher risk of revision compared to <38mm sizes.

Prosthesis Types

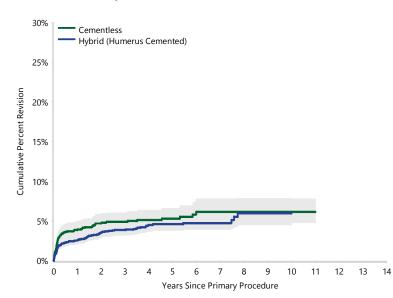

The outcomes of the most commonly used prosthesis combinations in total reverse shoulder replacement for fracture are listed in Table ST82. The cementless prosthesis combinations are listed in Table ST83. The hybrid (humerus cemented) prosthesis combinations are listed in Table ST84.

Table ST78	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis
	Fracture)

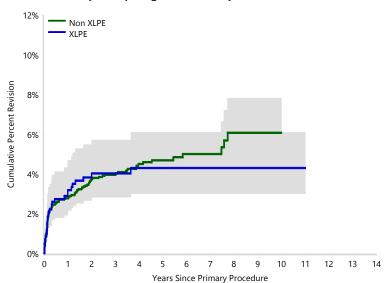
Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Cemented	3	71	4.4 (1.4, 13.0)	4.4 (1.4, 13.0)	4.4 (1.4, 13.0)	4.4 (1.4, 13.0)		
Cementless	83	1709	3.9 (3.1, 5.0)	4.9 (3.9, 6.1)	5.3 (4.2, 6.6)	6.1 (4.8, 7.8)	6.1 (4.8, 7.8)	
Hybrid (Glenoid Cemented)	3	61	5.3 (1.7, 15.8)	5.3 (1.7, 15.8)	5.3 (1.7, 15.8)			
Hybrid (Humerus Cemented)	123	3330	2.6 (2.1, 3.2)	3.9 (3.2, 4.6)	4.6 (3.8, 5.5)	4.7 (3.9, 5.8)	6.0 (4.5, 7.8)	
TOTAL	212	5171						

Note: Restricted to modern prostheses

Figure ST62 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture)

HR - adjusted for age and gender Cementless vs Hybrid (Humerus Cemented) 0 - 2Wk: HR=1.84 (0.92, 3.69),p=0.083 2Wk+: HR=1.09 (0.80, 1.48),p=0.589

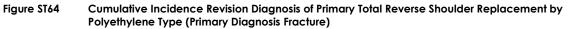
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Cementless	1709	1400	850	436	202	50	0
Hybrid (Humerus Cemented)	3330	2560	1450	736	317	67	1

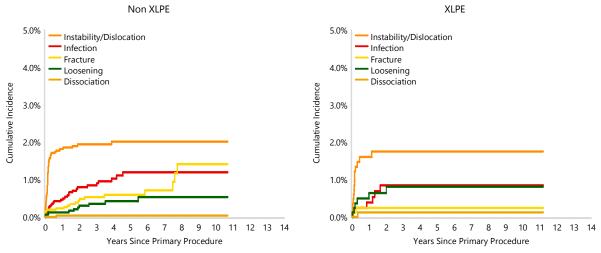

Note: Restricted to modern prostheses

Polyethylene Type		N	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Non XLPE	125	3162	2.8 (2.3, 3.4)	4.0 (3.3, 4.8)	4.7 (3.9, 5.6)	5.0 (4.1, 6.1)	6.1 (4.7, 7.8)	
XLPE	31	840	3.2 (2.2, 4.7)	4.0 (2.8, 5.7)	4.3 (3.0, 6.1)	4.3 (3.0, 6.1)	4.3 (3.0, 6.1)	
TOTAL	156	4002						

Table ST79 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (Primary Diagnosis Fracture)

Note: Restricted to modern prostheses


Figure ST63 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (Primary Diagnosis Fracture)

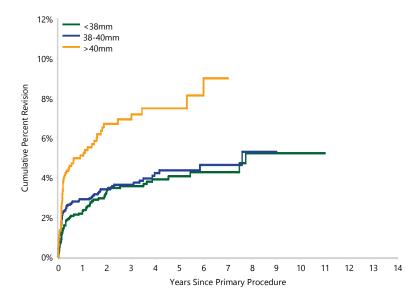


HR - adjusted for age and gender Non XLPE vs XLPE Entire Period: HR=1.08 (0.73, 1.60),p=0.703

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Non XLPE	3162	2512	1496	800	357	69	1
XLPE	840	640	409	242	142	51	0

Note: Restricted to modern prostheses

Note: Restricted to modern prostheses


Table ST80 Table no longer provided

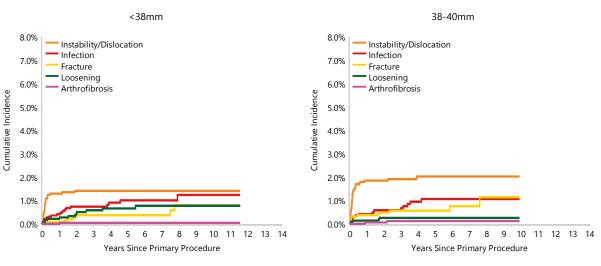
-	-							
Glenosphere Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<38mm	70	2047	2.3 (1.7, 3.1)	3.6 (2.8, 4.6)	4.1 (3.2, 5.2)	4.3 (3.3, 5.5)	5.2 (3.8, 7.2)	
38-40mm	81	2206	2.9 (2.3, 3.7)	3.6 (2.9, 4.6)	4.4 (3.5, 5.5)	4.6 (3.6, 5.9)		
>40mm	59	903	5.1 (3.8, 6.8)	6.9 (5.3, 9.0)	7.5 (5.8, 9.7)	9.0 (6.5, 12.3)		
TOTAL	210	5156						

Table ST81 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)

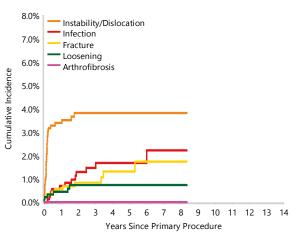
Note: Excludes 15 procedures with unknown glenosphere size Restricted to modern prostheses

Figure ST65 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)

HR - adjusted for age and gender 38-40mm vs <38mm 0 - 3Mth: HR=1.35 (0.91, 2.01),p=0.140 3Mth+: HR=0.87 (0.55, 1.38),p=0.559


>40mm vs <38mm Entire Period: HR=1.45 (1.01, 2.10),p=0.044

>40mm vs 38-40mm Entire Period: HR=1.29 (0.90, 1.85),p=0.167


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
<38mm	2047	1618	991	544	279	78	1
38-40mm	2206	1741	997	495	191	37	0
>40mm	903	688	367	158	63	6	0

Note: Excludes 15 procedures with unknown glenosphere size Restricted to modern prostheses

Note: Restricted to modern prostheses

Table ST82 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	31	898	1.8 (1.1, 3.0)	3.1 (2.1, 4.6)	4.2 (2.8, 6.2)	4.7 (3.1, 7.0)		
Affinis	Affinis	9	282	2.3 (1.0, 5.0)	3.4 (1.7, 6.8)				
Comprehensive	Comprehensive Reverse	8	394	1.7 (0.8, 3.9)	2.3 (1.1, 4.9)				
Delta Xtend	Delta Xtend	60	1242	3.6 (2.7, 4.8)	4.5 (3.5, 5.9)	5.3 (4.1, 6.8)	5.6 (4.3, 7.2)	6.2 (4.5, 8.3)	
Equinoxe	Equinoxe	8	239	2.1 (0.9, 5.0)	4.8 (2.3, 9.9)				
Global Unite	Delta Xtend	6	253	2.1 (0.9, 5.0)	2.7 (1.2, 5.9)				
RSP	RSP	10	176	3.6 (1.7, 8.0)					
SMR	SMR L1	70	1299	4.5 (3.5, 5.8)	5.6 (4.4, 7.1)	5.8 (4.6, 7.3)	6.4 (5.0, 8.2)	6.4 (5.0, 8.2)	
Trabecular Metal	Trabecular Metal	7	244	2.5 (1.2, 5.6)	3.0 (1.5, 6.3)	3.0 (1.5, 6.3)	3.0 (1.5, 6.3)		
Other (11)		3	144	2.3 (0.8, 7.1)					
TOTAL		212	5171						

Note: Only combinations with over 50 procedures have been listed Restricted to modern prostheses

Table ST83 Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	3	56	3.6 (0.9, 13.5)	3.6 (0.9, 13.5)	8.2 (2.4, 26.1)	8.2 (2.4, 26.1)		
Comprehensive	Comprehensive Reverse	2	82	1.4 (0.2, 9.5)	4.0 (0.9, 15.9)				
Delta Xtend	Delta Xtend	7	191	1.6 (0.5, 4.9)	2.8 (1.2, 6.6)	3.5 (1.6, 7.8)			
Equinoxe	Equinoxe	2	51	3.9 (1.0, 14.8)	3.9 (1.0, 14.8)				
Global Unite	Delta Xtend	2	70	2.9 (0.7, 11.3)	2.9 (0.7, 11.3)	2.9 (0.7, 11.3)			
SMR	SMR L1	63	1129	4.7 (3.6, 6.1)	5.7 (4.5, 7.3)	5.9 (4.6, 7.6)	6.7 (5.1, 8.8)		
Trabecular Metal	Trabecular Metal	2	58	3.5 (0.9, 13.2)	3.5 (0.9, 13.2)	3.5 (0.9, 13.2)	3.5 (0.9, 13.2)		
Other (9)		2	72	2.9 (0.7, 11.2)	2.9 (0.7, 11.2)				
TOTAL		83	1709						

Note: Only combinations with over 50 procedures have been listed Restricted to modern prostheses

Table ST84 Cumulative Percent Revision of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	14 Yrs
Aequalis	Aequalis	28	829	1.7 (1.0, 2.9)	3.1 (2.0, 4.7)	3.9 (2.6, 5.9)	4.5 (2.9, 6.9)		
Affinis	Affinis	8	267	2.0 (0.8, 4.7)	3.2 (1.5, 6.7)				
Comprehensive	Comprehensive Reverse	6	290	2.0 (0.8, 4.8)	2.0 (0.8, 4.8)				
Delta Xtend	Delta Xtend	50	1029	3.8 (2.8, 5.1)	4.6 (3.5, 6.2)	5.4 (4.1, 7.2)	5.4 (4.1, 7.2)		
Equinoxe	Equinoxe	5	175	1.2 (0.3, 4.6)					
Global Unite	Delta Xtend	4	171	1.9 (0.6, 5.8)					
RSP	RSP	10	147	4.4 (2.0, 9.4)					
SMR	SMR L1	5	160	2.0 (0.6, 6.0)	3.8 (1.6, 9.0)	3.8 (1.6, 9.0)			
Trabecular Metal	Trabecular Metal	5	172	2.4 (0.9, 6.4)	3.1 (1.3, 7.4)	3.1 (1.3, 7.4)			
Other (7)		2	90	2.5 (0.6, 9.5)	2.5 (0.6, 9.5)				
TOTAL		123	3330						

Note: Only combinations with over 50 procedures have been listed Restricted to modern prostheses

Prostheses with Higher Than Anticipated Rates of Revision

Prostheses with Higher Than Anticipated Rates of Revision

INTRODUCTION

A unique and important function of registries is that they are able to provide population based data on the comparative outcome of individual prostheses in a community. Outcome data are necessary to enable an evidence-based approach to prosthesis selection. For many prostheses, the only source of outcome data are registry reports.

It is evident from registry data that most prostheses have similar outcomes. However, a number have a rate of revision that is statistically higher than other prostheses in the same class. The Registry identifies these as 'prostheses with a higher than anticipated rate of revision'.

The Registry has developed a standardised three-stage approach to identify prostheses that are outliers with respect to rate of revision. The comparator group includes all other prostheses within the same class regardless of their rate of revision. This is a more pragmatic approach than comparing to a select group of prostheses with the lowest rate of revision.

Stage 1

The first stage is a screening test to identify prostheses that differ significantly from the combined revisions per 100 observed component years of all other prostheses in the same class. It is an automated analysis that identifies prostheses based on set criteria. These include:

- The revision rate (per 100 component years) exceeds twice that for the group, and
- 2. The Poisson probability of observing that number of revisions, given the rate of the group is significant (p<0.05), and
- 3. There are at least 10 primary procedures for that component,
- 4. The proportion revised is at least 75% and there have been at least two revisions.

The Registry has the capacity to assess the outcome of individual prostheses or combinations of prostheses used in a procedure. It is apparent from previous reports that individual prostheses that perform well in one combination, may not perform well in another. Therefore, the outcome of an individual prosthesis is partly dependent on the combination of the different prostheses used.

Consequently, the Registry undertakes two different analyses in Stage 1. The first assesses the outcome of all combinations. The second assesses all individual prostheses regardless of the combination. Both analyses are reviewed to determine if a higher revision rate is identified with a single combination, multiple combinations, or uniformly with all combinations. If prostheses are identified in a single combination, that combination progresses to Stage 2. An individual prosthesis progresses to Stage 2 if it is identified in multiple combinations or uniformly across all combinations.

If a prosthesis is identified in more than two combinations with 10 or more procedures in Stage 1, an additional analysis of the individual prosthesis is undertaken for review at Stage 2, regardless of whether the individual prosthesis was identified in Stage 1. The purpose of this is to simplify the reporting of an individual prosthesis and to avoid identifying the same prosthesis in multiple combinations when it may be more appropriate to identify it individually.

A prosthesis or combination may also be brought to the attention of the Registry by the Therapeutic Goods Administration (TGA) or a member of the AOA. A further investigation may then be undertaken as outlined in Stage 2.

Stage 2

In Stage 2, the AOANJRR Director and Deputy Directors in conjunction with SAHMRI staff, review the identified prostheses and undertake further investigation. This includes examining the impact of confounders and calculating age and gender adjusted hazard ratios. In addition, all prostheses identified in previous reports are re-analysed as part of the Stage 2 analysis. This is not dependent on reidentification in Stage 1. If there is a significant difference compared to the combined hazard rate of all other prostheses in the same class, then the prosthesis or prosthesis combination progresses to Stage 3. The possible exception to this is the presence of confounding factors, such as use in complex primary procedures.

Stage 3

The final stage involves review by a panel of independent orthopaedic surgeons from the AOA and Arthroplasty Society. The panel meets with Registry staff at a joint specific workshop to review the Stage 2 analysis and determine which prostheses will be identified in the Annual Report.

IDENTIFIED PROSTHESES

Identified prostheses are listed in one of three groups. The first group, 'Newly Identified', lists prostheses that are identified for the first time and are still used.

The second group is 'Re-identified and Still Used'. This listing identifies prostheses which continue to have a higher than anticipated rate of revision and provides information on their continued use. Most identified or reidentified prostheses decline in use. This is usually evident only after the first year because almost a full year of use has occurred prior to identification in the Annual Report.

Prostheses that have a higher rate of revision but are no longer used in Australia make up the third group: 'Identified and No Longer Used'. These are listed to provide ongoing information on the rate of revision. This also enables comparison of other prostheses to the discontinued group. This group may include prostheses that are no longer used in Australia that are identified for the first time.

The Registry does not make a recommendation or otherwise on the continued use of identified prostheses. Identification is made to ensure that prostheses with a higher rate of revision, compared to others in the same class, are highlighted. On occasion, a prosthesis previously identified no longer meets the criteria for inclusion. In this situation, the prosthesis is not subsequently reidentified. The Registry monitors the continual real-time performance of prostheses within a community and the Annual Report provides the outcome at a particular time. It is necessary to appreciate that outcomes are continually changing and that many factors may influence that change, including identification in the Annual Report.

The current approach used by the Registry is most effective at identifying the relative performance of recently introduced prostheses. As the Registry's follow-up period increases, it is becoming evident that prostheses with a delayed onset of higher rates of revision are not as readily identified by this approach. The Registry will develop further strategies in the future to identify these prostheses.

Prior to publication, there are two workshops held to review, comment, and provide advice on all sections of the report. This year, due to COVID-19 restrictions, workshops were held online rather than face-to-face. The workshop format was modified to accommodate the online delivery. This enabled a larger than usual number of surgeons to attend.

In addition to AOANJRR and SAHMRI staff, and the AOA Executive, 29 AOA members with expertise in hip and knee arthroplasty attended the Hip and Knee Surgeon Review Workshop.

Members of the AOA with expertise in shoulder surgery were invited to attend a separate workshop to review this section of the report. In addition to AOANJRR and SAHMRI staff, and the AOA Executive, 11 AOA members with expertise in shoulder arthroplasty attended the Shoulder Surgeon Review Workshop.

This year, one ankle prosthesis was re-identified as having a higher than anticipated rate of revision. This was reviewed separately by a subgroup of ankle arthroplasty surgeons and has been included in this report.

Only prostheses identified for the first time or prostheses that are not re-identified are discussed in the following text.

Investigations of prostheses identified as having a higher than anticipated rate of revision are available on the Registry website: <u>https://www.aoanjrr.sahmri.com/annualreports-2021</u>

PRIMARY PARTIAL HIP REPLACEMENT

UNIPOLAR MODULAR

There are no newly identified unipolar modular hip prostheses.

Table IP1 Revision Rate of Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Head/Femoral Stem	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Identified and no longer used					
Unipolar Head (JRI)/Furlong LOL	11	132	494	2.23	Entire Period: HR=2.12 (1.17, 3.84),p=0.012

Note: Components have been compared to all other modern unipolar modular hip components

Table IP2 Cumulative Percent Revision of Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Identified and no longer used Unipolar Head (JRI)/Furlong LOL	6.4 (3.1, 13.0)	9.7 (5.3, 17.4)	11.1 (6.3, 19.4)		

Table IP3 Yearly Usage of Unipolar Modular Hip Prostheses identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Identified and no longer used																		
Unipolar Head (JRI)/Furlong LOL					12	18	10	13	10	8	5 7	34	16	4	· .			

BIPOLAR

There are no newly identified bipolar hip prostheses.

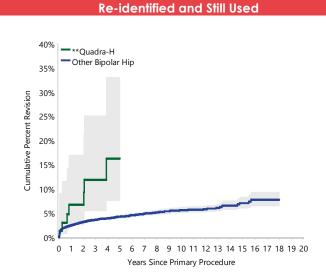
Table IP4 Re	evision Rate of Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision
--------------	--

Bipolar/Femoral Stem	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used					
**Quadra-H	7	83	189	3.70	Entire Period: HR=3.34 (1.59, 7.04),p=0.001
Identified and no longer used					
UHR/ABGII	22	177	986	2.23	0 - 2Wk: HR=4.63 (1.13, 18.99),p=0.033
					2Wk - 3.5Yr: HR=1.26 (0.60, 2.64),p=0.550
			•		3.5Yr+: HR=8.43 (4.68, 15.21),p<0.001
UHR/Omnifit (cless)	8	40	262	3.05	Entire Period: HR=3.81 (1.90, 7.67),p<0.001
**Basis	18	156	785	2.29	0 - 1Yr: HR=0.49 (0.12, 1.95),p=0.308
					1Yr+: HR=5.23 (3.15, 8.70),p<0.001
**Synergy	9	55	420	2.14	Entire Period: HR=2.67 (1.38, 5.18),p=0.003

Note: Components have been compared to all other modern bipolar hip components

**Femoral Stem Component

Table IP5 Cumulative Percent Revision of Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision


CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Re-Identified and Still Used					
**Quadra-H	6.7 (2.5, 17.0)	11.9 (5.4, 25.1)	16.3 (7.5, 33.1)		
Identified and no longer used					
UHR/ABGII	4.3 (2.1, 8.9)	5.1 (2.6, 10.0)	10.8 (6.5, 17.9)		
UHR/Omnifit (cless)	18.3 (9.1, 34.6)	18.3 (9.1, 34.6)	18.3 (9.1, 34.6)	18.3 (9.1, 34.6)	
**Basis	1.5 (0.4, 5.8)	10.1 (5.9, 17.2)	12.6 (7.6, 20.6)		
**Synergy	7.3 (2.8, 18.4)	9.5 (4.1, 21.4)	12.2 (5.6, 25.4)	18.0 (9.2, 33.4)	

Note: **Femoral Stem Component

Table IP6 Yearly Usage of Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Re-Identified and Still Used																		
**Quadra-H							11	7	5	6	4	11	9	7	4	7	5	7
Identified and no longer used																		
UHR/ABGII	50	36	34	10	15	20	7	5										
UHR/Omnifit (cless)	21	7	5	4	1	2												
**Basis	42		10	13	9	11	4	7	8	21	24	6	1					
**Synergy	25	9	10	3	2	1	1		1	•	2	•	•	•	1	•	•	

Note: **Femoral Stem Component

Figure IP1 Cumulative Percent Revision of Re-Identified and Still Used Bipolar Hip Prostheses

PRIMARY TOTAL HIP REPLACEMENT

TOTAL CONVENTIONAL

Large head (>32mm) metal/metal bearings have been removed from the comparator group for all primary total conventional hip investigations.

There is one newly identified total conventional hip prosthesis.

The Atlas (Shell) acetabular component has been used in 464 procedures, 49 of which

have been revised. The cumulative percent revision at 15 years is 18.7%. Of the 19 revisions, 41 were major revision, 22 of which involved the acetabulum. There were 14 revisions for loosening, 10 for fracture, 6 for infection, and 2 acetabular shell implant breakages.

The Taperloc/Versafitcup CC combination is no longer identified as it no longer has a significantly higher rate of revision.

AOANJRR | 2021 ANNUAL REPORT

Table IP7 Revision Rate of Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Femoral Stem/Acetabular	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Newly Identified					
*Atlas (Shell)	49	464	3760	1.30	Entire Period: HR=2.19 (1.66, 2.90),p<0.001
Re-Identified and Still Used					
Accolade II/Trident Tritanium (Shell)	64	2382	5478	1.17	0 - 1Mth: HR=1.79 (1.25, 2.56),p=0.001
					1Mth+: HR=0.94 (0.67, 1.32),p=0.714
Avenir/Fitmore	15	242	597	2.51	Entire Period: HR=2.76 (1.67, 4.58),p<0.001
CORAIL/Trabecular Metal (Shell)	11	98	659	1.67	Entire Period: HR=3.02 (1.67, 5.45),p<0.001
CPT/Fitmore	20	285	1543	1.30	Entire Period: HR=2.20 (1.42, 3.41),p<0.001
CPT/Low Profile Cup	15	196	998	1.50	Entire Period: HR=2.52 (1.52, 4.18),p<0.001
HACTIV/Logical G	45	1185	2142	2.10	Entire Period: HR=1.86 (1.39, 2.49),p<0.001
aperloc/G7	75	3442	8831	0.85	0 - 2Wk: HR=2.00 (1.27, 3.14),p=0.002
					2Wk+: HR=0.80 (0.62, 1.04),p=0.096
Apex	173	2591	20931	0.83	0 - 2Wk: HR=0.69 (0.29, 1.65),p=0.400
					2Wk+: HR=1.62 (1.39, 1.88),p<0.001
Furlong Evolution	32	442	1150	2.78	Entire Period: HR=3.13 (2.22, 4.43),p<0.001
Linear	18	289	1440	1.25	Entire Period: HR=1.97 (1.24, 3.13),p=0.004
MiniMax	19	391	767	2.48	Entire Period: HR=2.26 (1.44, 3.55),p<0.001
Novation	77	1382	6903	1.12	0 - 2Wk: HR=3.14 (1.78, 5.55),p<0.001
					2Wk+: HR=1.65 (1.29, 2.10),p<0.001
Profemur L	104	2784	9008	1.15	0 - 3Mth: HR=1.78 (1.38, 2.31),p<0.001
					3Mth+: HR=1.19 (0.89, 1.59),p=0.239
Taper Fit	116	3388	10288	1.13	0 - 2Yr: HR=0.96 (0.74, 1.23),p=0.726
					2Yr+: HR=3.08 (2.36, 4.02),p<0.001
*Continuum	550	13390	72818	0.76	0 - 1Mth: HR=1.79 (1.53, 2.10),p<0.001
					1Mth - 3Mth: HR=1.51 (1.23, 1.86),p<0.001
					3Mth - 1.5Yr: HR=1.14 (0.95, 1.37),p=0.154
					1.5Yr+: HR=0.95 (0.81, 1.10),p=0.487
*Delta-One-TT	10	161	653	1.53	Entire Period: HR=2.20 (1.19, 4.09),p=0.012
*Dynasty	97	2039	7065	1.37	Entire Period: HR=1.81 (1.48, 2.21),p<0.001
*Fin II	148	2204	18021	0.82	Entire Period: HR=1.58 (1.34, 1.85),p<0.001
*Furlong	60	871	5048	1.19	Entire Period: HR=2.01 (1.56, 2.59),p<0.001
*Versafitcup DM	51	1157	3202	1.59	Entire Period: HR=1.88 (1.42, 2.47),p<0.001
dentified and no longer used					
Anatomic II/Duraloc Option	10	60	658	1.52	Entire Period: HR=3.04 (1.64, 5.65),p<0.001
Anca-Fit/PINNACLE	16	101	981	1.63	Entire Period: HR=3.27 (2.00, 5.33),p<0.001
2L/Delta-PF	19	107	1193	1.59	Entire Period: HR=3.19 (2.04, 5.01),p<0.001
riendly Hip/Cup (Exactech)	14	97	1032	1.36	Entire Period: HR=2.76 (1.63, 4.65),p<0.001
riendly Hip/Delta-TT	6	74	400	1.50	Entire Period: HR=2.59 (1.17, 5.75),p=0.019
MBA (exch neck)/PINNACLE	27	225	1832	1.47	0 - 1Mth: HR=2.54 (0.95, 6.78),p=0.062
					1Mth - 4Yr: HR=1.29 (0.58, 2.88),p=0.527
					4Yr+: HR=5.21 (3.24, 8.38),p<0.001
Secur-Fit Plus/PINNACLE	13	246	1164	1.12	Entire Period: HR=1.74 (1.01, 3.00),p=0.045
					· · · · · · · · · · · · · · · ·
Secur-Fit Plus/Secur-Fit	30	197	2512	1.19	Entire Period: HR=2.40 (1.68, 3.44),p<0.001

Femoral Stem/Acetabular	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
*ABGII (exch neck)	90	246	1909	4.72	0 - 1Mth: HR=4.11 (1.96, 8.62),p<0.001
					1Mth - 1.5Yr: HR=2.63 (1.31, 5.25),p=0.006
					1.5Yr - 2.5Yr: HR=7.79 (3.71, 16.36),p<0.001
					2.5Yr - 4Yr: HR=13.53 (7.84, 23.37),p<0.001
					4Yr - 4.5Yr: HR=38.82 (21.29, 70.76),p<0.001
					4.5Yr+: HR=14.22 (10.56, 19.15),p<0.001
*Adapter (cless)	151	744	6670	2.26	0 - 2Wk: HR=3.88 (1.94, 7.78),p<0.001
			•		2Wk - 1Mth: HR=1.59 (0.66, 3.83),p=0.299
			•		1Mth - 6Mth: HR=0.75 (0.28, 2.00),p=0.566
					6Mth+: HR=5.67 (4.78, 6.72),p<0.001
*Adapter (ctd)	31	148	1206	2.57	0 - 6Mth: HR=1.94 (0.73, 5.16),p=0.185
				•	6Mth+: HR=6.47 (4.43, 9.44),p<0.001
*BMHR VST	32	260	2380	1.34	Entire Period: HR=2.51 (1.77, 3.56),p<0.001
*CBH Stem	40	274	2343	1.71	Entire Period: HR=3.32 (2.43, 4.52),p<0.001
*Edinburgh	19	138	1031	1.84	Entire Period: HR=3.56 (2.27, 5.58),p<0.001
*Elite Plus	266	2841	31415	0.85	0 - 1Mth: HR=0.26 (0.11, 0.62),p=0.002
					1Mth - 9Mth: HR=0.96 (0.64, 1.43),p=0.832
					9Mth+: HR=2.15 (1.88, 2.45),p<0.001
*Emperion	51	507	4035	1.26	Entire Period: HR=2.34 (1.78, 3.09),p<0.001
*Excia (cless)	27	426	2400	1.13	Entire Period: HR=1.88 (1.29, 2.75),p=0.001
*GHE	11	114	780	1.41	Entire Period: HR=2.63 (1.46, 4.73),p=0.001
*K2	82	601	5375	1.53	Entire Period: HR=3.02 (2.43, 3.75),p<0.001
*LYDERIC II	15	164	1444	1.04	Entire Period: HR=2.05 (1.23, 3.39),p=0.005
*ML Taper Kinectiv	183	3532	26192	0.70	Entire Period: HR=1.30 (1.13, 1.51),p<0.001
*MSA	38	224	1787	2.13	Entire Period: HR=3.93 (2.85, 5.40),p<0.001
*Margron	120	688	8492	1.41	Entire Period: HR=2.83 (2.36, 3.38),p<0.001
*Mayo	17	168	1851	0.92	Entire Period: HR=1.86 (1.16, 2.99),p=0.010
*Metha (exch neck)	14	88	780	1.79	Entire Period: HR=3.51 (2.08, 5.92),p<0.001
*Profemur Z	28	186	1990	1.41	Entire Period: HR=2.79 (1.93, 4.05),p<0.001
*Trabecular Metal	120	1904	14969	0.80	0 - 1Mth: HR=2.58 (1.85, 3.61),p<0.001
					1Mth - 3Mth: HR=1.88 (1.16, 3.03),p=0.009
					3Mth - 1.5Yr: HR=1.56 (1.05, 2.34),p=0.028
					1.5Yr+: HR=1.06 (0.78, 1.42),p=0.720
*UniSyn	58	466	4348	1.33	Entire Period: HR=2.58 (1.99, 3.34),p<0.001
**2000 Plus	19	135	1235	1.54	Entire Period: HR=3.02 (1.93, 4.74),p<0.001
**ASR	2013	4421	37903	5.31	0 - 2Wk: HR=1.27 (0.78, 2.09),p=0.335
					2Wk - 1Mth: HR=0.21 (0.08, 0.55),p=0.001
					1Mth - 9Mth: HR=1.03 (0.76, 1.39),p=0.858
					9Mth - 1.5Yr: HR=4.04 (3.17, 5.14),p<0.001
					1.5Yr - 2Yr: HR=7.06 (5.46, 9.11),p<0.001
					2Yr - 2.5Yr: HR=12.74 (10.33, 15.72),p<0.001
					2.5Yr - 3Yr: HR=18.02 (14.74, 22.02),p<0.001
	· ·				3Yr - 5Yr: HR=29.57 (26.92, 32.49),p<0.001
					5Yr - 6Yr: HR=34.84 (30.36, 39.99),p<0.001
			•		6Yr - 7Yr: HR=22.02 (18.58, 26.10),p<0.001
					7Yr - 8Yr: HR=17.54 (14.46, 21.28),p<0.001
					8Yr - 8.5Yr: HR=13.98 (10.38, 18.81),p<0.001
					8.5Yr - 10Yr: HR=10.48 (8.57, 12.82),p<0.001
					10Yr - 10.5Yr: HR=8.59 (5.60, 13.16),p<0.001

Femoral Stem/Acetabular	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
**Adept	20	121	1183	1.69	Entire Period: HR=3.25 (2.10, 5.04),p<0.001
**Artek	69	179	2315	2.98	0 - 1Yr: HR=1.56 (0.65, 3.75),p=0.320
					1Yr - 1.5Yr: HR=4.45 (1.11, 17.83),p=0.034
					1.5Yr - 2.5Yr: HR=5.79 (2.17, 15.44),p<0.001
					2.5Yr - 4Yr: HR=14.60 (8.06, 26.43),p<0.001
					4Yr - 4.5Yr: HR=4.37 (0.61, 31.11),p=0.140
					4.5Yr - 6Yr: HR=18.14 (10.26, 32.07),p<0.001
				•	6Yr+: HR=5.71 (4.05, 8.04),p<0.001
**BHR	498	2988	31727	1.57	0 - 2Wk: HR=0.82 (0.39, 1.73),p=0.608
	· ·		•	·	2Wk - 1Mth: HR=0.15 (0.04, 0.62),p=0.008
	· ·		•	•	1Mth - 3Mth: HR=1.10 (0.67, 1.80),p=0.702
	· ·		•		3Mth - 1Yr: HR=0.52 (0.27, 1.01),p=0.053
		•	•	•	1Yr - 1.5Yr: HR=1.58 (0.89, 2.79),p=0.116
				•	1.5Yr+: HR=4.53 (4.12, 4.99),p<0.001
**Bionik	149	608	5471	2.72	0 - 2Wk: HR=2.98 (1.24, 7.16),p=0.014
				•	2Wk - 3Mth: HR=1.10 (0.50, 2.46),p=0.809
					3Mth+: HR=6.59 (5.57, 7.79),p<0.001
**Conserve Plus	20	135	1551	1.29	0 - 1Yr: HR=0.83 (0.21, 3.33),p=0.796
		•	•	•	1Yr+: HR=3.38 (2.13, 5.36),p<0.001
**Cormet	138	803	8587	1.61	0 - 1.5Yr: HR=1.10 (0.69, 1.75),p=0.679
		•			1.5Yr - 2Yr: HR=0.60 (0.08, 4.24),p=0.604
	· ·				2Yr+: HR=4.72 (3.94, 5.67),p<0.001
**DeltaLox	27	222	1607	1.68	Entire Period: HR=3.19 (2.19, 4.65),p<0.001
**Duraloc	619	5354	61629	1.00	0 - 3Mth: HR=0.79 (0.59, 1.04),p=0.094
		•	•		3Mth - 9Mth: HR=1.33 (0.93, 1.91),p=0.121
		•	•		9Mth - 2Yr: HR=1.80 (1.38, 2.36),p<0.001
	· ·		•	•	2Yr - 2.5Yr: HR=0.84 (0.42, 1.69),p=0.632
	· ·		•	•	2.5Yr - 3Yr: HR=2.14 (1.32, 3.47),p=0.002
				•	3Yr - 5.5Yr: HR=1.79 (1.39, 2.31),p<0.001
		•	•	•	5.5Yr+: HR=2.91 (2.62, 3.24),p<0.001
**Durom	196	1245	14157	1.38	0 - 1.5Yr: HR=0.74 (0.47, 1.17),p=0.198
		•		•	1.5Yr+: HR=3.86 (3.32, 4.48),p<0.001
**ExpanSys	13	71	784	1.66	Entire Period: HR=3.36 (1.95, 5.78),p<0.001
**Hedrocel	12	46	573	2.09	Entire Period: HR=4.10 (2.32, 7.22),p<0.001
**lcon	100	401	3845	2.60	0 - 2.5Yr: HR=2.53 (1.70, 3.78),p<0.001
					2.5Yr+: HR=7.30 (5.82, 9.15),p<0.001
**Inter-Op	9	33	364	2.47	Entire Period: HR=4.90 (2.55, 9.41),p<0.001
**MBA	18	124	1097	1.64	Entire Period: HR=3.23 (2.03, 5.13),p<0.001
**Mitch TRH	141	731	7445	1.89	0 - 3Mth: HR=0.57 (0.24, 1.37),p=0.209
	•	·	•	·	3Mth - 2Yr: HR=2.40 (1.51, 3.81),p<0.001
**••	. 12				2Yr+: HR=5.55 (4.63, 6.67),p<0.001
**Mueller	12	58	504	2.38	Entire Period: HR=4.47 (2.54, 7.87),p<0.001
**Plasmacup	34	482	3827	0.89	Entire Period: HR=1.69 (1.20, 2.36),p=0.002
**SPH-Blind	126	952	12296	1.02	Entire Period: HR=2.07 (1.73, 2.47),p<0.001
**seleXys (excluding seleXys PC)	51	391	3167	1.61	Entire Period: HR=3.07 (2.34, 4.05),p<0.001

Note: Components have been compared to all other modern total conventional hip components

*Femoral Stem Component **Acetabular Component

Table IP8Cumulative Percent Revision of Total Conventional Hip Prostheses Identified as having a Higher than Anticipated
Rate of Revision

Rate of Revision					
CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Newly Identified					
**Atlas (Shell)	3.3 (2.0, 5.4)	4.3 (2.7, 6.6)	5.2 (3.4, 7.8)	10.4 (7.5, 14.5)	
Re-Identified and Still Used					
Accolade II/Trident Tritanium (Shell)	2.3 (1.7, 3.0)	3.0 (2.3, 3.8)	3.6 (2.7, 4.9)		
Avenir/Fitmore	5.6 (3.3, 9.4)	6.1 (3.7, 10.2)			
CORAIL/Trabecular Metal (Shell)	6.2 (2.8, 13.2)	9.6 (5.1, 17.7)	12.1 (6.9, 20.9)	12.1 (6.9, 20.9)	
CPT/Fitmore	3.9 (2.2, 6.9)	6.1 (3.8, 9.8)	6.8 (4.2, 10.8)		
CPT/Low Profile Cup	5.2 (2.8, 9.4)	6.5 (3.7, 11.2)	9.2 (5.5, 15.1)		
HACTIV/Logical G	3.3 (2.4, 4.6)	4.4 (3.3, 5.9)			
Taperloc/G7	1.9 (1.5, 2.4)	2.4 (1.9, 3.1)	2.6 (2.0, 3.3)		
*Apex	2.2 (1.7, 2.9)	3.3 (2.6, 4.0)	4.7 (3.9, 5.6)	7.6 (6.5, 8.9)	
*Furlong Evolution	6.0 (4.1, 8.7)	8.0 (5.6, 11.2)	9.1 (6.2, 13.2)	, , , ,	
*Linear	2.4 (1.2, 5.0)	5.6 (3.5, 9.0)	6.5 (4.1, 10.1)		
*MiniMax	4.2 (2.6, 6.7)	5.3 (3.4, 8.2)			
*Novation	3.8 (2.9, 4.9)	4.6 (3.6, 5.9)	5.5 (4.3, 6.9)		
*Profemur L	2.9 (2.4, 3.6)	3.9 (3.2, 4.8)	4.4 (3.6, 5.4)		
*Taper Fit	1.6 (1.2, 2.1)	2.9 (2.2, 3.6)	4.8 (3.8, 6.1)	10.0 (7.5, 13.3)	
**Continuum	2.6 (2.4, 2.9)	3.5 (3.2, 3.8)	3.9 (3.6, 4.3)	5.4 (4.9, 6.0)	
**Delta-One-TT	3.2 (1.3, 7.5)	5.5 (2.8, 10.8)	6.7 (3.5, 12.7)	5.+ (+.5, 0.0)	
**Dynasty	3.4 (2.7, 4.3)	4.7 (3.8, 5.7)	5.4 (4.4, 6.7)		
**Fin II	2.6 (2.0, 3.4)	3.5 (2.8, 4.4)	4.6 (3.8, 5.6)	7.7 (6.5, 9.0)	
**Furlong	4.5 (3.3, 6.1)	6.2 (4.8, 8.1)	6.6 (5.1, 8.6)	7.8 (6.0, 10.2)	
**Versafitcup DM	3.4 (2.5, 4.7)	5.0 (3.8, 6.6)	5.9 (4.3, 8.1)	7.0 (0.0, 10.2)	
	5.4 (2.3, 4.7)	5.0 (5.0, 0.0)	3.9 (4.3, 0.1)		
Identified and no longer used	17(0,2,11,2)	67 (26 16 9)	10 1 (4 7 21 1)	140(7006)	
Anatomic II/Duraloc Option	1.7 (0.2, 11.2)	6.7 (2.6, 16.8)	10.1 (4.7, 21.1)	14.2 (7.3, 26.5)	
Anca-Fit/PINNACLE	6.0 (2.7, 12.8)	8.0 (4.1, 15.3)	11.0 (6.3, 19.1)	16.2 (10.0, 25.6)	
F2L/Delta-PF	5.6 (2.6, 12.1)	10.3 (5.9, 17.9)	12.3 (7.3, 20.2)	16.5 (10.6, 25.3)	
Friendly Hip/Cup (Exactech)	2.1 (0.5, 8.0)	3.2 (1.0, 9.5)	6.5 (3.0, 14.0)	14.1 (8.2, 23.6)	
Friendly Hip/Delta-TT	5.5 (2.1, 14.0)	8.3 (3.8, 17.6)	8.3 (3.8, 17.6)		
MBA (exch neck)/PINNACLE	2.2 (0.9, 5.3)	3.6 (1.8, 7.1)	7.6 (4.7, 12.1)	14.4 (9.8, 20.8)	
Secur-Fit Plus/PINNACLE	3.3 (1.6, 6.4)	4.6 (2.6, 8.1)	5.1 (2.9, 8.8)		
Secur-Fit Plus/Secur-Fit	3.1 (1.4, 6.7)	7.3 (4.4, 11.9)	7.8 (4.8, 12.6)	10.1 (6.5, 15.3)	
Taperloc/M2a ^{MoM}	1.8 (0.9, 3.3)	4.3 (2.9, 6.5)	7.4 (5.4, 10.0)	12.4 (9.7, 15.7)	
*ABGII (exch neck)	4.5 (2.5, 8.0)	11.1 (7.8, 15.8)	20.5 (15.9, 26.2)	35.3 (29.5, 42.0)	
*Adapter (cless)	3.2 (2.2, 4.8)	6.9 (5.2, 8.9)	11.7 (9.5, 14.3)	20.1 (17.2, 23.4)	
*Adapter (ctd)	4.1 (1.9, 8.9)	9.1 (5.4, 15.2)	17.0 (11.6, 24.5)	23.6 (17.0, 32.2)	
*BMHR VST	1.9 (0.8, 4.6)	4.6 (2.7, 8.0)	7.0 (4.5, 10.8)	13.1 (9.3, 18.2)	
*CBH Stem	4.0 (2.3, 7.2)	7.4 (4.9, 11.3)	9.8 (6.8, 14.1)	15.4 (11.4, 20.6)	
*Edinburgh	6.0 (3.1, 11.7)	9.6 (5.6, 16.4)	12.5 (7.7, 20.0)	16.8 (10.7, 25.7)	
*Elite Plus	1.5 (1.1, 2.0)	2.8 (2.3, 3.5)	4.2 (3.5, 5.1)	7.8 (6.8, 9.0)	14.4 (12.7, 16.4)
*Emperion	4.8 (3.2, 7.0)	6.0 (4.2, 8.4)	7.0 (5.1, 9.7)	12.4 (9.4, 16.2)	
*Excia (cless)	4.2 (2.7, 6.6)	5.2 (3.5, 7.8)	5.9 (4.0, 8.7)	7.3 (4.8, 11.2)	
*GHE	2.6 (0.9, 8.0)	5.3 (2.4, 11.5)	8.2 (4.3, 15.2)		
*K2	5.2 (3.7, 7.3)	7.5 (5.7, 10.0)	9.8 (7.7, 12.6)	13.9 (11.3, 17.0)	
*LYDERIC II	3.1 (1.3, 7.2)	5.7 (3.0, 10.6)	7.1 (4.0, 12.5)	12.2 (7.2, 20.1)	
*ML Taper Kinectiv	2.4 (2.0, 3.0)	3.5 (3.0, 4.2)	4.3 (3.7, 5.0)	5.9 (5.1, 6.9)	
*MSA	5.8 (3.4, 9.8)	9.5 (6.3, 14.1)	11.3 (7.8, 16.3)	19.1 (14.0, 25.8)	
*Margron	5.8 (4.3, 7.9)	8.6 (6.7, 10.9)	10.6 (8.5, 13.1)	15.7 (13.1, 18.8)	
Wargron		,		. , ,	

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
*Metha (exch neck)	12.5 (7.1, 21.4)	13.6 (8.0, 22.8)	13.6 (8.0, 22.8)	16.0 (9.8, 25.5)	
*Profemur Z	6.0 (3.4, 10.5)	10.4 (6.8, 15.8)	11.0 (7.2, 16.5)	12.2 (8.2, 18.0)	
*Trabecular Metal	3.5 (2.7, 4.4)	4.8 (3.9, 5.8)	5.4 (4.5, 6.6)	6.9 (5.8, 8.2)	
*UniSyn	3.2 (2.0, 5.3)	5.9 (4.1, 8.5)	6.6 (4.7, 9.3)	12.3 (9.4, 16.1)	
**2000 Plus	3.0 (1.1, 7.8)	6.8 (3.6, 12.7)	9.2 (5.3, 15.7)	14.1 (9.0, 21.8)	
**ASR	1.9 (1.5, 2.3)	9.6 (8.8, 10.5)	24.5 (23.2, 25.8)	45.1 (43.5, 46.6)	
**Adept	4.1 (1.7, 9.6)	8.4 (4.6, 15.0)	9.3 (5.3, 16.2)	15.9 (10.3, 24.0)	
**Artek	2.8 (1.2, 6.7)	8.0 (4.8, 13.1)	16.1 (11.4, 22.4)	26.3 (20.3, 33.6)	42.4 (35.2, 50.6)
**BHR	1.1 (0.8, 1.6)	3.2 (2.6, 3.9)	6.1 (5.3, 7.0)	14.3 (13.1, 15.7)	
**Bionik	3.6 (2.4, 5.5)	7.7 (5.8, 10.2)	14.5 (11.9, 17.6)	24.3 (20.9, 28.1)	
**Conserve Plus	1.5 (0.4, 5.8)	3.0 (1.1, 7.8)	3.8 (1.6, 8.8)	11.6 (7.0, 18.8)	
**Cormet	1.5 (0.9, 2.6)	3.5 (2.4, 5.1)	5.2 (3.9, 7.0)	13.7 (11.4, 16.5)	
**DeltaLox	5.9 (3.5, 9.9)	8.7 (5.6, 13.2)	10.1 (6.8, 15.0)		
**Duraloc	1.8 (1.5, 2.2)	3.0 (2.6, 3.5)	4.1 (3.6, 4.7)	8.4 (7.6, 9.2)	18.3 (16.8, 20.0)
**Durom	1.1 (0.7, 1.9)	3.6 (2.7, 4.8)	5.5 (4.3, 6.9)	13.5 (11.7, 15.7)	
**ExpanSys	2.8 (0.7, 10.8)	5.7 (2.2, 14.4)	10.2 (5.0, 20.2)	16.6 (9.6, 28.1)	
**Hedrocel	4.3 (1.1, 16.3)	6.6 (2.2, 19.2)	6.6 (2.2, 19.2)	20.4 (10.7, 37.0)	
**Icon	3.0 (1.7, 5.3)	7.8 (5.5, 10.9)	12.7 (9.7, 16.4)	24.2 (20.1, 29.0)	
**Inter-Op	12.1 (4.7, 29.1)	15.2 (6.6, 32.6)	21.4 (10.8, 39.8)	28.3 (15.8, 47.4)	28.3 (15.8, 47.4)
**MBA	4.0 (1.7, 9.4)	8.2 (4.5, 14.8)	10.2 (5.9, 17.2)	16.0 (9.9, 25.5)	
**Mitch TRH	1.5 (0.8, 2.7)	4.6 (3.3, 6.4)	7.7 (6.0, 10.0)	15.3 (12.8, 18.2)	
**Mueller	1.8 (0.2, 11.8)	12.5 (5.8, 25.9)	14.8 (7.3, 28.7)	23.9 (13.4, 40.5)	
**Plasmacup	4.4 (2.9, 6.6)	5.6 (3.9, 8.1)	5.8 (4.1, 8.3)	7.3 (5.2, 10.2)	
**SPH-Blind	3.8 (2.8, 5.2)	5.8 (4.5, 7.5)	7.3 (5.8, 9.2)	10.4 (8.6, 12.6)	16.5 (13.4, 20.2)
**seleXys (excluding seleXys PC)	4.6 (2.9, 7.2)	7.8 (5.5, 11.0)	10.6 (7.9, 14.1)	13.8 (10.5, 17.9)	

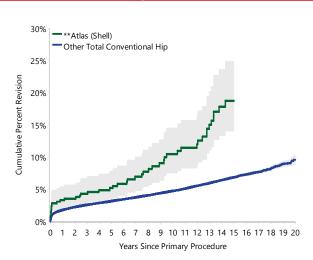
Note: *Femoral Stem Component

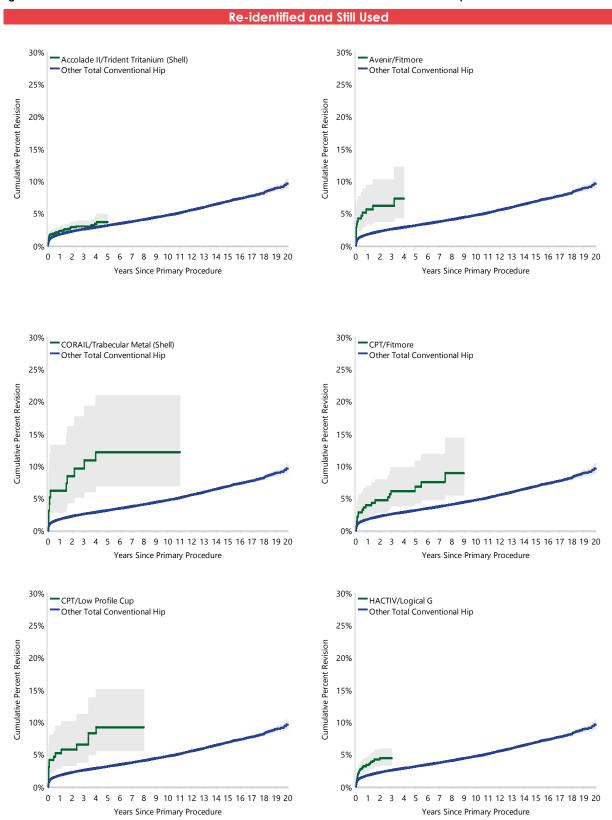
**Acetabular Component

Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Newly Identified	32005	2004	2003	2000	2007	2000	2005	2010	2011		2013		2013	2010	2017	2010		LULU
**Atlas (Shell)	. 8	56	45	79	46	16	13	6	7	4	8	28	23	13	27	26	26	33
Re-Identified and Still Used	0	50	45	19	40	10	15	0	'	4	0	20	25	15	21	20	20	55
Accolade II/Trident Tritanium		•	•	•	•	•	•	•	•	•	•	•	·		•	•	•	
(Shell)	· ·	•			•	•		•		1	1	30	119	258	484	401	509	579
Avenir/Fitmore											2	7	5	46	44	42	56	40
CORAIL/Trabecular Metal (Shell)					5	10	17	21	8	8	8	6	1	6	2	4	1	1
CPT/Fitmore		19	6	6	4	16	12	15	24	14	30	30	22	18	16	20	25	8
CPT/Low Profile Cup		15	9	8	7	7	6	9	16	26	20	6	5	2	3	15	31	1.
HACTIV/Logical G									1					18	169	395	310	292
Taperloc/G7											19	147	334	415	482	506	801	738
*Apex			75	247	223	265	197	169	190	219	246	188	193	168	88	61	44	18
*Furlong Evolution											29	25	32	11	54	102	106	83
*Linear										23	31	31	88	70	27	12	5	2
*MiniMax														4	43	170	133	4
*Novation							4	32	53	130	137	226	266	148	90	101	145	50
*Profemur L										2	47	288	383	406	405	439	426	388
*Taper Fit	64	65	50	66	26	18	6	8	17	55	45	110	161	227	315	592	788	775
**Continuum							175	1117	1245	1333	1502	1492	1359	1327	1293	1197	848	502
**Delta-One-TT								4	7	7	15	37	13	12	14	14	23	15
**Dynasty									40	31	49	178	298	317	306	307	272	241
**Fin II			39	128	175	251	269	318	286	205	247	101	6			9	76	94
**Furlong	31				4	7	61	90	85	73	76	64	66	12	55	100	82	65
**Versafitcup DM									10	12	4	19	139	184	196	182	185	226
Identified and no longer used																		
Anatomic II/Duraloc Option			4	33	23											•		
Anca-Fit/PINNACLE				30	55	16												
F2L/Delta-PF		7	62	28	10											•		
Friendly Hip/Cup (Exactech)	24	18	16	19	12	2	6											
Friendly Hip/Delta-TT									14	12	13	13	9	6	4	2	1	
MBA (exch neck)/PINNACLE					24	45	9	43	46	14	44		•					
Secur-Fit Plus/PINNACLE		1	3								42	42	53	25	33	31	16	
Secur-Fit Plus/Secur-Fit	128	21	26	22														
Taperloc/M2a ^{MoM}	97	113	74	38	43	76	49	23	2									
*ABGII (exch neck)					10	39	69	58	63	7								
*Adapter (cless)			19	140	131	122	158	113	60		1							
*Adapter (ctd)			7	41	52	33	8	7										
*BMHR VST						2	65	81	71	22	13	5	1					
*CBH Stem		12	7	14	37	28	27	45	53	43	7		1					
*Edinburgh			20	37	29	18	23	10	1									
*Elite Plus	2054	353	249	112	46	26		•	1									
*Emperion			1	13	21	26	65	87	72	44	53	38	41	34	12			
*Excia (cless)						6	34	8	47	58	38	17	42	35	65	66	10	
*GHE								9	4	47	28	14	12					
*K2				1	22	80	172	204	122									
*LYDERIC II	49	64	23	12	8	8												
*ML Taper Kinectiv						36	341	647	576	515	384	345	256	199	159	74		

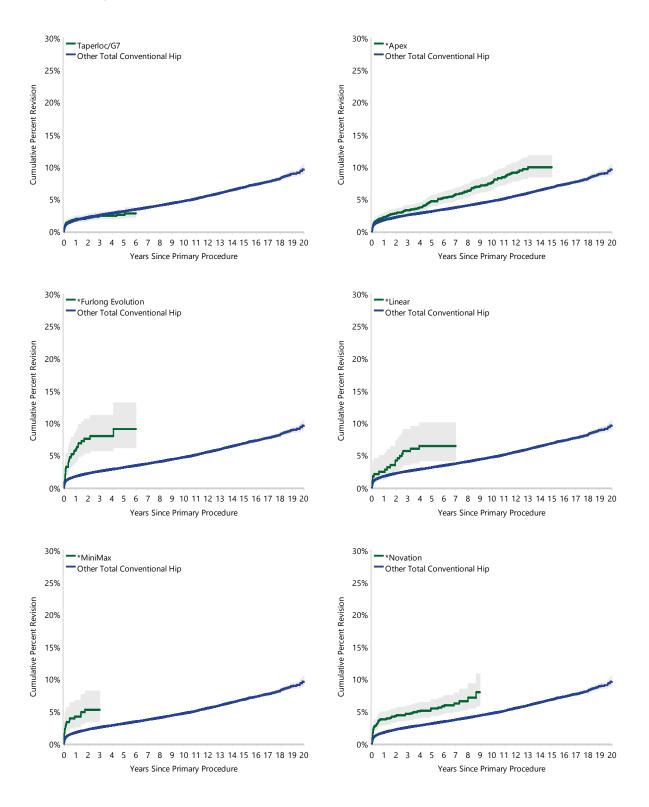
Table IP9 Yearly Usage of Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

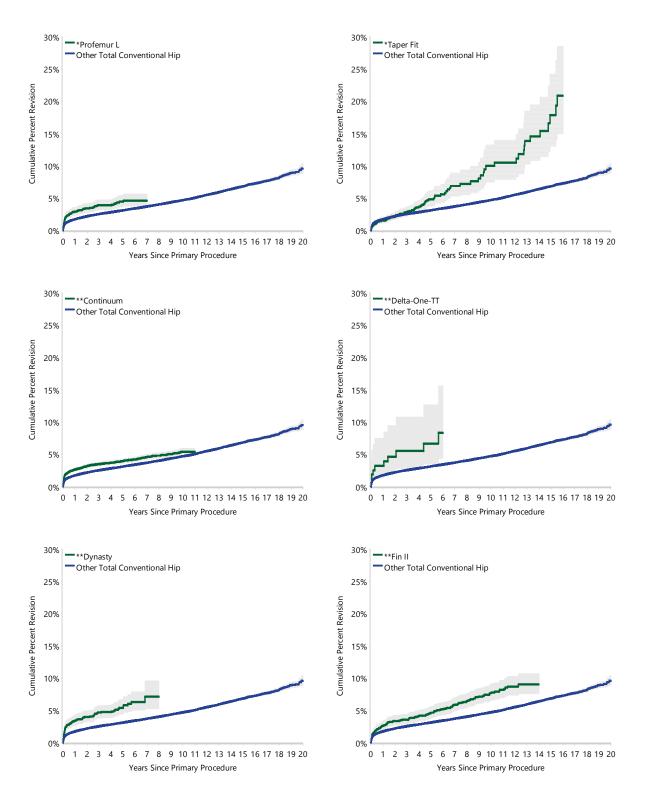
AOANJRR | 2021 ANNUAL REPORT


Year of Implant	≤200 <u>3</u>	2004_	2005	2006_	2007_	2008	2009	2010_	2011_	2012	2013	2014 <u></u>	2015_	2016	2017_2	.018 <u>2</u>	019 2 <u>02</u>
*MSA					2	3	11	58	76	46	21	7					
*Margron	337	140	96	85	28	2											
*Mayo	21	14	23	24	25	29	30	2									
*Metha (exch neck)							20	53	15		•						
*Profemur Z		41	79	56	6	1	2	1									
*Trabecular Metal				6	101	148	198	242	272	276	186	220	112	106	32	5	
*UniSyn	15	41	74	33	37	46	48	36	22	19	23	27	23	17	5		
**2000 Plus			11	23	42	14	18	25	2								
**ASR		84	584	958	1185	1180	430										
**Adept				19	20	29	30	11	12		•						
**Artek	179																
**BHR	105	127	288	550	581	477	404	276	134	27	13	5	1				
**Bionik			11	147	136	138	134	38	4								
**Conserve Plus		19	16	46	24	15	14	1			•						
**Cormet	62	74	103	114	73	129	124	93	26	4	1						
**DeltaLox								32	86	72	24	8					
**Duraloc	3054	631	448	301	253	293	187	82	84	18	3						
**Durom	5	79	265	322	257	218	85	13	1								
**ExpanSys	1	7	24	30	8	1										•	
**Hedrocel	46																
**lcon		3	40	80	84	68	78	37	11								
**Inter-Op	33																
**MBA	78	19	11	9	5	2							•				
**Mitch TRH				45	273	164	130	82	37								
**Mueller	40	4	3		1	2				1		1	1		1	1	3
**Plasmacup			10	16	13	7	54	60	59	77	70	44	51	21			
**SPH-Blind	638	205	41	49	19								•				•
**seleXys (excluding seleXys PC)				35	33	20	21	53	70	89	57	13					


Note: *Femoral Stem Component

**Acetabular Component


Figure IP2 Cumulative Percent Revision of Newly Identified Total Conventional Hip Prostheses


Newly Identified

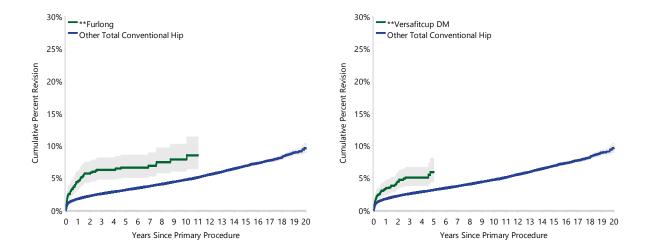


Figure IP3 Cumulative Percent Revision of Re-Identified and Still Used Total Conventional Hip Prostheses

TOTAL RESURFACING

There are no newly identified total resurfacing hip prostheses.

Head/Acetabular	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Identified and no longer used					
ASR/ASR	399	1168	13101	3.05	0 - 3Yr: HR=2.74 (2.16, 3.49),p<0.001
					3Yr - 4.5Yr: HR=7.64 (5.54, 10.54),p<0.001
					4.5Yr - 5Yr: HR=11.14 (6.79, 18.25),p<0.001
					5Yr - 6Yr: HR=7.87 (5.40, 11.48),p<0.001
					6Yr - 7.5Yr: HR=6.81 (4.98, 9.33),p<0.001
					7.5Yr - 8.5Yr: HR=4.58 (2.92, 7.20),p<0.001
					8.5Yr - 10.5Yr: HR=3.85 (2.73, 5.42),p<0.001
					10.5Yr - 12.5Yr: HR=2.91 (1.89, 4.46),p<0.001
					12.5Yr - 14Yr: HR=3.40 (1.92, 6.00),p<0.001
					14Yr+: HR=0.24 (0.03, 1.69),p=0.150
Bionik/Bionik	60	200	2021	2.97	Entire Period: HR=4.71 (3.63, 6.12),p<0.001
Conserve Plus/Conserve Plus	16	63	846	1.89	Entire Period: HR=2.38 (1.45, 3.90),p<0.001
Cormet/Cormet	133	626	7430	1.79	Entire Period: HR=2.53 (2.12, 3.03),p<0.001
Durom/Durom	111	847	10987	1.01	0 - 4.5Yr: HR=2.52 (1.93, 3.28),p<0.001
					4.5Yr+: HR=1.07 (0.80, 1.43),p=0.666
Recap/Recap	30	196	2225	1.35	0 - 6Mth: HR=3.03 (1.34, 6.85),p=0.007
					6Mth - 1.5Yr: HR=6.60 (3.20, 13.62),p<0.001
					1.5Yr+: HR=1.42 (0.87, 2.33),p=0.164
*Cormet 2000 HAP	27	95	1309	2.06	Entire Period: HR=3.42 (2.34, 5.01),p<0.001

Table IP10 Revision Rate of Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Note: Components have been compared to all other modern total resurfacing hip components *Head Component

Table IP11 Cumulative Percent Revision of Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Identified and no longer used					
ASR/ASR	3.4 (2.5, 4.6)	7.2 (5.9, 8.8)	15.5 (13.5, 17.7)	29.9 (27.4, 32.7)	
Bionik/Bionik	3.5 (1.7, 7.2)	12.5 (8.7, 18.0)	18.6 (13.8, 24.7)	27.2 (21.6, 34.0)	
Conserve Plus/Conserve Plus	4.8 (1.6, 14.0)	6.4 (2.4, 16.1)	9.6 (4.4, 20.1)	14.4 (7.8, 25.9)	
Cormet/Cormet	2.1 (1.2, 3.6)	5.6 (4.1, 7.7)	9.7 (7.6, 12.3)	17.2 (14.4, 20.4)	
Durom/Durom	3.3 (2.3, 4.8)	5.6 (4.2, 7.3)	7.7 (6.1, 9.7)	11.0 (9.0, 13.3)	
Recap/Recap	5.1 (2.8, 9.3)	8.7 (5.5, 13.6)	10.2 (6.7, 15.4)	14.5 (10.2, 20.3)	
*Cormet 2000 HAP	6.3 (2.9, 13.5)	8.4 (4.3, 16.1)	9.5 (5.0, 17.4)	22.1 (15.0, 31.9)	

Note: *Head Component

Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010 3	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Identified and no longer used																		
ASR/ASR	43	165	302	258	176	133	91											
Bionik/Bionik			12	33	33	46	54	20	2									
Conserve Plus/Conserve Plus	15	18	15	11	3		1											
Cormet/Cormet	104	50	85	74	76	94	75	50	10	4	4							
Durom/Durom	58	166	207	143	105	88	46	24	10									
Recap/Recap		27	14	10	42	46	38	16	3									
*Cormet 2000 HAP	56	39																

Table IP12 Yearly Usage of Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Note: *Head Component

PRIMARY PARTIAL KNEE REPLACEMENT

PATELLA/TROCHLEA

There are no newly identified patella/trochlear knee prostheses.

Table IP13 Revision Rate of Patella-Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

	Patella/Trochlear	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Ident	tified and no longer used					
**LC	S	208	413	3971	5.24	Entire Period: HR=1.86 (1.57, 2.20),p<0.001

Note: Components have been compared to all other modern patella-trochlear knee components **Trochlear Component

Table IP14 Cumulative Percent Revision of Patella-Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Identified and no longer used					
**LCS	3.9 (2.4, 6.2)	11.9 (9.1, 15.4)	20.7 (17.1, 25.0)	40.9 (36.1, 45.9)	

Note: **Trochlear Component

Table IP15 Yearly Usage of Patella-Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Identified and no longer used																		
**LCS	82	68	47	65	64	60	27					•		•		•		

Note: **Trochlear Component

UNICOMPARTMENTAL

The Freedom PKR Active/Freedom PKR Active combination is identified for the first time and is no longer used.

Table IP16	Revision Rate of Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of
	Revision

Femoral/Tibial	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used					
GMK-UNI/GMK-UNI	37	164	766	4.83	Entire Period: HR=2.97 (2.15, 4.10),p<0.001
Uniglide/Uniglide	175	756	7852	2.23	0 - 1.5Yr: HR=2.23 (1.69, 2.94),p<0.001
					1.5Yr - 2Yr: HR=1.51 (0.75, 3.06),p=0.248
					2Yr - 3Yr: HR=2.30 (1.47, 3.61),p<0.001
					3Yr+: HR=1.02 (0.83, 1.25),p=0.854
Identified and no longer used					
+Freedom PKR Active/Freedom PKR Active	442	1505	14353	3.08	0 - 1Yr: HR=0.75 (0.50, 1.11),p=0.148
					1Yr - 1.5Yr: HR=2.08 (1.47, 2.93),p<0.001
					1.5Yr+: HR=2.22 (2.00, 2.46),p<0.001
Advance/Advance	16	37	322	4.97	Entire Period: HR=3.35 (2.05, 5.47),p<0.001
BalanSys Uni/BalanSys Uni Mobile	54	199	2228	2.42	0 - 6Mth: HR=4.17 (2.07, 8.39),p<0.001
					6Mth - 2Yr: HR=2.57 (1.52, 4.35),p<0.001
					2Yr+: HR=1.08 (0.76, 1.53),p=0.668
**Preservation Mobile	149	400	4838	3.08	0 - 1.5Yr: HR=2.55 (1.82, 3.57),p<0.001
					1.5Yr - 3Yr: HR=3.35 (2.28, 4.93),p<0.001
					3Yr+: HR=1.23 (1.00, 1.53),p=0.055

Note: Components have been compared to all other modern unicompartmental knee components

**Tibial Component

+ Newly identified and no longer used

Table IP17 Cumulative Percent Revision of Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Re-Identified and Still Used					
GMK-UNI/GMK-UNI	6.8 (3.8, 12.0)	18.8 (13.4, 25.9)	24.2 (17.9, 32.2)		
Uniglide/Uniglide	4.8 (3.5, 6.6)	10.7 (8.7, 13.2)	12.9 (10.7, 15.5)	19.8 (17.0, 22.9)	
Identified and no longer used					
+Freedom PKR Active/Freedom PKR Active	1.7 (1.1, 2.5)	7.9 (6.6, 9.4)	13.7 (12.1, 15.6)	27.7 (25.4, 30.2)	
Advance/Advance	10.8 (4.2, 26.3)	27.0 (15.6, 44.4)	32.9 (20.2, 50.6)	41.6 (27.5, 59.4)	
BalanSys Uni/BalanSys Uni Mobile	7.0 (4.2, 11.6)	13.1 (9.1, 18.6)	14.6 (10.4, 20.4)	21.7 (16.5, 28.2)	
**Preservation Mobile	5.3 (3.5, 7.9)	15.5 (12.3, 19.5)	19.1 (15.6, 23.3)	27.2 (23.1, 31.9)	

Note: **Tibial Component

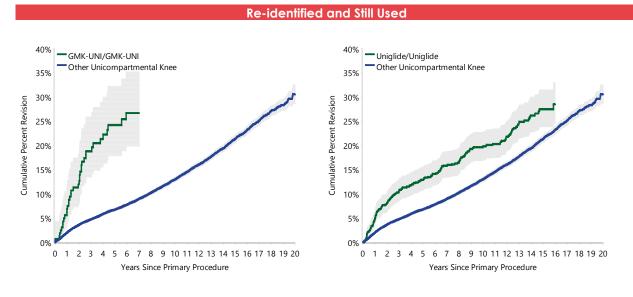

+ Newly identified and no longer used

Table IP18 Yearly Usage of Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Re-Identified and Still Used																		•
GMK-UNI/GMK-UNI						5	10	2		21	22	16	19	17	12	29	3	8
Uniglide/Uniglide	80	66	123	84	107	93	61	30	38	25	22	9	5	8	3		1	1
Identified and no longer used						•										•		
+Freedom PKR Active/Freedom PKR Active		19	223	281	264	162	149	102	75	68	63	51	31	12	5	•		•
Advance/Advance	13	11	7	2	3	1												
BalanSys Uni/BalanSys Uni Mobile		37	51	63	33	9	2	4										
**Preservation Mobile	285	59	26	17	13													

Note: **Tibial Component

+ Newly identified and no longer used

Figure IP4 Cumulative Percent Revision of Re-Identified and Still Used Unicompartmental Knee Prostheses

PRIMARY TOTAL KNEE REPLACEMENT

There are no newly identified total knee prostheses.

Table IP19 Revision Rate of Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Femoral/TibialN RevisedObs. TotalRevisions/ YearsHazard Ratio, P ValueRe-Identified and Still UsedACS (cless)/ACS Fixed1102400100451.10Entire Period: HR=1.57 (1.30, 1.89),p<0.001Active Knee (cless)/Active Knee6797197727640.930 - 1Yr: HR=1.03 (0.83, 1.29),p=0.7731Yr - 2.5Yr: HR=1.60 (1.36, 1.89),p<0.001	_
ACS (cless)/ACS Fixed 110 2400 10045 1.10 Entire Period: HR=1.57 (1.30, 1.89),p<0.001	
Active Knee (cless)/Active Knee 679 7197 72764 0.93 0 - 1Yr: HR=1.03 (0.83, 1.29),p=0.773	
1Vr - 2 5Vr HR=1 60 (1 36 1 89) p<0.001	
2.5Yr - 3Yr: HR=1.13 (0.74, 1.72),p=0.564	
Advance/Advance 65 991 6442 1.01 Entire Period: HR=1.67 (1.31, 2.14),p<0.001	
Apex Knee CR (cless)/Apex Knee (cless) 27 449 2419 1.12 Entire Period: HR=1.78 (1.22, 2.60),p=0.002	
Columbus/Columbus 132 4151 14624 0.90 0 - 2Yr: HR=1.10 (0.87, 1.40),p=0.429	
E.Motion/E.Motion 79 1360 7003 1.13 0 - 1.5Yr: HR=2.41 (1.81, 3.20),p<0.001	
1.5Yr+: HR=1.31 (0.93, 1.86),p=0.122	
Nexgen LPS Flex (cless)/Nexgen 102 2098 10144 1.01 0 - 1.5Yr: HR=1.96 (1.52, 2.52),p<0.001	
1.5Yr - 3.5Yr: HR=1.59 (1.13, 2.23),p=0.008	
Score (cless)/Score (cless) 211 2666 15357 1.37 0 - 9Mth: HR=1.26 (0.86, 1.84),p=0.230	
9Mth - 1.5Yr: HR=2.28 (1.70, 3.06),p<0.001	
1.5Yr+: HR=2.39 (2.02, 2.83),p<0.001	
Score (cless)/Score (ctd) 81 1635 6509 1.24 Entire Period: HR=1.72 (1.38, 2.13),p<0.001	
Trekking/Trekking 57 1243 5989 0.95 0 - 9Mth: HR=2.53 (1.70, 3.79),p<0.001	
9Mth - 2.5Yr: HR=1.06 (0.67, 1.68),p=0.811	
2.5Yr+: HR=1.13 (0.68, 1.87),p=0.644	
Vanguard PS/Vanguard 320 5231 35973 0.89 0 - 1.5Yr: HR=1.94 (1.65, 2.27),p<0.001	
1.5Yr+: HR=1.35 (1.16, 1.58),p<0.001	
**Legion Revision Tibial Baseplate 58 847 4017 1.44 0 - 1Mth: HR=7.26 (4.13, 12.76),p<0.001	
1Mth - 6Mth: HR=4.10 (2.38, 7.08),p<0.001	
1.5Yr+: HR=1.69 (1.15, 2.48),p=0.007	
Identified and no longer used	
ACS/ACS Mobile PC (cless) 29 131 818 3.55 Entire Period: HR=5.75 (3.99, 8.27),p<0.001	
AMK/AMK 26 203 2476 1.05 Entire Period: HR=2.33 (1.58, 3.42),p<0.001	
Buechel-Pappas/Buechel-Pappas 51 479 4692 1.09 Entire Period: HR=2.08 (1.58, 2.74),p<0.001	
Eska RP/Eska RP 9 40 354 2.54 Entire Period: HR=5.45 (2.84, 10.47),p<0.00	1
Evolis (cless)/Evolis (cless) 9 87 718 1.25 Entire Period: HR=2.19 (1.14, 4.20),p=0.018	
Comini M/ II/Comini M/ II 9 21 214 2.74 Entire Device (U.C. 14.50) - 0.05	1
Gemini MK II/Gemini MK II 8 21 214 3.74 Entire Period: HR=7.25 (3.63, 14.50),p<0.00	
Gemini MK II/Gemini MK II 8 21 214 3.74 Entire Period: HR=7.25 (3.63, 14.50),p<0.00 Genesis (ctd)/Genesis (ctd) 11 62 682 1.61 Entire Period: HR=3.70 (2.05, 6.67),p<0.001	
Genesis (ctd)/Genesis (ctd) 11 62 682 1.61 Entire Period: HR=3.70 (2.05, 6.67),p<0.001	
Genesis (ctd)/Genesis (ctd) 11 62 682 1.61 Entire Period: HR=3.70 (2.05, 6.67),p<0.001 Genesis II CR (cless)/Profix Mobile (ctd) 35 241 2760 1.27 Entire Period: HR=2.76 (1.98, 3.85),p<0.001	

Femoral/Tibial	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Genesis II Oxinium CR (cless)/Profix Mobile	56	88	608	9.21	0 - 6Mth: HR=7.26 (2.72, 19.36),p<0.001
		•	•	•	6Mth - 9Mth: HR=51.53 (28.47, 93.25),p<0.001
		•	•	•	9Mth - 1.5Yr: HR=37.38 (24.34, 57.38),p<0.001
		•	•	•	1.5Yr - 2Yr: HR=30.90 (14.71, 64.88),p<0.001
		•			2Yr - 4Yr: HR=10.16 (4.23, 24.43),p<0.001
			•		4Yr+: HR=5.06 (2.53, 10.13),p<0.001
Genesis II Oxinium PS (ctd)/Genesis II (cless)	17	56	433	3.93	0 - 1Yr: HR=16.90 (9.35, 30.53),p<0.001
				•	1Yr+: HR=3.03 (1.36, 6.74),p=0.006
Genesis II Oxinium PS (ctd)/Genesis II (keel)	68	269	2790	2.44	Entire Period: HR=4.89 (3.86, 6.21),p<0.001
HLS Noetos/HLS Noetos	42	294	2757	1.52	Entire Period: HR=2.96 (2.19, 4.01),p<0.001
IB II/IB II	39	199	2518	1.55	0 - 2Yr: HR=0.88 (0.28, 2.72),p=0.818
					2Yr - 2.5Yr: HR=5.20 (1.68, 16.09),p=0.004
				•	2.5Yr+: HR=5.24 (3.73, 7.38),p<0.001
Interax/Interax	11	52	517	2.13	0 - 3Yr: HR=0.85 (0.12, 6.04),p=0.872
			•	•	3Yr+: HR=8.93 (4.80, 16.61),p<0.001
Journey Oxinium/Journey	336	3033	28142	1.19	0 - 3Mth: HR=0.27 (0.09, 0.85),p=0.025
				•	3Mth - 1.5Yr: HR=2.14 (1.71, 2.68),p<0.001
				•	1.5Yr - 2Yr: HR=1.73 (1.12, 2.65),p=0.012
				•	2Yr - 2.5Yr: HR=2.30 (1.53, 3.48),p<0.001
				•	2.5Yr - 3Yr: HR=1.53 (0.87, 2.70),p=0.142
			•	•	3Yr+: HR=2.88 (2.50, 3.31),p<0.001
Maxim (cless)/Vanguard (ctd)	64	413	5156	1.24	0 - 2Yr: HR=1.49 (0.85, 2.63),p=0.165
					2Yr - 3Yr: HR=1.24 (0.40, 3.83),p=0.714
		•		•	3Yr+: HR=3.37 (2.54, 4.46),p<0.001
Optetrak-CR (ctd)/Optetrak (ctd)	11	92	806	1.36	Entire Period: HR=2.84 (1.58, 5.11),p<0.001
Optetrak-PS/Optetrak	263	2410	23958	1.10	0 - 1Yr: HR=1.44 (1.03, 2.01),p=0.030
					1Yr - 1.5Yr: HR=1.88 (1.25, 2.84),p=0.002
				•	1.5Yr+: HR=2.47 (2.15, 2.84),p<0.001
Optetrak-PS/Optetrak RBK	86	1127	8888	0.97	Entire Period: HR=1.84 (1.49, 2.27),p<0.001
Optetrak-PS/Optetrak-PS	14	55	528	2.65	Entire Period: HR=5.85 (3.47, 9.88),p<0.001
PFC Sigma PS (ctd)/MBT (cless)	24	316	2472	0.97	Entire Period: HR=1.65 (1.11, 2.47),p=0.013
Profix Oxinium (cless)/Profix	33	75	702	4.70	0 - 9Mth: HR=5.94 (2.23, 15.83),p<0.001
					9Mth - 2Yr: HR=25.94 (16.90, 39.82),p<0.001
			•	•	2Yr+: HR=3.34 (1.67, 6.68),p<0.001
Profix Oxinium (cless)/Profix Mobile	71	158	1326	5.35	0 - 9Mth: HR=3.14 (1.18, 8.33),p=0.021
					9Mth - 1.5Yr: HR=25.72 (17.86, 37.06),p<0.001
					1.5Yr - 2Yr: HR=17.62 (9.16, 33.91),p<0.001
					2Yr - 2.5Yr: HR=37.08 (21.99, 62.53),p<0.001
			•		2.5Yr - 3Yr: HR=22.75 (10.20, 50.74),p<0.001
				•	3Yr+: HR=2.60 (1.35, 5.00),p=0.004
Profix Oxinium (ctd)/Profix (cless)	14	100	1188	1.18	Entire Period: HR=2.12 (1.26, 3.57),p=0.004
Profix Oxinium (ctd)/Profix Mobile	28	228	2981	0.94	Entire Period: HR=1.74 (1.20, 2.53),p=0.003
Profix/Profix Mobile	113	1005	12048	0.94	0 - 1.5Yr: HR=2.68 (1.97, 3.66),p<0.001
	· ·				1.5Yr - 2.5Yr: HR=3.06 (1.99, 4.69),p<0.001
					2.5Yr+: HR=1.47 (1.12, 1.93),p=0.006

Femoral/Tibial	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Rotaglide Plus/Rotaglide Plus	82	631	7499	1.09	0 - 1.5Yr: HR=1.29 (0.73, 2.27),p=0.379
					1.5Yr - 2Yr: HR=3.36 (1.68, 6.72),p<0.001
					2Yr+: HR=2.60 (2.02, 3.34),p<0.001
SAL/SAL	14	56	724	1.93	0 - 8.5Yr: HR=1.59 (0.60, 4.25),p=0.351
					8.5Yr+: HR=9.96 (5.37, 18.48),p<0.001
Scorpio NRG PS (cless)/Series 7000 (cless)	79	1172	9542	0.83	Entire Period: HR=1.33 (1.06, 1.66),p=0.012
TC-Plus (cless)/TC-Plus (ctd)	8	63	680	1.18	Entire Period: HR=2.68 (1.34, 5.34),p=0.005
Trac/Trac	27	138	1640	1.65	Entire Period: HR=3.36 (2.31, 4.90),p<0.001
Vanguard PS/Regenerex	34	465	2822	1.20	0 - 1.5Yr: HR=2.40 (1.51, 3.81),p<0.001
					1.5Yr - 2Yr: HR=2.59 (1.08, 6.23),p=0.033
					2Yr - 3Yr: HR=3.10 (1.55, 6.19),p=0.001
					3Yr+: HR=0.50 (0.16, 1.56),p=0.233
*LCS Duofix	652	4866	50759	1.28	0 - 1.5Yr: HR=1.74 (1.46, 2.07),p<0.001
					1.5Yr - 2Yr: HR=2.49 (1.87, 3.31),p<0.001
					2Yr - 3Yr: HR=3.78 (3.12, 4.59),p<0.001
					3Yr - 3.5Yr: HR=4.77 (3.59, 6.34),p<0.001
					3.5Yr - 4Yr: HR=5.71 (4.31, 7.58),p<0.001
					4Yr - 4.5Yr: HR=4.44 (3.17, 6.24),p<0.001
					4.5Yr - 5Yr: HR=5.66 (4.14, 7.73),p<0.001
					5Yr - 5.5Yr: HR=4.55 (3.19, 6.49),p<0.001
					5.5Yr - 7Yr: HR=2.89 (2.21, 3.78),p<0.001
					7Yr+: HR=1.49 (1.22, 1.82),p<0.001
*LCS PS	69	638	5278	1.31	Entire Period: HR=2.54 (2.00, 3.22),p<0.001
*Renasys	17	121	1394	1.22	Entire Period: HR=2.65 (1.65, 4.25),p<0.001

Note: Components have been compared to all other modern total knee components

*Femoral Component

**Tibial Component

Table IP20 Cumulative Percent Revision of Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Revision					
CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Re-Identified and Still Used					
ACS (cless)/ACS Fixed	1.5 (1.1, 2.1)	4.4 (3.6, 5.3)	5.2 (4.3, 6.4)		
Active Knee (cless)/Active Knee	1.1 (0.9, 1.4)	3.6 (3.1, 4.0)	5.0 (4.5, 5.6)	8.8 (8.1, 9.6)	
Advance/Advance	2.0 (1.3, 3.1)	5.3 (4.1, 7.0)	6.3 (4.9, 8.1)	8.0 (6.3, 10.3)	
Apex Knee CR (cless)/Apex Knee (cless)	2.5 (1.4, 4.4)	5.7 (3.9, 8.4)	6.0 (4.1, 8.8)		
Columbus/Columbus	1.1 (0.8, 1.4)	3.5 (2.8, 4.3)	4.8 (3.9, 5.9)	7.7 (6.3, 9.4)	
E.Motion/E.Motion	2.4 (1.7, 3.4)	5.4 (4.3, 6.8)	6.4 (5.1, 8.0)	7.1 (5.7, 8.8)	
Nexgen LPS Flex (cless)/Nexgen	2.5 (1.9, 3.2)	4.5 (3.7, 5.6)	5.3 (4.3, 6.4)	6.2 (4.9, 7.9)	
Score (cless)/Score (cless)	1.6 (1.2, 2.2)	5.3 (4.5, 6.3)	7.4 (6.3, 8.6)	11.9 (10.3, 13.8)	
Score (cless)/Score (ctd)	1.6 (1.1, 2.3)	4.0 (3.1, 5.1)	6.0 (4.8, 7.6)		
Trekking/Trekking	2.3 (1.6, 3.3)	3.7 (2.7, 4.9)	4.8 (3.6, 6.3)		
Vanguard PS/Vanguard	1.9 (1.5, 2.3)	4.3 (3.8, 4.9)	5.4 (4.8, 6.1)	7.6 (6.8, 8.5)	
**Legion Revision Tibial Baseplate	3.6 (2.5, 5.1)	5.7 (4.2, 7.6)	6.9 (5.2, 9.2)	10.6 (8.0, 14.2)	
Identified and no longer used					
ACS/ACS Mobile PC (cless)	7.7 (4.2, 13.8)	19.3 (13.5, 27.2)	20.1 (14.2, 28.2)		
AMK/AMK	1.0 (0.2, 3.9)	5.0 (2.7, 9.1)	6.6 (3.9, 11.1)	11.3 (7.5, 16.9)	14.6 (9.8, 21.5)
Buechel-Pappas/Buechel-Pappas	1.9 (1.0, 3.6)	5.7 (3.9, 8.2)	7.9 (5.8, 10.7)	10.5 (8.0, 13.7)	
Eska RP/Eska RP	7.5 (2.5, 21.5)	12.7 (5.5, 27.9)	18.2 (9.1, 34.5)	21.1 (11.1, 37.9)	
Evolis (cless)/Evolis (cless)	2.3 (0.6, 8.9)	8.0 (3.9, 16.1)	10.3 (5.5, 18.9)	10.3 (5.5, 18.9)	
Gemini MK II/Gemini MK II	9.5 (2.5, 33.0)	14.3 (4.8, 38.0)	23.8 (10.7, 48.1)	23.8 (10.7, 48.1)	
Genesis (ctd)/Genesis (ctd)	0.0 (0.0, 0.0)	6.7 (2.6, 16.8)	10.0 (4.6, 20.9)	16.1 (8.6, 28.9)	
Genesis II CR (cless)/Profix Mobile (ctd)	2.9 (1.4, 6.1)	7.7 (4.9, 11.9)	9.4 (6.3, 14.0)	14.6 (10.5, 20.1)	
Genesis II Oxinium CR (cless)/Genesis II	11.8 (7.0, 19.5)	38.9 (30.4, 48.7)	39.8 (31.3, 49.7)	42.8 (34.0, 52.7)	
Genesis II Oxinium CR (cless)/Profix Mobile	24.0 (16.3, 34.4)	52.8 (42.8, 63.5)	57.4 (47.4, 67.9)	61.1 (51.0, 71.3)	
Genesis II Oxinium PS (ctd)/Genesis II (cless)	19.6 (11.4, 32.7)	26.8 (17.1, 40.4)	30.4 (20.1, 44.2)	30.4 (20.1, 44.2)	
Genesis II Oxinium PS (ctd)/Genesis II (keel)	4.5 (2.6, 7.7)	14.9 (11.1, 19.7)	19.0 (14.8, 24.3)	22.6 (18.0, 28.2)	
HLS Noetos/HLS Noetos	3.4 (1.8, 6.2)	8.6 (5.9, 12.4)	10.7 (7.7, 14.9)	13.6 (10.1, 18.3)	
IB II/IB II	0.0 (0.0, 0.0)	3.5 (1.7, 7.3)	7.8 (4.8, 12.6)	15.8 (11.3, 22.0)	
Interax/Interax	0.0 (0.0, 0.0)	2.0 (0.3, 13.4)	8.3 (3.2, 20.7)	13.0 (6.0, 26.8)	
Journey Oxinium/Journey	1.4 (1.0, 1.9)	4.6 (3.9, 5.4)	6.5 (5.6, 7.4)	11.0 (9.9, 12.3)	
Maxim (cless)/Vanguard (ctd)	1.2 (0.5, 2.9)	3.7 (2.2, 6.0)	6.0 (4.0, 8.8)	9.4 (6.9, 12.8)	
Optetrak-CR (ctd)/Optetrak (ctd)	0.0 (0.0, 0.0)	6.6 (3.0, 14.0)	10.1 (5.4, 18.5)	11.4 (6.3, 20.2)	
Optetrak-PS/Optetrak	1.5 (1.1, 2.0)	4.8 (4.0, 5.7)	6.4 (5.4, 7.4)	11.0 (9.7, 12.4)	
Optetrak-PS/Optetrak RBK	1.8 (1.2, 2.7)	4.6 (3.5, 6.1)	5.9 (4.7, 7.6)	8.6 (6.9, 10.7)	
Optetrak-PS/Optetrak-PS	1.8 (0.3, 12.2)	16.4 (8.9, 29.1)	20.0 (11.6, 33.3)	24.4 (14.9, 38.5)	
PFC Sigma PS (ctd)/MBT (cless)	2.2 (1.1, 4.6)	5.4 (3.4, 8.6)	7.1 (4.7, 10.5)		
Profix Oxinium (cless)/Profix	13.3 (7.4, 23.4)	36.1 (26.4, 48.1)	37.5 (27.6, 49.5)	42.0 (31.7, 54.2)	
Profix Oxinium (cless)/Profix Mobile	9.0 (5.4, 14.6)	40.2 (32.9, 48.3)	41.5 (34.2, 49.7)	46.0 (38.4, 54.3)	
Profix Oxinium (ctd)/Profix (cless)	4.0 (1.5, 10.3)	8.0 (4.1, 15.4)	9.0 (4.8, 16.6)	11.2 (6.4, 19.4)	
Profix Oxinium (ctd)/Profix Mobile	2.2 (0.9, 5.2)	6.7 (4.1, 10.9)	9.0 (5.9, 13.6)	11.3 (7.8, 16.3)	
Profix/Profix Mobile	2.3 (1.5, 3.4)	6.5 (5.1, 8.2)	8.2 (6.6, 10.1)	10.0 (8.3, 12.1)	
Rotaglide Plus/Rotaglide Plus	0.8 (0.3, 1.9)	4.1 (2.8, 6.0)	5.8 (4.2, 8.0)	11.1 (8.8, 14.0)	
SAL/SAL	0.0 (0.0, 0.0)	1.9 (0.3, 12.6)	1.9 (0.3, 12.6)	14.8 (7.3, 28.6)	33.3 (21.1, 50.1)
Scorpio NRG PS (cless)/Series 7000 (cless)	1.2 (0.7, 2.0)	4.9 (3.8, 6.3)	6.1 (4.8, 7.7)	7.3 (5.8, 9.1)	
TC-Plus (cless)/TC-Plus (ctd)	1.6 (0.2, 10.7)	8.4 (3.6, 19.1)	8.4 (3.6, 19.1)	14.4 (7.4, 26.9)	

AOANJRR | 2021 ANNUAL REPORT

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	19 Yrs
Trac/Trac	2.2 (0.7, 6.6)	5.9 (3.0, 11.4)	9.0 (5.2, 15.2)	15.1 (9.9, 22.7)	
Vanguard PS/Regenerex	3.2 (2.0, 5.3)	6.9 (4.9, 9.7)	7.2 (5.1, 10.0)	8.2 (5.8, 11.5)	
*LCS Duofix	1.5 (1.2, 1.9)	5.9 (5.3, 6.6)	9.7 (8.9, 10.6)	13.0 (12.1, 14.1)	
*LCS PS	2.1 (1.2, 3.5)	6.7 (5.0, 9.0)	8.5 (6.6, 11.0)	11.8 (9.4, 14.7)	
*Renasys	2.5 (0.8, 7.5)	4.2 (1.8, 9.8)	8.5 (4.6, 15.1)	11.2 (6.7, 18.5)	

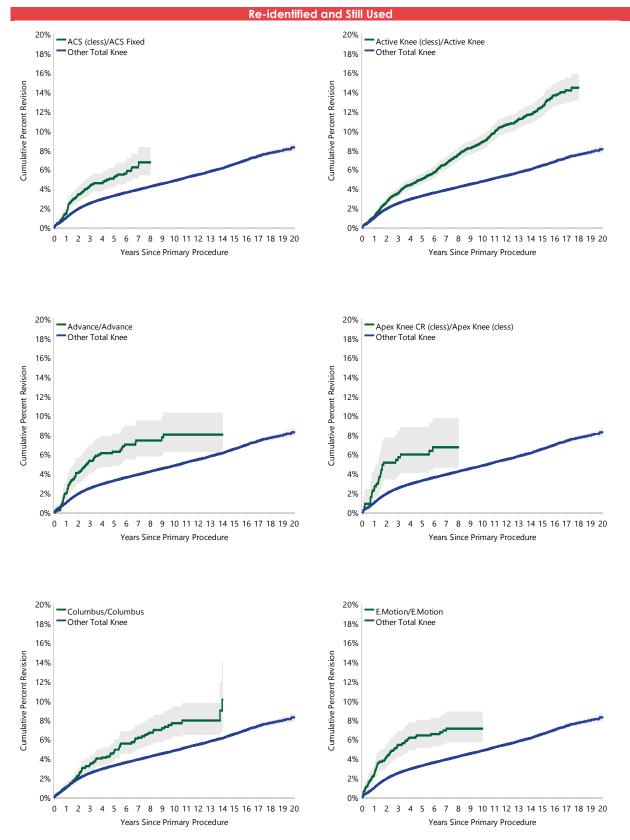
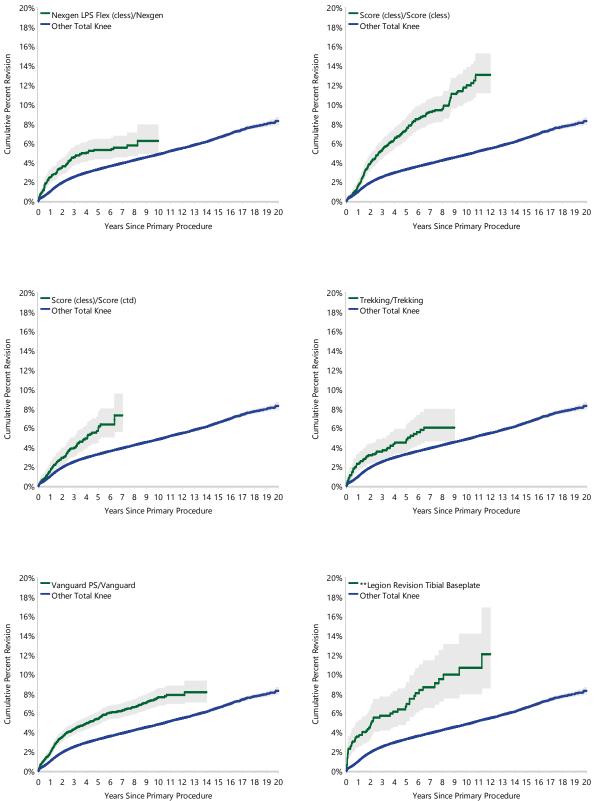
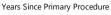

Note: *Femoral Component **Tibial Component

Table IP21 Yearly Usage of Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision


Table IP21 Yearly Usage of		iee i i	Usine	36310														
Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Re-Identified and Still Used																		
ACS (cless)/ACS Fixed									41	119	283	337	331	238	266	259	319	207
Active Knee (cless)/Active Knee	834	790	693	466	510	483	412	479	601	500	427	319	336	176	91	35	21	24
Advance/Advance	53	8	12	16	2	5	43	115	138	74	7	92	92	100	90	69	58	17
Apex Knee CR (cless)/Apex Knee (cless)										69	83	118	78	11	3	29	52	6
Columbus/Columbus			49	91	90	148	156	134	136	108	69	36	60	118	358	670	826	1102
E.Motion/E.Motion							12	87	114	129	236	106	113	125	140	99	94	105
Nexgen LPS Flex (cless)/Nexgen								73	78	149	312	238	280	225	252	221	188	82
Score (cless)/Score (cless)			1		11	135	212	187	204	196	238	273	263	171	160	214	150	25
Score (cless)/Score (ctd)		3			3	3	3		5	15	90	181	324	300	267	122	205	114
Trekking/Trekking								35	102	133	107	108	106	129	216	144	98	65
Vanguard PS/Vanguard			22	81	145	321	430	478	607	561	451	523	445	331	310	205	186	135
**Legion Revision Tibial Baseplate				16	33	48	40	56	47	63	54	47	38	50	50	87	93	125
Identified and no longer used																		
ACS/ACS Mobile PC (cless)									20	37	57	17						
AMK/AMK	202	1																
Buechel-Pappas/Buechel-Pappas			1	39	51	84	100	148	44	4		7	1					
Eska RP/Eska RP			9	24	5		2											
Evolis (cless)/Evolis (cless)						17	5	11	9	20	7	11	7					
Gemini MK II/Gemini MK II	21																	
Genesis (ctd)/Genesis (ctd)	51	3	8															
Genesis II CR (cless)/Profix Mobile (ctd)	152	10	4	2	5	12	6	9	17	2	22							
Genesis II Oxinium CR (cless)/Genesis II	110																	
Genesis II Oxinium CR (cless)/Profix Mobile	88					·												
Genesis II Oxinium PS (ctd)/Genesis II (cless)					4	4	11	35	1	1								
Genesis II Oxinium PS (ctd)/Genesis II (keel)			19	123	127													
HLS Noetos/HLS Noetos		2	2	47	45	45	56	48	28	20	1							
IB II/IB II	199																	
Interax/Interax	52																	
Journey Oxinium/Journey				134	337	541	555	464	334	343	325							
Maxim (cless)/Vanguard (ctd)	180	106	64	23	30	10												
Optetrak-CR (ctd)/Optetrak (ctd)	14	6	2	9	7	7	4		5	6	8	24						
Optetrak-PS/Optetrak	256	155	252	253	216	168	202	198	202	200	151	115	30	3	5	3	1	
Optetrak-PS/Optetrak RBK			1	81	173	166	119	82	40	37	50	100	56	46	88	75	13	
Optetrak-PS/Optetrak-PS		8	14	18	15													
PFC Sigma PS (ctd)/MBT (cless)			47	2					25	89	110	42		1				
Profix Oxinium (cless)/Profix	75																	
Profix Oxinium (cless)/Profix Mobile	158		·				·	•		·	·	•	•	·				
Profix Oxinium (ctd)/Profix (cless)	10	29	17	15	8	10	8	2		1								


Year of Implant	≤2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019 2	020
Profix Oxinium (ctd)/Profix Mobile	103	91	24	3	4	1	2							•				
Profix/Profix Mobile	370	258	245	51	56	11	12	2										
Rotaglide Plus/Rotaglide Plus	332	110	101	43	30	15												
SAL/SAL	56																	
Scorpio NRG PS (cless)/Series 7000 (cless)					76	185	171	166	114	67	71	76	72	77	69	28		
TC-Plus (cless)/TC-Plus (ctd)	1	27	27	5	3													
Trac/Trac	137	1																
Vanguard PS/Regenerex							4	121	54	27	15	21	18	76	59	56	14	
*LCS Duofix				844	1636	1532	854											
*LCS PS						8	157	203	109	51	69	39	2					
*Renasys		•	51	53	3	14					•			•		•		

Note: *Femoral Component **Tibial Component

Figure IP5 Cumulative Percent Revision of Re-identified and Still Used Total Knee Prostheses

PRIMARY PARTIAL SHOULDER REPLACEMENT

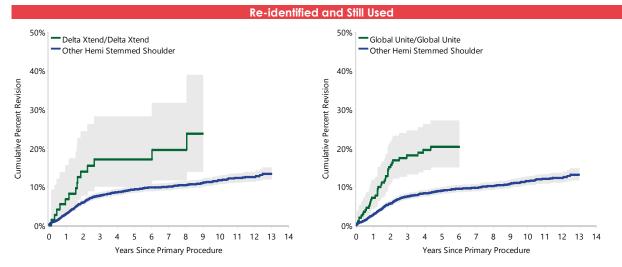
HEMI STEMMED

There are no newly identified hemi stemmed shoulder prostheses.

Table IP22 Revision Rate of Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Humeral Stem/Head	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used					
Delta Xtend/Delta Xtend	14	75	396	3.53	Entire Period: HR=2.47 (1.45, 4.21),p<0.001
Global Unite/Global Unite	36	201	824	4.37	Entire Period: HR=2.02 (1.43, 2.84),p<0.001

Note: Components have been compared to all other hemi stemmed shoulder components


Table IP23 Cumulative Percent Revision of Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	13 Yrs
Re-Identified and Still Used					
Delta Xtend/Delta Xtend	6.8 (2.9, 15.6)	17.1 (10.1, 28.2)	17.1 (10.1, 28.2)	19.5 (11.7, 31.6)	
Global Unite/Global Unite	7.1 (4.3, 11.8)	18.1 (13.2, 24.5)	20.3 (15.0, 27.0)		

Table IP24 Yearly Usage of Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Re-Identified and Still Used	· ·													
Delta Xtend/Delta Xtend	2	5	9	9	5	10	7	6	5	4	3	6	3	1
Global Unite/Global Unite						15	37	25	38	37	14	12	11	12

Figure IP6 Cumulative Percent Revision of Re-Identified and Still Used Hemi Stemmed Shoulder Prostheses

PRIMARY TOTAL SHOULDER REPLACEMENT

TOTAL STEMMED

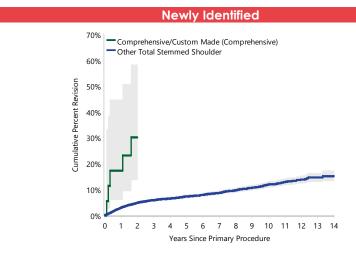
There is one newly identified total stemmed shoulder prosthesis combination.

The Comprehensive/Custom Made (Comprehensive) combination has been used in 18 procedures since 2016. The 2 year cumulative percent revision is 30.2%. Of the 6 revisions, 5 were major revisions including 4 humeral components and 1 humeral/glenoid component. All of the total stemmed shoulder replacements that were revised used cementless fixation. There were 4 revisions for instability/dislocation, 1 for arthrofibrosis, and 1 for rotator cuff insufficiency.

Table IP25Revision Rate of Total Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of
Revision

Humeral Stem/Glenoid	N Revised	N Total		Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Newly Identified					
Comprehensive/Custom Made (Comprehensive)	6	18	31	19.4	Entire Period: HR=7.67 (3.42, 17.20),p<0.001
Re-Identified and Still Used					
SMR/SMR L1	357	2241	13171	2.71	Entire Period: HR=3.02 (2.58, 3.53),p<0.001
Identified and no longer used					
SMR/SMR L2	310	856	5730	5.41	Entire Period: HR=4.15 (3.62, 4.76),p<0.001
Univers 3D/Univers 3D	16	34	281	5.69	Entire Period: HR=4.56 (2.77, 7.51),p<0.001
Vaios/Vaios	19	36	194	9.77	Entire Period: HR=6.83 (4.32, 10.78),p<0.001

Note: Components have been compared to all other modern total stemmed shoulder components


Table IP26 Cumulative Percent Revision of Total Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	13 Yrs
Newly Identified					
Comprehensive/Custom Made (Comprehensive)	17.4 (5.9, 44.8)				
Re-Identified and Still Used					
SMR/SMR L1	6.1 (5.2, 7.2)	11.5 (10.2, 13.0)	13.9 (12.5, 15.5)	16.1 (14.5, 17.9)	24.8 (21.8, 28.1)
Identified and no longer used					
SMR/SMR L2	9.5 (7.7, 11.7)	22.2 (19.6, 25.2)	29.7 (26.8, 33.0)	34.0 (30.8, 37.3)	
Univers 3D/Univers 3D	5.9 (1.5, 21.5)	14.7 (6.4, 31.8)	21.2 (10.7, 39.4)	31.0 (18.0, 50.1)	48.9 (32.7, 68.0)
Vaios/Vaios	13.9 (6.0, 30.2)	27.8 (16.0, 45.5)	39.1 (25.3, 57.0)	48.7 (33.6, 66.4)	

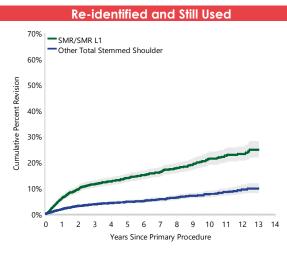


 Table IP27
 Yearly Usage of Total Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Newly Identified														
Comprehensive/Custom Made (Comprehensive)										1	4	7	5	1
Re-Identified and Still Used														
SMR/SMR L1	135	237	247			157	301	255	242	195	172	129	98	73
Identified and no longer used														
SMR/SMR L2			43	343	336	134						•		
Univers 3D/Univers 3D	23	11												
Vaios/Vaios	.				16	17	2	1						

Figure IP7 Cumulative Percent Revision of Newly Identified Total Stemmed Shoulder Prostheses

TOTAL REVERSE

There is one newly identified total reverse shoulder prosthesis combination.

The SMR/SMR Axioma combination has been used in 105 procedures since 2014. The 1 year cumulative percent revision is 5.2%. Of the 7 revisions, 4 were minor revisions including replacement of the cup/head, the cup only and 2 head only replacements. There were 3 major revisions, including 2 humeral components and 1 cement spacer. Six of the revised total reverse shoulder replacements used cementless fixation. There were 2 revisions for instability/dislocation, 2 for infection, 2 for fracture and 1 for loosening.

Table IP28 Revision Rate of Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Head/Femoral Stem	N Revised	N Total	Obs. Years	Revisions/ 100 Obs. Yrs	Hazard Ratio, P Value
Newly Identified					
SMR/SMR Axioma	7	105	164	4.26	Entire Period: HR=2.21 (1.05, 4.65),p=0.036
Re-Identified and Still Used					
SMR/SMR L1	331	7765	29761	1.11	0 - 3Mth: HR=1.52 (1.26, 1.84),p<0.001
				•	3Mth - 1.5Yr: HR=1.14 (0.91, 1.42),p=0.261
				•	1.5Yr+: HR=0.77 (0.60, 1.00),p=0.048

Note: Components have been compared to all other modern total reverse shoulder components

Table IP29 Cumulative Percent Revision of Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	13 Yrs
Newly Identified					
SMR/SMR Axioma	5.2 (2.2, 12.2)				
Re-Identified and Still Used					
SMR/SMR L1	3.1 (2.7, 3.5)	4.2 (3.7, 4.7)	4.7 (4.2, 5.2)	5.2 (4.6, 5.9)	7.9 (6.2, 9.9)

Table IP30 Yearly Usage of Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Newly Identified														
SMR/SMR Axioma								3	2	7	5	19	34	35
Re-Identified and Still Used														
SMR/SMR L1	145	262	271			249	562	632	732	914	930	1046	1051	971

Figure IP9 Cumulative Percent Revision of Newly Identified Total Reverse Shoulder Prostheses

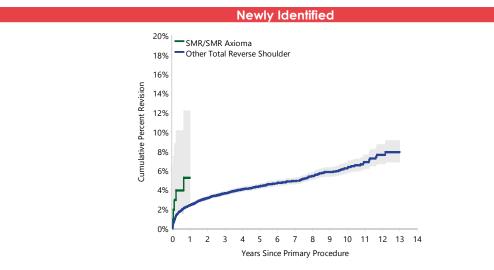
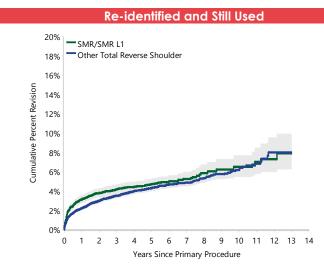



Figure IP10 Cumulative Percent Revision of Re-Identified and Still Used Total Reverse Shoulder Prostheses

PRIMARY TOTAL ANKLE REPLACEMENT

The S.T.A.R/S.T.A.R combination is newly identified and no longer used.

Table IP31 Revision Rate of Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision

Humeral Stem/Glenoid	N Revised		Obs. Years	Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Identified and no longer used					
+S.T.A.R/S.T.A.R	10	49	290	3.45	Entire Period: HR=1.97 (1.05, 3.71),p=0.034

Note: Components have been compared to all other total ankle components + Newly identified and no longer used

Table IP32 Cumulative Percent Revision of Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	13 Yrs
Identified and no longer used					
+S.T.A.R/S.T.A.R	4.1 (1.0, 15.5)	12.6 (5.9, 26.0)	14.8 (7.3, 28.6)	24.5 (13.6, 41.6)	

Note: + Newly identified and no longer used

Table IP33 Yearly Usage of Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Identified and no longer used														
+S.T.A.R/S.T.A.R	1		3	3	4	2	15	12	4	4		1		

Note: + Newly identified and no longer used

Appendices

APPENDIX 1 - PARTICIPATING HOSPITALS & COORDINATORS

VICTORIA

PUBLIC HOSPITAL	S	PRIVATE HOS	SPITALS
Austin Health	R Kentish/B Murray	Ballarat Day Procedure Centre	Amy Ingram
Bairnsdale Regional Health Service	Sian Guns	Beleura Private Hospital	Jean Leyland
Ballarat Health Service	M Nicholson/B Anderson	Bellbird Private Hospital	Belinda Van Denberg
Bass Coast Regional Health	Fanella King	Cabrini Private Hospital, Brighton	T Colliver/ M Speak
Bendigo Health Care Group	S Sharp/C Jensen	Cabrini Private Hospital, Malvern	T Colliver/ M Speak
Box Hill Hospital	Lisa Bingham	Epping Private Hospital	Jooly Jose
Broadmeadows Hospital	B Wilson/R Paul	Epworth Eastern Hospital	Linda Dennehy
Central Gippsland Health	Mandy Pusmucans	Epworth Freemasons	Claudia Nozzolillo
Cohuna District Hospital	Karyn Storm	Epworth Geelong	Christian King
Colac Area Health	Amanda Tout	Epworth Richmond	Lynne Moyes
Dandenong Hospital	K Ferguson/M Murray	Essendon Private Hospital	Elaine Jordan
Djerriwarrh Health Services Bacchus Marsh Campus	J Dehnert/C Clifford	Frankston Private Hospital	Tracy McIndoe-Norton
East Grampians Health Service	K Carr/J Sargent	Glenferrie Private Hospital	Marianne Westley
Echuca Regional Health	K Giorgianni/H Lias	Holmesglen Private Hospital	Nicole Groves
Footscray Hospital	A Dijak/V Mahaljcek	John Fawkner Hospital	Belinda Emmett
Frankston Hospital	Donna Anderson	Knox Private Hospital	J Assauw/H McCarty/E George
Goulburn Valley Health	Andrea Stevens	Linacre Private Hospital	D Tyler/M Dillon
Hamilton Base Hospital	Rosalie Broadfoot	Maryvale Private Hospital	Glenda Chambers
Kyabram District Health Service	L Walker/L Fleming	Masada Private Hospital	A Bonato/J Walsh
Latrobe Regional Hospital	Simone Lovison	Melbourne Private Hospital	Tracey Perkins
Maroondah Hospital	Benjamin Connelly	Mildura Private Hospital	Sue Malcolm
Mildura Base Hospital	Kaylene Mailes	Mitcham Private Hospital	J Nankivell/J Lonthyil
Monash Medical Centre Clayton Campus	Jessica Cranston	Mulgrave Private Hospital	Anthony Puzon
Moorabbin Hospital	C Jackson/L Mason	Northpark Private Hospital	Kath Morris
Northeast Health Wangaratta	Debbie Reidy	Peninsula Private Hospital	Ruth Honan
Portland Hospital	Donna Eichler	Ringwood Private Hospital	Carol Burns
Sandringham Hospital	L Scopel/G Jack	Shepparton Private Hospital	Niki Miller
Seymour District Memorial Hospital	Karen Lamaro	St John of God Ballarat Hospital	Gitty Mathachan
South West Health Care Warrnambool Campus	Tony Kelly	St John of God Bendigo Hospital	Alanna Sheehan
St Vincents Public Hospital	S Osman/A Lynskey	St John of God Berwick Hospital	Rebecca Jamieson
Stawell Regional Health	C Ellen/S Campigli	St John of God Geelong Hospital	Colin Hay
Sunshine Hospital	Cassandra Mules	St John of God Warrnambool Hospital	G Wheaton/L McPherson
Swan Hill District Health	Donna Hartland	St Vincent's Private East Melbourne	Brandi Lyon
The Alfred	Caroline McMurray	St Vincent's Private Fitzroy	D Dellevirgini/N Carter
The Northern Hospital	Siew Perry	St Vincent's Private Kew	J Miller/H Xing
The Royal Children's Hospital	Sonia Mouat	St Vincent's Private Werribee	D Sanchez/C Ipio
The Royal Melbourne Hospital	Brycelyn Bennett	The Avenue Hospital	John Davidson
University Hospital Geelong Barwon Health	D Barber/M Quinn	The Bays Hospital	L Kerr/S Burton
West Gippsland Healthcare Group	B Norman/S Backman	The Melbourne Eastern Private Hospital	Jay Phillpotts
West Wimmera Health Service	Michelle Borain	Vermont Private Hospital	Dionne Smithwick
Williamstown Hospital	M Clark/A Chircop	Wangaratta Private Hospital	Janet Mckie
Wimmera Health Care Group	M Markby/ S de Rome	Warringal Private Hospital	Marilyn Dey
		Waverley Private Hospital	Alfred Monleon
		Werribee Mercy Hospital	Jamil Anwar

Western Private Hospital

Sharryn McKinley

NEW SOUTH WALES

PRIVATE HOSPITALS

PUBLIC HOSPIT	ALS	PRIVATE HOSI	PITALS
Albury Base Hospital	Laurel Rhodes	Albury Wodonga Private Hospital	Dom Mahaffrey
Armidale Hospital	Tanya Scott	Armidale Private Hospital	Katherine Latter
Auburn Health Service	Sarah Sisson	Baringa Private Hospital	E Ford / K Henderson / F Howson
Bankstown/Lidcombe Hospital	Karen Och	Bathurst Private Hospital	Diane Carter
Bathurst Base Hospital	Kylie Peers	Brisbane Waters Private Hospital	Adele Ryan
Belmont Hospital	Jenny Jones	Bathurst Private Hospital	Diane Carter
Blacktown Hospital	June Tsang	Brisbane Waters Private Hospital	Adele Ryan
Bowral and District Hospital	B Allan / J Elsing	Dalcross Adventist Hospital	K Legg / A Carroll
Broken Hill Health Service	Sue Beahl	Delmar Private Hospital	Cathy Byrne
Campbelltown Hospital	Susan Birch	Dubbo Private Hospital	K Troth / S Cross
Canterbury Hospital	Jenny Cubitt	Dudley Private Hospital	Pam Fullgrabe
Chris O'Brien Lifehouse	Fiona Strachan	East Sydney Private Hospital	Thea Woodgate
Coffs Harbour Health Campus	Robbie Bentley	Forster Private Hospital	Deb Conway
Concord Repatriation Hospital	David Debello	Gosford Private Hospital	Amy Maguire
Dubbo Base Hospital	Kathy Chapman	Hawkesbury District Health Service	E Jones / S Garden
Fairfield Hospital	Caroline Youkhana	Holroyd Private Hospital	Mynard Brosas
Gosford Hospital	M Farthing / T Hoad / K Brown	Hunter Valley Private Hospital	Renae Pridue
Goulburn Base Hospital	D Hay / K Goode	Hurstville Private Hospital	Simelibuhle (Simmy) Masuku
Grafton Base Hospital	Anthony Corkett	Insight Clinic Private Hospital	Debbie van de Stadt
Hornsby Ku-Ring-Gai Hospital	J Colville / B Chu	Kareena Private Hospital	Anita Burazer
Institute of Rheumatology and Orthopaedic Surgery	Maria Hatziandreou	Kogarah Private Hospital	E Naidoo / K Gardner
John Hunter Hospital	Felicia Bristow	Lake Macquarie Private Hospital	Vanessa Jones
Lismore Base Hospital	Glen Nettle	Lakeview Private Hospital	Hailey MacAllister
Liverpool Health Service	John Murphy	Lingard Private Hospital	A Flaherty / A Dagg
Maitland Hospital	Karen Cheers	Macquarie University Hospital	Julie Guthrie
Manning Rural Referral Hospital	Grahame Cooke	Maitland Private Hospital	J Chalmers / M Mead
Mount Druitt Hospital	Charmaine Boyd	Mayo Private Hospital	Hannah Evenden
Murwillumbah District Hospital	Glenda Jacklin	Nepean Private Hospital	Jacintha Vimalraj
Nepean Hospital	Debbie Dobbs	Newcastle Private Hospital	J Kelly/D Fogarty
Orange Health Service	D Campbell / A Woods	North Shore Private Hospital	Satheesh Jose
Port Macquarie Base Hospital	F Cheney / J Atkins	Northern Beaches Hospital	Jojo Sebastian
Royal Newcastle Centre	Graham Cutler	Norwest Private Hospital	J Woodward / R Shepherd
Royal North Shore Hospital	Kathy Chung	Nowra Private Hospital	Linda Wright
Royal Prince Alfred Hospital	Jennifer Wilkie	Port Macquarie Private Hospital	Tresna Bell
Ryde Hospital	L Landers / KJones	Shellharbour Private Hospital	Cassie Lee Cormick
Shoalhaven District Memorial Hospital	Luke Royston	Southern Highlands Hospital	Lynne Byrne
South East Regional Hospital	Leanne Williams	St George Private Hospital	L Mayo / S Tanevska
St George Hospital	David Gray	St Lukes Care	Celeste Gaspar
St Vincents Public Hospital	M Ellis / A Baker / T Butler	St Vincents Private Community Hospital Griffith	Margaret Blackman
Sutherland Hospital	Claire Kirgan	St Vincents Private Hospital Darlinghurst	Hannah George
Tamworth Base Hospital	Molly Lebrocq	St Vincents Private Hospital Lismore	Janelle Hospers
The Children's Hospital Westmead	Ariella Galstaun	Strathfield Private Hospital	J Mati / M Ng
The Prince of Wales Hospital	Elena Katz	Sydney Adventist Private Hospital	Jill Parker
Tweed Hospital	N Prestage / A Budd	Sydney Private Hospital	Margaret Haughton
Wagga Wagga Base Hospital	M O'Reilly / A Giese	Sydney South West Private Hospital	Hong Tran
Westmead Public Hospital	Dee Martic	Tamara Private Hospital	Kris Wall
Wollongong Hospital	Carol Jackson	The Mater Hospital	N Guerrero / R Gengania
Wyong Hospital	T Clancy / M Randall	The Prince of Wales Private Hospital	Ellaine Perez

NEW SOUTH WALES continued

PUBLIC HOSPITALS

PRIVATE HOSPITALS

- Tuggerah Lakes Private Hospital Waratah Private Hospital Warners Bay Private Hospital Westmead Private Hospital Wollongong Private Hospital
- Jane Hanneghan Kim Graham Annette Harrison Katarina Teren C Gillespie / K Jankulovski

QUEENSLAND

PUBLIC HOSPITALS

Bundaberg Base Hospital Cairns Base Hospital Gold Coast Hospital, Robina Campus Gold Coast University Hospital Hervey Bay Hospital Ipswich Hospital Logan Hospital Mackay Base Hospital Maryborough Hospital Mater Hospital Brisbane Nambour General Hospital Prince Charles Hospital Princess Alexandra Hospital Queen Elizabeth II Jubilee Hospital Queensland Children's Hospital Redcliffe Hospital Redland Public Hospital Rockhampton Base Hospital Roval Brisbane and Women's Hospital Sunshine Coast University Hospital Toowoomba Hospital Townsville Hospital

J Anderson/J Larsen/D Norman I Van Nieker/ H Campbell/ F Walker A Brooks/R Kapera Karen Morton Sarah Dane Smith lannah O'Sullivan Janelle Lindsay Chantal Ruthenbera Y Howlett/ D Carroll C Steains/L Evans Renee Hutchison L Tuppin/R Seddon Jo-Anne de Plater Donna Cal M Cullen/F Wright G van Fleet/R Kitchin/E Nugent Sara Mackenzie Simone Platzke G McPhee/B Ballantyne/A Dowe C Jones/F Tognolini E Chadwick/A Lostroh Tara Cudmore

PRIVATE HOSPITALS Brisbane Private Hospital **Buderim Private Hospital** Caboolture Private Hospital Cairns Private Hospital Friendly Societys Hospital Bundaberg Gold Coast Private Hospital Greenslopes Private Hospital Hervey Bay Surgical Centre Hillcrest Private Hospital, Rockhampton John Flynn Hospital, Tugun Mater Health Services North Queensland Mater Misericordiae Hospital, Bundaberg Mater Misericordiae Hospital, Gladstone Mater Misericordiae Hospital, Mackay Mater Misericordiae Hospital, Rockhampton Mater Private Hospital Brisbane Mater Private Hospital Redland Mater Private Hospital Springfield Mater Private Hospital, Townsville Nambour Selangor Private Hospital Noosa Hospital North West Private Hospital Peninsula Private Hospital Pindara Private Hospital St Andrews Hospital, Toowoomba St Andrews Private Hospital, Ipswich St Andrews War Memorial Hospital, Spring Hill St Stephen's Private Hospital St Vincent's Private Hospital Northside St Vincents Hospital Sunnybank Private Hospital Sunshine Coast University Private Hospital Wesley Hospital Westside Private Hospital

L Drabble/J Oddy Phil Hall Rachel Condon Louisa Smit K Smith/M Alcorn Kathryn Schott K Williams/R Griffin M Christensen/S Costello Lyn Martin Lynda Wise Saroi Saini J Zillmann/L Zunker/M Mooney Saroj Saini Hazel Douglas T Harkin/M Havik J Windsor/M Baltais/S Pfeffer J Golding/J Garnsey C James/K Lording Joanne Humphrevs T Dempsey/S Pfeiffer ludy Anderson D Campbell/T Auckland Anne Moutrev Esther* Moire Anna Nell Mel Grant Stephanie Flood Karen McLaughlan D Ryan/L Shannon Amanda Fitzgerald Francina Robinston Tanya Prothero K Patel/C Gregory Mark Esdale

PUBLIC HOSPITALS

PUBLIC HOSPITALS

WESTERN AUSTRALIA

PRIVATE HOSPITALS

Albany Regional Hospital Armadale Health Service Bunbury Regional Hospital Busselton Health Campus Fiona Stanley Hospital Fremantle Hospital Geraldton Hospital Kalgoorlie Health Campus Osborne Park Hospital Rockingham General Hospital Royal Perth Hospital

Paula Karra E Griffiths/D Carkeek Anthea Amonini Gemma Moyes Jarrod Duncan Elsy Jiji Vicki Richards Nicole Hintz Jenny Misiewicz Carol Beaney Kerry Hodgkinson A Bibb/T Lemmey

Bethesda Hospital Hollywood Private Hospital Joondalup Health Campus Mount Private Hospital Peel Health Campus South Perth Hospital St John of God Bunbury Hospital St John of God Mealaton Hospital St John of God Midland Hospital St John of God Mt Lawley Hospital St John of God Murdoch Hospital St John of God Subiaco Hospital St John of God Subiaco Hospital

H Hanekom/ H Collis/ J Fitzroy Michelle Connor J Holmes/D Crowley M Gontran/M Huyser Geraldine Keogh Deb Waters Corne Habig Kristie Hutton Stuart Blinman S Meek/F Campos Christopher Sheen Philip Emrose Bill Muir

SOUTH AUSTRALIA

PRIVATE HOSPITALS

Clare Hospital and Health Services	J Knappstein/M Bradley	Ashford Community Hospital	Lisa Kowalik
Flinders Medical Centre	J Platten/A Ware	Burnside War Memorial Hospital	Laura Johnson
Gawler Health Services	Sharon Mewett	Calvary Adelaide Hospital	I Snowball/T Heinrich
Lyell McEwin Hospital	Lisa Wills	Calvary Central Districts Hospital	Linda Keech
Modbury Public Hospital	Brenda Foster	Calvary North Adelaide Hospital	Arlene Somido
Mount Barker District Soldiers Memorial Hospital	Emma Crowder	Flinders Private Hospital	Marcus Ender
Mount Gambier Hospital	Kylie Duncan	Glenelg Community Hospital	N Russell-Higgins/V Lawrence/R English
Murray Bridge Soldiers Memorial Hospital	Janine Colwell	North Eastern Community Hospital	Laura Shaw
Naracoorte Health Service	Trina Berry	Parkwynd Private Hospital	M Andersen/S English
Noarlunga Hospital	Kylie Thomson	Sportsmed SA	S Smith/K Stapleton/ V Lawal/ M Odgaard
Port Augusta Hospital	P Williams/J Haynes	St Andrews Private Hospital	C McAllister/ L White
Port Lincoln Hospital	Christine Weber	Stirling District Hospital	Kylie Buck
Port Pirie Regional Health Service	Sarah Zanker	The Memorial Hospital	J Emery/J Ohlson
Queen Elizabeth Hospital	Kasey Irwin	Western Hospital	Sharon Till
Riverland General Hospital	Michiela Gardner		
Royal Adelaide Hospital	L Davies/R Woodfine		
South Coast District Hospital	A Price/J Hunt		
Whyalla Hospital and Health Service	M Prunty/E Windhouwer		
Women's and Children's Hospital	Margaret Betterman		

TASMANIA

PUBLIC HOSPIT	ALS	PRIVATE HOSPITALS		
Launceston General Hospital	M Postmus/E Davidson	Calvary Health Care St Lukes	G Stratton/T Morice	
North West Regional Hospital, Burnie Campus	B Kerr/R Dicker	Calvary Health Care, St Johns	Cate Farrell	
Royal Hobart Hospital	Stuart Kirkham	Calvary Hospital	E Hey/K Harrex/ B Stephensen/A Copping	
		Hobart Private Hospital	Janine Dohnt	
		North-West Private Hospital	Danielle Jenner	

AUSTRALIAN CAPITAL TERRITORY

PUBLIC HOSPITALS		PRIVAT	E HOSPITALS
The Canberra Hospital	H Boyd/T Schild	Calvary Bruce Private Hospital	Carlene Morris
Calvary Public Hospital	Jennifer Cain	Calvary John James Memorial Hospital	Samjith Sreesan
		Canberra Private Hospital	M Gower/S Phillips/M Rogina/L Tuohy
		The National Capital Private	R Barancewicz/G Palada

NORTHERN TERRITORY

PUBLIC H	OSPITALS	P	PRIVATE HOSPITALS		
Alice Springs Hospital	Debra Mullan	Darwin Private Hospital	B Hinchcliffe/V Frewin		
Royal Darwin Hospital	Wendy Rogers				

APPENDIX 2 - GLOSSARY

Glossary

STATISTICAL TERMS

Adjustment: The process of re-estimating a crude measure, such as a rate or rate ratio, to minimise the effects of a difference in the distribution of a characteristic, such as age, between groups being compared on that measure. Adjustment may be carried out in the context of a modelling procedure, for example, linear or proportional hazards regression models, or by standardising the data set against a reference population with a known age distribution, for example, the World Standard Population or the Australian population defined by the Australian Bureau of Statistics Census in a specified year.

Censoring: When the outcome of interest is the time to a defined event, for example, revision of a prosthesis, the event may not occur during the available period of observation. For example, the Registry analyses its data on prosthesis revision for the period ending 31 December each year, and many prostheses will not have been revised by that time. Unless the prosthesis was revised prior to 31 December the outcome is unknown. For the majority, we only know that up until 31 December they had not yet been revised. The times to revision for these prostheses are said to have been censored at 31 December. Statistical methods exist to ensure that censored data are not ignored in analysis, rather information on survival up until the time of censoring is used to give the best possible estimates of survival or revision probabilities.

Chi-Square Test (\chi2) Test: Any test whose statistic has a chi-square distribution under the null hypothesis is called a chi-square test. A common example is a test for association between two categorical variables whose data are arrayed in a cross-classification table of counts (Pearson's chi-square test). This can be generalised to many situations where the distribution of observed data is being compared to an expected theoretical distribution.

Competing Risk: Any event that changes the probability of occurrence of another event is known as a competing risk for the other event. For example, death is a competing risk for revision because the probability of revision after death cannot be assumed to be the same as the probability of revision before death. Another example is that if interest centres on specific causes of revision, then each cause (infection, loosening etc) is a competing risk for each other cause. Treating a competing risk event as a right censoring will bias the estimation of the risk of the event of interest.

Confidence Interval: A set of values for a summary measure, such as a rate or rate ratio, constructed so the set has a specified probability of including the true value of the measure. The specified probability is called the confidence interval, the end points are called lower and upper confidence limits; 95% confidence intervals are most common.

Cox Model or Proportional Hazards Model: A statistical model that relates the hazard for an individual at any time *t* to an (unspecified) baseline hazard and a set of predictor variables, such as treatment type, age, gender etc. The Cox model produces hazard ratios that allow comparisons between groups of the rate of the event of interest. The main assumption of a Cox model is that the ratio of hazards between groups that we wish to compare does not vary over time. If the hazard for prosthesis Model A is twice that of prosthesis Model B at three years, it will also be twice at four years, and so on. This is referred to as the 'proportional hazards assumption'. If the hazard ratio is not proportional over the entire time of observation, then a time varying model is used, which estimates a separate hazard ratio within each pre-defined time period. Within each time period, the hazards are proportional hazards is met for each time period. The time points are selected based on where the greatest change in hazard occurs between the two comparison groups, weighted by the number of events in that time period.

Cumulative Incidence Function: An estimator of the actual probability of revision in the presence of a competing risk. In these circumstances, the Kaplan-Meier estimate, which treats competing risks as censored, overestimates the true probability. In the competing risks paradigm, patients who have already had a revision or who have died are excluded from the set at risk of being revised. Under

Kaplan-Meier, only patients who have already been revised are excluded from the risk set; dead patients are analysed as though they are still at risk of revision.

Cumulative Percent Revision: Otherwise known as the 'cumulative failure rate'. This is defined as 100 x [1-S(*t*)] where S(*t*) is the survivorship probability estimated by the Kaplan-Meier method (see survival curve, below). The cumulative percent revision gives the percent of procedures revised up until time *t*, and allows for right censoring due to death (but see Cumulative Incidence Function above) or closure of the database for analysis.

Hazard Ratio: A hazard is an estimate of the instantaneous risk of occurrence of an event, for example revision, at a point in time, *t*. A hazard ratio results from dividing one group's hazard by another's to give a comparative measure of the instantaneous risk of experiencing the event of interest. In this report, hazard ratios are adjusted for age and gender as appropriate. Hazard ratios are either for the entire survivorship period (if proportional; see 'Cox Model or Proportional Hazards Model' section above) or for specific time periods (if the hazard for the entire survivorship period is not proportional).

For example, a comparison of Primary Total Conventional Hip Replacement for a Primary Diagnosis of Avascular Necrosis (AVN), Developmental Dysplasia of the Hip (DDH) and Osteoarthritis (OA): Avascular Necrosis vs Osteoarthritis.

Entire Period: HR=1.34 (1.16, 1.54), p<0.001

The hazard ratio for this comparison is proportional over the entire time of observation. AVN has a significantly higher rate of event (in this case, revision) compared to OA over the entire time of observation (p<0.001). The hazard is 1.34 times higher for AVN compared to OA and, with 95% confidence, the true hazard for AVN will lie between 1.16 times higher and 1.54 times higher than the hazard for OA.

Developmental Dysplasia vs Osteoarthritis

0-3Mth: HR=1.75 (1.21, 2.52), p=0.002

3Mth+: HR=1.07 (0.78, 1.45), p=0.683

The hazard ratio is not proportional over the entire time of observation, so the hazard ratio has been divided into two periods; the time from primary arthroplasty to three months following the primary and three months following the primary to the end of observation. DDH has a significantly higher revision rate compared to OA in the first three months following the primary (p=0.002). The hazard for revision in the first three months is 1.75 times higher for DDH than for OA and with 95% confidence, the true hazard for DDH will lie between 1.21 and 2.52 times higher. From three months following the primary to the end of observation, there is no significant difference in the revision rate between DDH and OA (p=0.683).

Incidence Rate: The number of new occurrences of an event divided by a measure of the population at risk of that event over a specified time period. The population at risk is often given in terms of person-time: for example, if 6 persons are each at risk over 4 months, they contribute $6 \times 1/3 = 2$ person-years to the denominator of the incidence rate. The incidence rate ratio (IRR) is commonly used to compare the incidence rates of two groups. If the two groups incidence rates are the same, the result is an IRR of 1.

Log Rank Test: A family of statistical tests that compares the survival experience of two or more groups over the entire time of observation (contrast with comparison of survival at a defined time, e.g. five-year survival.)

Observed Component Years: For each procedure, component time is the time during which it is at risk of being revised. This is calculated as the number of days from the date of the primary procedure until either the date of revision, date of death or end of study (31/12/2019) whichever happens first. This is then divided by 365.25 to obtain the number of component years. Each primary procedure then contributes this calculated number of component years to the overall total component years for a particular category of prosthesis.

For example:

A primary total hip procedure performed on 1/1/2019 was revised on 1/7/2019. Therefore, the number of days that this procedure is at risk of being revised is 183 days. This prosthesis then contributes 0.5 (183/365.25) component years to the overall number of observed component years for the total hip procedure category.

A patient with a primary procedure on 1/1/2019 died without being revised on 1/4/2019. This procedure contributes 0.25 component years.

A primary procedure occurs on 1/1/2019 and has not been revised. This procedure contributes 1 component year (as observation time is censored at 31/12/2019).

Survival Curve: A plot of the proportion of subjects who have not yet experienced a defined event (for example, death or revision of prosthesis) versus time. The Kaplan-Meier method is the one most commonly used. The curve takes account of subjects whose ultimate survival time is not known, a phenomenon called 'censoring'. The survival estimate at each time is accompanied by a confidence interval based on the method of Greenwood. An interval is interpretable only at the time for which it was estimated and the sequence of intervals (depicted as shading on the Kaplan-Meier curve) cannot be used to judge the significance of any perceived difference over the entire time of observation. Often, for convenience, the curve is presented to show the proportion revised by a certain time, rather than the proportion not being revised ('surviving'). In the Registry, we call this cumulative percent revision (CPR). The Kaplan-Meier method is biassed in the presence of a competing risk and will overestimate the risk of revision. In such circumstances, use of the cumulative incidence of all competing risks must be assessed simultaneously to avoid bias in interpretation.

APPENDIX 3 – DIAGNOSIS HIERARCHY

Revision Hip Replacement

Rank	Diagnosis	Category
1	Tumour	Dominant diagnosis independent
2	Infection	of prosthesis/surgery
3	Leg Length Discrepancy	
4	Incorrect Sizing	Surgical procedure
5	Malposition	
6	Metal Related Pathology	
7	Loosening	Reaction to prosthesis
8	Lysis	
0	We get lin Insert	
9 10	Wear Apotabular Cup (Shell	
11	Wear Acetabular Cup/Shell Wear Head	
12	Implant Breakage Head	Wear and implant breakage
13	Implant Breakage Stem	wear and implain breakage
14	Implant Breakage Hip Insert	
15	Implant Breakage Acetabular Cup/Shell	
16	Prosthesis Dislocation	
17	Instability	Stability of prosthesis
18	Fracture (Femur/Acetabular/Neck/Periprosthetic)	Fracture of bone
19	Chondrolysis/Acetabular Erosion	Progression of disease on non-
20	Progression of Disease	operated part of joint
_	·	
21	Synovitis	New diseases occurring in
22	Osteonecrosis/AVN	association with joint replacement
23	Heterotopic Bone	
0.4	Dein	D - i -
24	Pain	Pain
25	Other	Remaining diagnoses
20		kennan in 19 alagnoses

Diagnosis Hierarchy for Revision Knee Replacement

Rank	Diagnosis	Category
1	Tumour	Dominant diagnosis independent
2	Infection	of prosthesis/surgery
3	Incorrect Side	
4	Incorrect Sizing	Surgical procedure
5	Malalignment	
6	Metal Related Pathology	
7	Loosening	Reaction to prosthesis
8	Lysis	
9	Wear Knee Insert	
10	Wear Tibial Tray	
11	Wear Femoral	
12	Wear Patella	Wear and implant breakage
13	Implant Breakage Femoral	
14	Implant Breakage Knee Insert	
15	Implant Breakage Tibial Tray	
16	Implant Breakage Patella	
17	Bearing Dislocation	
18	Patellar Dislocation	
19	Prosthesis Dislocation	Stability of prosthesis/knee
20	Instability	
21	Patellar Maltracking	
22	Fracture (Femur/Tibia/Patella/Periprosthetic)	Fracture of bone
23	Progression of Disease	Progression of disease on non-
24	Patellar Erosion	operated part of joint
-		
25	Synovitis	
26	Arthrofibrosis	New diseases occurring in
27	Osteonecrosis/AVN	association with joint replacement
28	Heterotopic Bone	
29	Patellofemoral Pain	Pain
30	Pain	i diri
00	r Girt	
31	Other	Remaining diagnoses

Diagnosis Hierarchy for Revision Shoulder Replacement

Rank	Diagnosis	Category
1	Tumour	Dominant diagnosis independent
2	Infection	of prosthesis/surgery
3	Incorrect Side	
4	Incorrect Sizing	Surgical procedure
5	Malposition	
6	Metal Related Pathology	
7	Loosening	Reaction to prosthesis
8	Lysis	
9	Wear Glenoid Insert	
10	Wear Glenoid	
11	Wear Humeral	
12	Implant Breakage Glenoid Insert	Wear and implant breakage
13	Implant Breakage Glenoid	
14	Implant Breakage Humeral	
15	Implant Breakage Head	
16	Instability/ Dislocation	
17	Rotator Cuff Insufficiency	Stability of prosthesis
18	Dissociation	
19	Fracture (Glenoid/Humeral/Periprosthetic)	Fracture of bone
20	Progression of Disease	Progression of disease on non-
21	Glenoid Erosion	operated part of joint
22	Synovitis	
22	Arthrofibrosis	Now discass a sourcing in
23 24	Osteonecrosis/AVN	New diseases occurring in association with joint replacemen
24 25	Heterotopic Bone	
	Devie	Pain
26	Pain	T UIT

APPENDIX 4 – PATIENT CONSENT AND CONFIDENTIALITY GUIDELINES

PATIENT CONSENT

The Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) obtains consent to include information from individuals undergoing joint replacement by using the 'opt off' approach. The implementation of the new Commonwealth Legislation at the end of 2001 resulted in the Registry meeting with the Privacy Commission to ensure that the system used for patient consent is within the privacy guidelines.

Using this approach, patients are provided with a Patient Information Sheet. This explains what information is required, how it is collected and the avenues to take should an individual not want their information included in the Registry. The information is provided to patients by surgeons and hospitals prior to surgery. To accommodate patients that may have questions, wish to opt off or discuss any issues, a freecall number is available to contact the Registry.

PATIENT CONFIDENTIALITY

No individual patient will be identified during analysis or in reports and publications produced by the Registry. Patient operative and prostheses data is managed in accordance with the Guidelines for the Protection of Privacy in the Conduct of Medical Research. Personal data collected are for use by the AOA National Joint Replacement Registry only. The Registry has been listed as a Federal Quality Assurance Activity and all information is protected *(refer to section below)*.

DATA MANAGEMENT & CONFIDENTIALITY

The South Australian Health and Medical Research Institute (SAHMRI) undertakes data entry, validation and analysis and provides secure data storage.

The list of personnel with access to identified Registry information is as follows:

Director, Professor Stephen Graves Deputy Director, Professor Richard de Steiger Deputy Director, Mr Peter Lewis Deputy Director, Professor Ian Harris Assistant Deputy Director, Mr James Stoney Manager, Ms Cindy Turner Publications Manager, Dr Sophia Rainbird SAHMRI staff including the project manager, data managers, data assistants, statisticians, and programmers.

Declaration of the project as a Quality Assurance Activity ensures that Registry and SAHMRI staff are bound to maintain confidentiality. Confidentiality not only applies to individual patients but also includes surgeons and hospitals.

SAHMRI has security systems to restrict access to SAHMRI and Registry staff only. There are policies and procedures in place as well as software barriers to protect personal information. These include the use of codes, passwords, and encryption.

The proforma used for data collection are stored in a secure locked room at SAHMRI. Forms are scanned and electronically stored. After data entry and data cleaning, all data are securely stored and retained in accordance with good scientific practice.

SURGEON CONFIDENTIALITY

Surgeon confidentiality is assured. The purpose of the Registry is to provide demographic and outcome information relevant to joint replacement surgery. Surgeon name is not recorded in the Registry database.

It is an important Registry function to provide a service to surgeons that allows them to monitor and audit their own performance. For this reason, surgeons have a choice to identify themselves by code, which can be linked to their procedures. This is optional and there is no requirement to provide the surgeon code. These codes are provided to surgeons by AOA.

Surgeons are provided with access to their own information through a secure online facility. It is important to emphasise that surgeons have the choice of using their code and that surgeon name is not recorded in the database.

FEDERAL QUALITY ASSURANCE ACTIVITY

The AOANJRR was initially declared a Federal Quality Assurance Activity in March 1999, by the then Federal Minister for Health and Aged Care, Dr Wooldridge. This was renewed in 2001, 2006, 2011 and for a further five years in August 2018. An amendment was approved in 2018 to add collection of Knee Osteotomy procedures and a further amendment in November 2020 to add the collection of Patient Reported Outcome Measure data. This declaration ensures freedom from subpoena and absolute confidentiality of information held by the Registry.

The Quality Assurance legislation is part of the Health Insurance Act of 1973. This act was amended in 1992 to include quality assurance confidentiality. The Act operates on the underlying assumption that quality assurance activities are in the public interest.

A declaration as a Quality Assurance Activity by the Commonwealth Minister of Health prohibits the disclosure of information, which identifies individual patients or health care providers that is known solely as a result of the declared quality assurance activity. It is not possible to provide identifying information to any individual or organisation including the government.

The protection provided by the declaration assures surgeons, hospitals and government that information supplied to the Registry remains confidential and secure. The act also protects persons engaging in those activities in good faith from civil liability in respect of those activities.

APPENDIX 5 - PATIENT INFORMATION SHEET

INTRODUCTION - about the Registry

You are about to have an operation on one of your joints. More than 100,000 people have a joint replacement or knee osteotomy operation each year in Australia. Most of these operations are very successful. However, a number of people who have a joint operation may at some time require another operation on that joint. This may occur due to a variety of reasons. For instance, if you have had a joint replacement the most common cause is that the joint replacement has worn out. How quickly this occurs depends on which of the many different types of artificial joints have been used. For those patients having a knee osteotomy the aim is to delay or prevent the need for having a joint replacement. In order to improve the success of these operations, the Australian Orthopaedic Association set up the National Joint Replacement Registry in 1999. The purpose is to monitor and report on the results of these operations. This information helps everyone working in the health system to ensure patients get the best treatment possible both now and in the future. Another important Registry role is that it assists hospitals and doctors to locate people in the uncommon event a problem with any medical device used is identified.

To do this it is important for the Registry to record a small amount of information on as many people having these operations as possible. It is also important to record if any subsequent operations have occurred. By analysing this information, it is possible to identify which of the medical devices are working best and the best type of operation for each patient. We are asking you to participate in the Registry, by allowing us to document information relevant oyour operation.

Your Involvement - the information we need

The information we require includes your name, date of birth, address, Medicare number, hospital identity number, the name of the hospital and the reason you are having a joint replacement or knee osteotomy. This information is necessary to accurately link you to the medical device inserted as well as linking any following joint surgery you may have, to your previous records. We will also record the day of the operation, which joint was operated on and the type of medical device used. No other personal information is recorded. Government Departments also provide information so that the Registry can check the accuracy of the data and update records to reflect if someone has died.

Information - how we will keep your information confidential

Your personal information is confidential and safety measures are in place to protect this information. Your personal information is protected by an Act of Parliament. This means you cannot be identified in any reports produced by the Registry. On occasion, your data may be linked to other government health datasets to further enhance the Registry's ability to improve patient outcomes. Your de-identified data may be used for other research projects and may be shared with national and international collaborators.

How we will collect the information

Although we are asking to record your operation details in the Registry you are not required to do anything. Your surgeon and/or theatre staff will complete the form that contains your personal details at the time of your operation and send it to us. The information will be entered into the secure Registry database which is stored in the South Australian Health & Medical Research Institute, Adelaide, South Australia.

Risks and Benefits - to you

There are no risks to you by having your details in the Registry. The Registry produces general reports on a variety of factors that influence the success of joint operations. The results of joint operations have greatly improved because of this information.

What to do if you don't want to be in the Registry

We understand that not everyone is comfortable about having his or her personal details documented in a registry. If you feel this way and do not want your details recorded, please contact the Manager on 1800 068 419 (freecall) as well as making your decision known to hospital staff. A decision on whether or not you wish to be involved in the Registry does not affect your treatment in any way. If you have any questions, concerns, or require further information on the National Joint Replacement Registry please do not hesitate to contact Ms Cindy Turner.

Concerns or complaints related to the data collection process may be directed to the AOANJRR on 1800 068 419 (freecall) or alternatively the Australian Government, Office of the Privacy Commissioner on 1300 363 992

APPENDIX 6 – IMPLEMENTATION TIMELINE

Implementation of National Joint Replacement Registry for Hip, Knee & Shoulder Arthroplasty

The Registry was implemented in a staged manner on a state-by-state basis. The table below shows the commencement date for each state or territory. Implementation was completed nationally by mid 2002, therefore 2003 was the first year of complete national data.

National data collection on shoulder replacement commenced in November 2007. Knee osteotomy data collection commenced in early 2018. Patient Reported Outcome Measure data collection commenced in 2017.

State/Territory	Commencement Date
South Australia	September 1999
Queensland	April 2000
Western Australia	April 2000
Victoria	July 2000
Tasmania	September 2000
Northern Territory	October 2000
Australian Capital Territory	May 2001
New South Wales	June 2001

APPENDIX 7 – ICD – 10-AM CODES

ICD-10-AM CODES – V11 (2019 EDITION) STATE HEALTH DEPARTMENT SEPARATION DATA

HIP

Partial Hip Replacement

- 49315-00 Partial arthroplasty (excludes Austin Moore)
- 47522-00 Hemiarthroplasty of femur (Austin Moore)

Primary Total Hip Replacement

49318-00	Total ar	rthroplasty	of hip	unilateral

- 49319-00 Total arthroplasty of hip bilateral
- 90607-00 [1489] Resurfacing of hip, unilateral.
- 90607-01 [1489] Resurfacing of hip, bilateral.

Revision Hip Replacement

49312-00	Excision arthroplasty of hip (removal of prosthesis without replacement)
49324-00	Revision of total arthroplasty of hip
49327-00	Revision of total arthroplasty with bone graft to acetabulum
49330-00	Revision of total arthroplasty with bone graft to femur
49333-00	Revision of total arthroplasty with bone graft to acetabulum and femur
49339-00	Revision of total arthroplasty with anatomic specific allograft to acetabulum
49342-00	Revision of total arthroplasty of hip with anatomic specific allograft to femur
49345-00	Revision of total arthroplasty with anatomic specific allograft to acetabulum & femur
49346-00	Revision of partial arthroplasty hip replacement

KNEE

Partial Knee Replacement

Patellofemoral Knee Replacement

49534-01 Total replacement arthroplasty of patellofemoral joint of knee

Unicompartmental Knee Replacement

49517-00 Hemi arthroplasty of knee

Primary Total Knee Replacement

- 49518-00 Total arthroplasty of knee unilateral
- 49519-00 Total arthroplasty of knee bilateral
- 49521-00 Total arthroplasty of knee with bone graft to femur unilateral
- 49521-01 Total arthroplasty of knee with bone graft to femur bilateral
- 49521-02 Total arthroplasty of knee with bone graft to tibia unilateral

- 49521-03 Total arthroplasty of knee with bone graft to tibia bilateral
- 49524-00 Total arthroplasty of knee with bone graft to femur and tibia unilateral
- 49524-01 Total arthroplasty of knee with bone graft to femur and tibia bilateral

Revision Knee Replacement

Arthrodesis with removal of prosthesis
Removal-prostheses from knee
Revision of total arthroplasty of knee excluding patella resurfacing.
Revision of total arthroplasty of knee with bone graft to femur
Revision of total arthroplasty of knee with bone graft to tibia
Revision of total arthroplasty of knee with bone graft to femur and tibia
Revision of total arthroplasty of knee with anatomic specific allograft
Patella resurfacing

SHOULDER

Partial Shoulder Replacement

48915-00 Hemiarthroplasty of shoulder

Total Shoulder Replacement

48918-00	Total arthroplasty of shoulder
----------	--------------------------------

Revision Shoulder Replacement

- 48921-00 Revision of total joint replacement of shoulder
- 48924-00 Revision of total joint replacement of shoulder with bone graft
- 48927-00 Removal of shoulder prosthesis
- 48942-00 Arthrodesis and removal of shoulder prosthesis

List of Tables

Patient Pener	ed Outcome Measures	20
Table P1	Data Captured in the Minimum Dataset for PROMs Collection	
	PROMs Outcomes of Primary Joint Replacement Registered for PROMs by Joint Class	
Table P2		
Table P3	Pre- and Post-Operative Oxford Score of Primary Joint Replacement by Joint Class	43
Ten, Fifteen aı	nd Twenty Year Prosthesis Outcomes	
Table TY1	CPR of Primary Total Conventional Hip Replacement Prosthesis Combinations with 10 Year Data (OA)	64
Table TY2	CPR of Primary Total Knee Replacement Prosthesis Combinations with 10 Year Data (OA)	66
Table TY3	CPR of Primary Total Conventional Hip Replacement Prosthesis Combinations with 15 Year Data (OA)	
Table TY4	CPR of Primary Total Knee Replacement Prosthesis Combinations with 15 Year Data (OA)	
Table TY5	CPR of Primary Total Conventional Hip Replacement Prosthesis Combinations with 20 Year Data (OA)	
Table TY6	CPR of Primary Total Knee Replacement Prosthesis Combinations with 20 real Data (OA)	
	Crk of Filmaly Total knee kepidcement Frostnesis Combinations with 20 Teal Data (OA)	/0
Hip Replacen	ient	73
Table H1	Number of Hip Replacements	
Table H2	ASA Score for Hip Replacement	
Table H3	BMI Category for Hip Replacement	/0
	I Hip Replacement Summary	
Table HP1	Primary Partial Hip Replacement by Class	
Table HP2	10 Most Used Femoral Prostheses in Primary Partial Hip Replacement	
Table HP3	Cumulative Percent Mortality of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)	79
Table HP4	Cumulative Percent Revision of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)	80
Table HP5	Cumulative Percent Revision of Primary Partial Hip Replacement in Patient's Aged <75 Years by Class (Fractured NOF)	
100101110		
Drimony Total	Hip Replacement	00
Table HT1	Primary Total Hip Replacement by Class	
Table HT2	Cumulative Percent Revision of Primary Total Hip Replacement by Class	
Table HT3	Age and Gender of Primary Total Conventional Hip Replacement	83
Table HT4	10 Most Used Femoral Components in Primary Total Conventional Hip Replacement	84
Table HT5	10 Most Used Cemented Femoral Components in Primary Total Conventional Hip Replacement	85
Table HT6	10 Most Used Cementless Femoral Components in Primary Total Conventional Hip Replacement	
Table HT7	10 Most Used Acetabular Components in Primary Total Conventional Hip Replacement	
Table HT8	10 Most Used Cemented Acetabular Components in Primary Total Conventional Hip Replacement	
Table HT9	10 Most Used Cementless Acetabular Components in Primary Total Conventional Hip Replacement	
Table HT10	CPR of Primary Total Conventional Hip Replacement by Primary Diagnosis.	
Table HT11	CPR of Primary Total Conventional Hip Replacement with Cemented Fixation by Prosthesis Combination	
Table HT12	CPR of Primary Total Conventional Hip Replacement with Cementless Fixation by Prosthesis Combination	
Table HT13	CPR of Primary Total Conventional Hip Replacement with Hybrid Fixation by Prosthesis Combination	
Table HT14	Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)	95
Table HT15	Primary Total Conventional Hip Replacement by Reason for Revision (Primary Diagnosis OA)	96
Table HT16	Primary Total Conventional Hip Replacement by Type of Revision (Primary Diagnosis OA)	96
Table HT17	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age (OA)	
Table HT18	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Gender and Age (OA)	
Table HT19	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by ASA Score (OA)	
Table HT20	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by BMI Category (OA)	
Table HT21	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Fixation (OA)	
Table HT22	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age and Fixation (OA)	
Table HT23	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Stem Type (OA)	
Table HT24	Primary Total Conventional Hip Replacement by Type of Revision and Stem Type (OA)	
Table HT25	CPR of Primary Total Conventional Hip Replacement using a Mini Stem by Femoral Component (OA)	
Table HT26	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Type of Femoral Neck (OA)	114
Table HT27	Primary Total Conventional Hip Replacement by Reason for Revision and Type of Femoral Neck (OA)	116
Table HT28	CPR of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Prosthesis Type (OA)	
Table HT29	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Bearing Surface (OA)	
Table HT30	CPR of Primary Total Conventional Hip Replacement by Polyethylene Type and Head Size (OA)	
Table HT31	CPR of Primary Total Conventional Hip Replacement by Prosthesis Type and Polyethylene Type (OA)	
Table HT32	CPR of Primary Total Conventional Hip Replacement by Prosthesis Type and XLPE Type (OA)	
Table HT33	CPR of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (OA)	
Table HT34	CPR of Constrained Primary Total Conventional Hip Replacement by Component (All Diagnoses)	
Table HT35	Primary Total Conventional Hip Replacement by Primary Diagnosis and Acetabular Type	
Table HT36	CPR of Primary Total Conventional Hip Replacement by Acetabular Type (All Diagnoses)	
Table HT37	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (OA)	
Table HT38	Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Gender (OA)	
Table HT39	Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Age (OA)	134
Table HT40	Cumulative Percent Revision of Constrained Primary Conventional THR by Acetabular Fixation (OA)	135
Table HT41	CPR of Constrained Primary Conventional THR with Cemented Femoral Fixation by Acetabular Fixation (OA)	135
Table HT42	CPR of Dual Mobility Primary Total Conventional Hip Replacement by Component (All Diagnoses)	
Table HT43	Primary Total Conventional Hip Replacement by Primary Diagnosis and Acetabular Mobility	
Table HT44	CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Diagnoses)	
Table HT45	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (OA)	
Table HT46	CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (OA, Revision for Prosthesis Dislocation)	
Table HT47	Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Gender (OA)	
Table HT48	Cumulative Percent Revision of Dual Mobility Primary Total Conventional Hip Replacement by Age (OA)	
Table HT49	CPR of Dual Mobility Primary Total Conventional Hip Replacement by Acetabular Fixation (OA)	143

Table HT50	Primary Total Conventional Hip Replacement by Age and Surgical Approach (Primary Diagnosis OA)	144
Table HT51	Primary Total Conventional Hip Replacement by BMI Category and Surgical Approach (Primary Diagnosis OA)	
Table HT52	Primary Total Conventional Hip Replacement by ASA Score and Surgical Approach (Primary Diagnosis OA)	
Table HT53	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Surgical Approach (OA)	
Table HT54	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Major Revisions)	
Table HT55	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Revision for Loosening)	
Table HT56	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Revision for Fracture)	
Table HT57	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Revision for Infection)	
Table HT58	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Revision for Dislocation)	
Table HT59	Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)	
Table HT60	Cumulative Percent Survival of Patients with Primary Total Conventional Hip Replacement (Fractured NOF)	
Table HT61	Primary Total Conventional Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)	
Table HT62	Primary Total Conventional Hip Replacement by Type of Revision (Primary Diagnosis Fractured NOF)	
Table HT63	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by ASA Score (Fractured NOF)	
Table HT64	Primary Total Conventional Hip Replacement by ASA Score and Primary Diagnosis	
Table HT65	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by BMI Category (Fractured NOF)	
Table HT66	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Fixation (Fractured NOF)	
Table HT67	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age and Fixation (Fractured NOF)	
Table HT68	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Size (Fractured NOF)	
Table HT69	CPR of Primary Total Conventional Hip Replacement by Head Size (Fractured NOF, Revision for Dislocation)	
Table HT70	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Fractured NOF)	
Table HT71	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Fractured NOF)	
Table HT72	Cumulative Percent Revision of Primary Hip Replacement by Class (Primary Diagnosis Fractured NOF)	
Table HT73	Cumulative Percent Revision of Primary Hip Replacement by Age and Class (Primary Diagnosis Fractured NOF)	
Table HT74		
Table HT75	Age and Gender of Primary Total Resurfacing Hip Replacement Most Used Resurfacing Heads in Primary Total Resurfacing Hip Replacement	172
Table HT76	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Primary Diagnosis	
Table HT77	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Prosthesis Combination (All Diagnoses)	
Table HT78	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)	
Table HT79	Primary Total Resultacing Hip Replacement by Reason for Revision (Primary Diagnosis OA)	174
Table HT80	Primary Total Resultacing Hip Replacement by Type of Revision (Primary Diagnosis OA)	
Table HT81		
Table HT82	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Age (Primary Diagnosis OA)	
Table HT83	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender and Age (Primary Diagnosis OA) Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)	
Table HT84		
Table H185	Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender and Femoral Head Size (OA).	
	Cumulative Percent Revision of Primary Total Hip Replacement by Class (Primary Diagnosis OA)	.104

Knee Replace	ment	37
Table K1	Number of Knee Replacements	38
Table K2	ASA Score for Knee Replacement	70
Table K3	BMI Category for Knee Replacement	90

Primary Partie	al Knee Replacement Summary	1
Table KP1	Partial Knee Replacement by Class	1
Table KP2	Cumulative Percent Revision of Primary Patella/Trochlear Knee Replacement (Primary Diagnosis OA)	
Table KP3	Age and Gender of Primary Unicompartmental Knee Replacement	4
Table KP4	10 Most Used Tibial Prostheses in Primary Unicompartmental Knee Replacement194	4
Table KP5	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Prosthesis Combination	5
Table KP6	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)	6
Table KP7	Primary Unicompartmental Knee Replacement by Reason for Revision (Primary Diagnosis OA)	7
Table KP8	Primary Unicompartmental Knee Replacement by Type of Revision (Primary Diagnosis OA)	7
Table KP9	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA)	8
Table KP10	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Gender and Age (OA)	9
Table KP11	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Mobility (OA)	1
Table KP12	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement since 2015 by Robotic Assistance (OA)	2
Table KP13	Revision Diagnosis of Primary Unicompartmental Knee Replacement since 2015 by Robotic Assistance (OA)	3
Table KP14	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Position (OA)	4
Table KP15	Reason for Revision of Primary Unicompartmental Knee Replacement by Position (OA)	5
Table KP16	Cumulative Percent Revision of Lateral Primary Unicompartmental Knee Replacement by Prosthesis Combination (OA)	6

Primary Total	Knee Replacement	207
Table KT1	Age and Gender of Primary Total Knee Replacement 10 Most Used Femoral Prostheses in Primary Total Knee Replacement	
Table KT2	10 Most Used Femoral Prostheses in Primary Total Knee Replacement	210
Table KT3	10 Most Used Femoral Prostheses in Cemented Primary Total Knee Replacement	
Table KT4	10 Most Used Femoral Prostheses in Cementless Primary Total Knee Replacement	
Table KT5	10 Most Used Femoral Prostheses in Hybrid Primary Total Knee Replacement	
Table KT6	Cumulative Percent Revision of Primary Total Knee Replacement by Primary Diagnosis	
Table KT7	Cumulative Percent Revision of Cemented Primary Total Knee Replacement by Prosthesis Combination	
Table KT8	Cumulative Percent Revision of Cementless Primary Total Knee Replacement by Prosthesis Combination	215
Table KT9	Cumulative Percent Revision of Hybrid Primary Total Knee Replacement by Prosthesis Combination	
Table KT10	Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA)	218
Table KT11	Primary Total Knee Replacement by Reason for Revision (Primary Diagnosis OA)	
Table KT12	Primary Total Knee Replacement by Type of Revision (Primary Diagnosis OA)	
Table KT13	Cumulative Percent Revision of Primary Total Knee Replacement by Age (Primary Diagnosis OA)	
Table KT14	Cumulative Percent Revision of Primary Total Knee Replacement by Gender and Age (Primary Diagnosis OA)	
Table KT15	Cumulative Percent Revision of Primary Total Knee Replacement by ASA Score (Primary Diagnosis OA)	224
Table KT16	Cumulative Percent Revision of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA)	
Table KT17	Cumulative Percent Revision of Primary Total Knee Replacement by BMI Category (OA, Revision for Infection)	
Table KT18	Cumulative Percent Revision of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA)	
Table KT19	Cumulative Percent Revision of Primary Total Knee Replacement by Fixed Bearing Type (Primary Diagnosis OA)	
Table KT20	Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	

Table KT21	Cumulative Percent Revision of Primary Total Knee Replacement with Medial Pivot Design by Insert (OA)	234
Table KT22	Cumulative Percent Revision of Primary Total Knee Replacement by Stability (OA, Excluding Advance/Advance)	
Table KT23	CPR of Triathlon/Triathlon Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (OA)	
Table KT24	CPR of PFC Sigma/PFC Sigma Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (OA)	237
Table KT25	CPR of Natural/Natural Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (OA)	238
Table KT26	CPR of Persona Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (OA)	239
Table KT27	Primary Total Knee Replacement by Primary Diagnosis and Stability	240
Table KT28	Cumulative Percent Revision of Primary Total Knee Replacement by Stability (All Diagnoses)	240
Table KT29	Revision Diagnosis of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Table KT30	Cumulative Percent Revision of Primary Total Knee Replacement by Patella Usage (Primary Diagnosis OA)	243
Table KT31	Cumulative Percent Revision of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)	244
Table KT32	Cumulative Percent Revision of Minimally Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	247
Table KT33	Cumulative Percent Revision of Posterior Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	248
Table KT34	Cumulative Percent Revision of Medial Pivot Design Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Table KT35	Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Table KT36	Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA)	253
Table KT37	Cumulative Percent Revision of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	254
Table KT38	Cumulative Percent Revision of Primary Total Knee Replacement by Femoral Bearing Surface (Primary Diagnosis OA)	256
Table KT39	Cumulative Percent Revision of AS Primary Total Knee Replacement by AS Femoral Material (Primary Diagnosis OA)	258
Table KT40	Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation (Primary Diagnosis OA)	260
Table KT41	Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation and Age (OA)	262
Table KT42	Cumulative Percent Revision of Primary Total Knee Replacement Since 2009 by IDI Usage (OA)	
Table KT43	Cumulative Percent Revision of Primary Total Knee Replacement Since 2009 by IDI Usage and Age (OA)	
Table KT44	Cumulative Percent Revision of Primary Total Knee Replacement Since 2017 by Robotic Assistance (OA)	
Table KT45	Cumulative Percent Revision of Primary Total Knee Replacement Since 2017 by Robotic Assistance and Age (OA)	268

Shoulder Replacement 271 Table S1 Number of Shoulder Replacements Category 272

10016-31	Number of shoulder Replacements Category	Z/Z
Table S2	ASA Score for Shoulder Replacement	274
Table S3	BMI Category for Shoulder Replacement	274
Table S4	Usage of CT Scan for Shoulder Replacement	275
Table S5	Glenoid Morphology for Shoulder Replacement	275

Primary Partie	al Shoulder Replacement Summary	
Table SP1	Primary Partial Shoulder Replacement by Class	
Table SP2	Cumulative Percent Revision of Primary Partial Shoulder Replacement by Class (All Diagnoses)	
Table SP3	Cumulative Percent Revision of Primary Hemi Resurfacing Shoulder Replacement by Gender (Primary Diagnosis OA)	
Table SP4	Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis	

Primary Total Shoulder Replacement	
Table ST1 Primary Total Shoulder Replacement by Class	
Table ST2 Primary Total Shoulder Replacement by Class and Gender	
Table ST3 Age and Gender of Primary Total Shoulder Replacement	
Table ST4 Primary Total Shoulder Replacement by Class and Age	
Table ST4 Frimary Total Shoulder Replacement by Primary Diagnosis and Gender	282
Table ST6 Cumulative Percent Revision of Primary Total Shoulder Replacement by Class	
Table ST7 Age and Gender of Primary Total Resurfacing Shoulder Replacement	
Table ST8 Primary Total Resurfacing Shoulder Replacement by Primary Diagnosis and Gender	284
Table ST9 Most Used Humeral Head Prostheses in Primary Total Resurfacing Shoulder Replacement	
Table ST/2 Most Used Glenoid Prostheses in Primary Total Resurfacing Shoulder Replacement	
Table ST11 Primary Total Resurfacing Shoulder Replacement by Reason for Revision	
Table ST12 Primary Total Resurfacing Shoulder Replacement by Type of Revision	
Table ST12 Hindly ford resonating one-deep deep deep deep deep deep deep dee	
Table S114 Primary Total Mid Head Shoulder Replacement by Primary Diagnosis and Gender	
Table ST15 Most Used Humeral Stem Prostheses in Primary Total Mid Head Shoulder Replacement	
Table ST16 Most Used Glenoid Prostheses in Primary Total Mid Head Shoulder Replacement	
Table S117 Primary Total Mid Head Shoulder Replacement by Reason for Revision	
Table ST18 Primary Total Mid Head Shoulder Replacement by Type of Revision	
Table ST19 Cumulative Percent Revision of Primary Total Mid Head Shoulder Replacement by Prosthesis Combination	
Table ST20 Age and Gender of Primary Total Stemmed Shoulder Replacement	
Table ST21 Primary Total Stemmed Shoulder Replacement by Primary Diagnosis and Gender	
Table ST22 10 Most Used Humeral Stem Prostheses in Primary Total Stemmed Shoulder Replacement	
Table ST23 10 Most Used Glenoid Prostheses in Primary Total Stemmed Shoulder Replacement	
Table ST24 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Primary Diagnosis	
Table ST25 Primary Total Stemmed Shoulder Replacement by Reason for Revision	
Table ST26 Primary Total Stemmed Shoulder Replacement by Type of Revision	
Table ST27 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Age (Primary Diagnosis OA)	
Table ST28 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Gender (Primary Diagnosis OA)	.297
Table ST29 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by ASA Score (Primary Diagnosis OA)	.298
Table ST30 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by BMI Category (Primary Diagnosis OA)	.300
Table ST31 CPRn of Primary Total Stemmed Shoulder Replacement by Glenoid Morphology (Primary Diagnosis OA)	.302
Table ST32 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Fixation (Primary Diagnosis OA)	.304
Table ST33 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)	.305
Table ST34 CPR of All-Polyethylene Cemented Primary Total Stemmed Shoulder Replacement by Glenoid Design (OA)	.306
Table ST35 CPR of Primary Total Stemmed Shoulder Replacement using All Types of Glenoid by Polyethylene Type (OA)	.307
Table ST36 CPR of Primary Total Stemmed Shoulder Replacement using All-Polyethylene Glenoids by Polyethylene Type (OA)	.308
Table ST37 Primary Stemmed TSR using All-Poly Glenoids by Poly Type and Prosthesis Combination (All Diagnoses)	.308
Table ST38 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Humeral Head Size (OA)	.309
Table ST39 Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Prosthesis Combination (OA)	
Table ST40 CPR of Cementless Primary Total Stemmed Shoulder Replacement by Prosthesis Combination (OA)	
Table ST41 CPR of Hybrid (Glenoid Cemented) Primary Total Stemmed Shoulder Replacement by Prosthesis Combination (OA)	
Table ST42 Primary Total Reverse Shoulder Replacement by Primary Diagnosis and Gender	.314

Table ST43	Age and Gender of Primary Total Reverse Shoulder Replacement	214
Table ST43	10 Most Used Humeral Stem Prostheses in Primary Total Reverse Shoulder Replacement	
Table ST45	10 Most Used Glenoid Prostheses in Primary Total Reverse Shoulder Replacement Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Primary Diagnosis	
Table ST46		
Table ST47	Primary Total Reverse Shoulder Replacement by Reason for Revision	
Table ST48	Primary Total Reverse Shoulder Replacement by Type of Revision Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (OA)	
Table ST49	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (OA)	
Table ST50		
Table ST51	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (OA)	
Table ST52	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (OA)	
Table ST53	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (OA)	
Table ST54	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (OA)	
Table ST55	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (OA)	
Table ST56	Primary Total Reverse Shoulder Replacement by Polyethylene Type and Prosthesis Combination (OA)	
Table ST57	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (OA)	
Table ST58	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (OA)	
Table ST59	Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (OA)	
Table ST60	CPR of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (OA)	
Table ST61	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Rotator Cuff Arthropathy)	
Table ST62	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Rotator Cuff Arthropathy)	
Table ST63	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Rotator Cuff Arthropathy)	
Table ST64	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Rotator Cuff Arthropathy)	
Table ST65	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (RCA)	
Table ST66	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (RCA)	
Table ST67	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (RCA)	
Table ST68	Primary Total Reverse Shoulder Replacement by Polyethylene Type and Prosthesis Combination (RCA)	
Table ST69	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (RCA)	
Table ST70	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (RCA)	
Table ST71	Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (RCA).	
Table ST72	CPR of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (RCA)	
Table ST73	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Fracture)	
Table ST74	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Fracture)	
Table ST75	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Fracture)	
Table ST76	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Fracture)	
Table ST77	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (Fracture)	
Table ST78	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Fracture)	
Table ST79	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (Fracture)	
Table ST80	Primary Total Reverse Shoulder Replacement by Polyethylene Type and Prosthesis Combination (Fracture)	366
Table ST81	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Fracture)	
Table ST82	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Fracture)	369
Table ST83	CPR of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Fracture)	369
Table ST84	CPR of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Fracture)	369

Prostheses with Higher Than Anticipated Rates of Revision

Prostheses w	ith Higher Than Anticipated Rates of Revision	371
Table IP1	Revision Rate of Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	373
Table IP2	CPR of Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP3	Yearly Usage of Unipolar Modular Hip Prostheses identified as having a Higher than Anticipated Rate of Revision	
Table IP4	Revision Rate of Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP5	Cumulative Percent Revision of Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP6	Yearly Usage of Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP7	Revision Rate of Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP8	CPR of Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP9	Yearly Usage of Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP10	Revision Rate of Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP11	CPR of Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP12	Yearly Usage of Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP13	Revision Rate of Patella-Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP14	CPR of Patella-Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP15	Yearly Usage of Patella-Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP16	Revision Rate of Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP17	CPR of Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP18	Yearly Usage of Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP19	Revision Rate of Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP20	CPR of Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP21	Yearly Usage of Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP22	Revision Rate of Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP23	CPR of Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP24	Yearly Usage of Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP25	Revision Rate of Total Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP26	CPR of Total Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP27	Yearly Usage of Total Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP28	Revision Rate of Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP29	CPR of Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP30	Yearly Usage of Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP31	Revision Rate of Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP32	CPR of Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP33	Yearly Usage of Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision	406

371

List of Figures

Summary of th	ne Impact of COVID-19 on Joint Replacement in Australia in 2020	
Figure C1	All Joint Replacement Hip, Knee and Shoulder (Primary and Revision)	
Figure C2	Primary Joint Replacement - By Hospital Type	
Figure C3	All Joint Replacement – By State and Territory	
Figure C4	All Primary Hip Replacement (All Diagnoses)	
Figure C5	All Primary Knee Replacement (All Diagnoses)	
Figure C6	All Primary Shoulder Replacement (All Diagnoses)	
Figure C7	Primary Hip Replacement (Primary Diagnosis Fractured Neck of Femur)	
Figure C8	Primary Shoulder Replacement (Primary Diagnosis Fracture)	
Figure C9	Revision Hip, Knee and Shoulder Replacement	

Patient Reported Outcome Measures..

Figure P1	EQ VAS Health Pre- and Post-Operative for Primary THR (OA)	.33
Figure P2	EQ VAS Health Pre- and Post-Operative for Primary TKR (OA)	
Figure P3	EQ VAS Health Pre- and Post-Operative for Primary Total Reverse Shoulder Replacement (OA)	
Figure P4	EQ VAS Health Pre- and Post-Operative for Primary Total Reverse Shoulder Replacement (Rotator Cuff Arthropathy)	. 34
Figure P5	EQ VAS Health Pre- and Post-Operative for Primary THR by Age and Gender (OA)	.35
Figure P6	EQ VAS Health Pre- and Post-Operative for Primary TKR by Age and Gender (OA)	.35
Figure P7	EQ VAS Health Pre- and Post-Operative for Primary Total Reverse Shoulder Replacement by Age and Gender (OA)	.36
Figure P8	EQ VAS Health Pre- and Post-Operative for Primary Total Reverse Shoulder Replacement by Age and Gender (RCA)	.36
Figure P9	Percent Change in PROMs Scores from Pre-Operative to Post-Operative Primary THR (OA)	. 37
Figure P10	Percent Change in PROMs Scores from Pre-Operative to Post-Operative Primary TKR (OA)	. 37
Figure P11	Percent Change in PROMs Scores from Pre-Operative to Post-Operative Primary Total Reverse Shoulder Replacement (OA)	. 38
Figure P12	Percent Change in PROMs Scores from Pre-Operative to Post-Operative Primary Total Reverse Shoulder Replacement (RCA)	. 38
Figure P13	Pre-Operative EQ VAS for Patients Undergoing Primary THR by Surgeon (OA)	. 39
Figure P14	Pre-operative EQ VAS for Patients Undergoing Primary TKR by Surgeon (OA)	. 40
Figure P15	Pre-operative EQ VAS Health for Patients Undergoing Primary THR by Hospital (OA)	
Figure P16	Pre-operative EQ VAS Health for Patients Undergoing Primary TKR by Hospital (OA)	
Figure P17	Pre- and Post-Operative Oxford Score for Primary Total Conventional Hip Replacement (OA)	. 44
Figure P18	Pre- and Post-Operative Oxford Score for Primary Total Conventional Hip Replacement by Age and Gender (OA)	. 44
Figure P19	Pre- and Post-Operative Oxford Score for Primary Total Knee Replacement (Primary Diagnosis OA)	
Figure P20	Pre- and Post-Operative Oxford Score for Primary Total Knee Replacement by Age and Gender (Primary Diagnosis OA)	. 45
Figure P21	Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement (OA)	
Figure P22	Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement by Age and Gender (OA)	. 46
Figure P23	Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement (Rotator Cuff Arthropathy)	
Figure P24	Pre- and Post-Operative Oxford Score for Primary Total Reverse Shoulder Replacement by Age and Gender (RCA)	
Figure P25	Pre-Operative Oxford Score for Patients Undergoing Primary THR by Surgeon (Primary Diagnosis OA)	
Figure P26	Pre-Operative Oxford Score for Patients Undergoing Primary TKR by Surgeon (OA)	
Figure P27	Pre-Operative Oxford Score for Patients Undergoing Primary THR Hospital (OA)	
Figure P28	Pre-Operative Oxford Score for Patients Undergoing Primary TKR by Hospital (OA)	
Figure P29	Expected Joint Pain vs Actual Joint Pain for Patients Undergoing Primary THR (OA)	
Figure P30	Expected Joint Pain vs Actual Joint Pain for Patients Undergoing Primary TKR (OA)	
Figure P31	Expected Joint Pain vs Actual Joint Pain for Patients Undergoing Primary Total Reverse Shoulder Replacement (OA)	
Figure P32	Expected Joint Pain vs Actual Joint Pain for Patients Undergoing Primary Total Reverse Shoulder Replacement (RCA)	
Figure P33	Funnel Plot of Procedure Satisfaction After Primary THR by Surgeon (OA)	
Figure P34	Funnel Plot of Procedure Satisfaction After Primary TKR by Surgeon (OA)	
Figure P35	Funnel Plot of Procedure Satisfaction After Primary THR by Hospital (OA)	
Figure P36	Funnel Plot of Procedure Satisfaction After Primary TKR by Hospital (OA)	
Figure P37	Funnel Plot of Patient-Rated Improvement ("Much Better") After Primary THR by Surgeon (OA)	
Figure P38	Funnel Plot of Patient-Rated Improvement ("Much Better") After Primary TKR by Surgeon (OA)	
Figure P39	Funnel Plot of Patient-Rated Improvement ("Much Better") After Primary THR by Hospital (OA)	
Figure P40	Funnel Plot of Patient-Rated Improvement ("Much Better") After Primary TKR by Hospital (OA)	. 60

Hip Replacer	ment	73
Figure H1	Proportion of Hip Replacement	74
0		
Primary Partie	ial Hip Replacement Summary	77
Figure HP1	Primary Partial Hip Replacement by Class	
Figure HP2	Cumulative Percent Revision of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)	

Figure HP3 Cumulative Percent Revision of Primary Partial Hip Replacement in Patient's Aged <75 Years by Class (Fractured NOF)......81

Primary Total Hip Replacement 82 Figure HT1 Figure HT2 Figure HT3 Figure HT4 Figure HT5 CPR of Primary Total Conventional Hip Replacement (Primary Diagnosis OA) Figure HT6 Figure HT7 CPR of Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA) Figure HT8 CPR of Primary Total Conventional Hip Replacement in Males by Age (Primary Diagnosis OA) Figure HT9 Figure HT10 Figure HT11 CPR Diagnosis of Primary Total Conventional Hip Replacement in Males by Age (OA) Figure HT12 Figure HT13 CIR Diagnosis of Primary Total Conventional Hip Replacement by ASA Score (OA)104 Figure HT14 Figure HT15

29

Figure HT16	CIR Diagnosis of Primary Total Conventional Hip Replacement by BMI Category (OA)	
Figure HT17	CPR of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)	
Figure HT18	CPR of Primary Total Conventional Hip Replacement in Patients Aged <55 Years by Fixation (OA)	
Figure HT19	CPR of Primary Total Conventional Hip Replacement in Patients Aged 55-64 Years by Fixation (OA) CPR of Primary Total Conventional Hip Replacement in Patients Aged 65-74 Years by Fixation (OA)	
Figure HT20 Figure HT21	CPR of Primary Total Conventional Hip Replacement in Patients Aged ≥75 Years by Fixation (OA)	
Figure HT22	CPR of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)	112
Figure HT23	CIR Diagnosis of Primary Total Conventional Hip Replacement by Stem Type (OA)	
Figure HT24	CPR of Primary Total Conventional Hip Replacement by Type of Femoral Neck (OA)	
Figure HT25	CIR Diagnosis of Primary Total Conventional Hip Replacement by Type of Femoral Neck (OA)	
Figure HT26	CPR of Primary Total Conventional Hip Replacement by Bearing Surface (Primary Diagnosis OA)	
Figure HT27	Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
Figure HT28	CPR of Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
Figure HT29	CIR Diagnosis of Primary Total Conventional Hip Replacement by Polyethylene Type (OA)	
Figure HT30	CPR of Primary Total Conventional Hip Replacement using Non XLPE by Head Size (OA)	
Figure HT31	CPR of Primary Total Conventional Hip Replacement using XLPE by Head Size (Primary Diagnosis OA)	
Figure HT32	CIR Diagnosis of Primary Total Conventional Hip Replacement by Head Size and Polyethylene Type (OA)	
Figure HT33	CPR of Primary Total Conventional Hip Replacement by Head Surface and Polyethylene Type (OA)	
Figure HT34	CPR of Reflection (Cup) Primary Total Conventional Hip Replacement by Polyethylene Type (OA) CPR of Reflection (Shell) Primary Total Conventional Hip Replacement by Polyethylene Type (OA)	
Figure HT35		
Figure HT36 Figure HT37	Primary Total Conventional Hip Replacement with Ceramic Femoral Heads by Ceramic Type (Primary Diagnosis OA) CPR of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (OA)	
Figure HT37	CIR Diagnosis of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (OA)	
Figure HT39	CPR of Primary Total Conventional Hip Replacement by Acetabular Type (All Diagnoses)	
Figure HT40	CPR of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis OA)	
Figure HT41	CPR of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)	
Figure HT42	CPR of Constrained Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)	
Figure HT43	CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Diagnoses)	
Figure HT44	CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA)	139
Figure HT45	CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (OA, Revision for Dislocation)	140
Figure HT46	CPR of Dual Mobility Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)	141
Figure HT47	CPR of Dual Mobility Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)	
Figure HT48	CPR of Dual Mobility Primary Total Conventional Hip Replacement by Acetabular Fixation (OA)	
Figure HT49	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA)	
Figure HT50	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Major Revisions)	
Figure HT51	CIR Diagnosis of Primary Total Conventional Hip Replacement by Surgical Approach (OA)	
Figure HT52	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (s OA, Revision for Loosening)	
Figure HT53	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Revision for Fracture)	
Figure HT54 Figure HT55	CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Revision for Infection) CPR of Primary Total Conventional Hip Replacement by Surgical Approach (OA, Revision for Dislocation/Instability)	
Figure HT56	CPR of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)	
Figure HT57	Cumulative Percent Survival of Patients with Primary Total Conventional Hip Replacement (Fractured NOF)	
Figure HT58	CIR Diagnosis of Primary Total Conventional Hip Replacement (Fractured NOF)	
Figure HT59	CPR revision of Primary Total Conventional Hip Replacement by ASA Score (Fractured NOF)	
Figure HT60	CIR Diagnosis of Primary Total Conventional Hip Replacement by ASA Score (Fractured NOF)	
Figure HT61	CPR of Primary Total Conventional Hip Replacement by BMI Category (Fractured NOF)	
Figure HT62	CIR Diagnosis of Primary Total Conventional Hip Replacement by BMI Category (Fractured NOF)	
Figure HT63	CPR of Primary Total Conventional Hip Replacement by Fixation (Fractured NOF)	
Figure HT64	CPR of Primary Total Conventional Hip Replacement in Patients Aged <70 Years by Fixation (Fractured NOF)	163
Figure HT65	CPR of Primary Total Conventional Hip Replacement in Patients Aged ≥70 Years by Fixation (Fractured NOF)	
Figure HT66	CPR of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF)	
Figure HT67	CPR of Primary Total Conventional Hip Replacement by Head Size (Fractured NOF, Revision for Dislocation)	
Figure HT68	CPR of Primary Total Conventional Hip Replacement by Acetabular Type (Fractured NOF)	
Figure HT69	CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (Fractured NOF)	
Figure HT70	CPR of Primary Hip Replacement by Class (Primary Diagnosis Fractured NOF)	
Figure HT71	CPR of Primary Hip Replacement in Patients Aged <70 Years by Class (Fractured NOF)	
Figure HT72	CPR of Primary Hip Replacement in Patients Aged ≥70 Years by Class (Fractured NOF) Primary Total Resurfacing Hip Replacement by Gender	ا / ا 170
Figure HT73 Figure HT74	Primary Total Resurfacing Hip Replacement by Gender Primary Total Resurfacing Hip Replacement by Age	
Figure HT75	CPR of Primary Total Resultacing Hip Replacement by Primary Diagnosis	
Figure HT76	CPR of Primary Total Resultacing Hip Replacement (Primary Diagnosis CA)	
Figure HT77	CIR Diagnosis of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)	
Figure HT78	CPR of Primary Total Resurfacing Hip Replacement by Age (Primary Diagnosis OA)	
Figure HT79	CPR of Primary Total Resultacing hip Replacement by Gender (Primary Diagnosis OA)	
Figure HT80	CPR of Primary Total Resurfacing Hip Replacement in Males by Age (Primary Diagnosis OA)	
Figure HT81	CPR of Primary Total Resurfacing Hip Replacement in Females by Age (Primary Diagnosis OA)	
Figure HT82	CPR of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)	
Figure HT83	CIR Diagnosis of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)	
		100
Figure HT84 Figure HT85	CPR of Primary Total Resurfacing Hip Replacement by Gender and Femoral Head Size (OA) CPR of Primary Total Hip Replacement by Class (Primary Diagnosis OA)	

Knee Replac		,
Figure K1	Proportion of Knee Replacements	

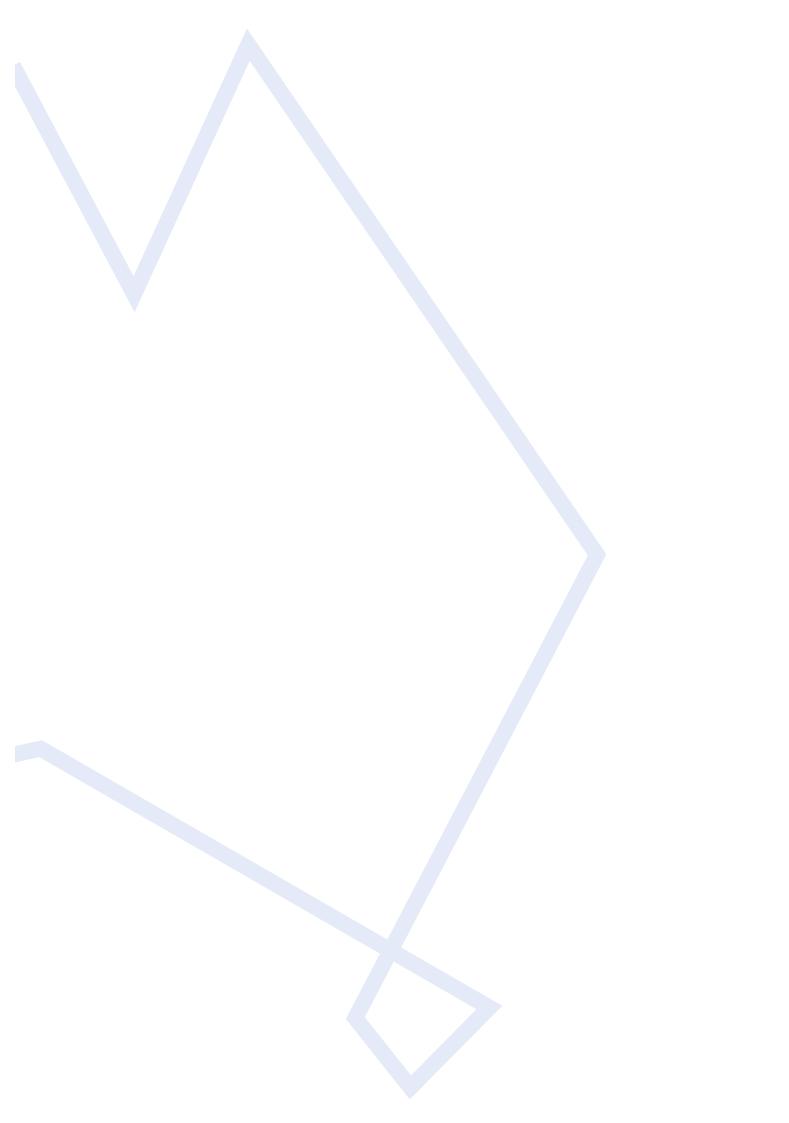
Primary Partie	al Knee Replacement Summary	191
Figure KP1	Cumulative Percent Revision of Primary Patella/Trochlear Knee Replacement (Primary Diagnosis OA)	192
Figure KP2	Primary Unicompartmental Knee Replacement by Gender	193
Figure KP3	Primary Unicompartmental Knee Replacement by Age	193
Figure KP4	Primary Unicompartmental Knee Replacement by Robotic Assistance (Primary Diagnosis OA)	193
Figure KP5	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)	196
Figure KP6	Cumulative Incidence Revision Diagnosis of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)	197
Figure KP7	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA)	198
Figure KP8	Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Gender (Primary Diagnosis OA)	199

Figure KP9 Figure KP10 Figure KP11 Figure KP12 Figure KP13

Figure KT1	nee Replacement Primary Total Knee Replacement by Gender	
Figure KT2	Primary Total Knee Replacement by Gender	
Figure KT3	Primary Total Knee Replacement by Age Primary Total Knee Replacement by Patella Usage	
Figure KT3	Primary Total Knee Replacement by Fration	
Figure KT5	Primary Total Knee Replacement by Polyethylene Type	
Figure KT6	Cumulative Percent Revision of Primary Total Knee Replacement by Primary Diagnosis)
Figure KT7	Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA)	
Figure KT8	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement (Primary Diagnosis OA)	
Figure KT9	Cumulative Percent Revision of Primary Total Knee Replacement by Age (Primary Diagnosis OA)	
Figure KT10	Cumulative Percent Revision of Primary Total Knee Replacement by Age (Finnary Diagnosis OA)	
Figure KT11	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Gender (Primary Diagnosis OA)	
Figure KT12	Cumulative Percent Revision of Primary Total Knee Replacement in Males by Age (Primary Diagnosis OA)	
Figure KT13	Cumulative Percent Revision of Primary Total Knee Replacement in Females by Age (Primary Diagnosis OA)	
Figure KT14	Cumulative Percent Revision of Primary Total Knee Replacement by ASA Score (Primary Diagnosis OA)	
Figure KT15	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by ASA Scole (Frimary Diagnosis OA)	
Figure KT16	Cumulative Percent Revision of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA)	
Figure KT17	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA)	
Figure KT18	CPR of Primary Total Knee Replacement by BMI Category (Primary Diagnosis OA, Revision for Infection)	
Figure KT18	Cumulative Percent Revision of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA)	
Figure KT20	Cumulative Percent Revision of Primary Total Knee Replacement by Fixed Bearing Type (Primary Diagnosis OA)	
Figure KT21	Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Figure KT22	Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Figure KT23	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Figure KT23	CPR of Primary Total Knee Replacement by Stability (Primary Diagnosis OA, Excluding Advance/Advance)	
Figure KT25	CPR of Triathlon/Triathlon Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (OA)	
Figure KT26	CPR of PFC Sigma/PFC Sigma Primary Total Knee Replacement with XLPE by Poly Insert Shape (Primary Diagnosis OA)	
Figure KT27	CPR of Natural/Natural Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (Primary Diagnosis OA)	
Figure KT28	CPR of Persona Primary Total Knee Replacement with XLPE by Polyethylene Insert Shape (Primary Diagnosis OA)	
Figure KT29	Cumulative Percent Revision of Primary Total Knee Replacement by Stability (All Diagnoses)	
Figure KT30	Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis)	
Figure KT31	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Figure KT32	Cumulative Percent Revision of Primary Total Knee Replacement by Patella Usage (Primary Diagnosis OA)	
Figure KT33	Cumulative Percent Revision of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)	
Figure KT34	Cumulative Percent Revision of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)	
Figure KT35	Cumulative Percent Revision of Minimally Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Figure KT36	Cumulative Percent Revision of Posterior Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Figure KT37	Cumulative Percent Revision of Medial Pivot Design Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Figure KT38	Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Figure KT39	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Polyethylene Type (OA)	
Figure KT40	Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA).	
Figure KT41	Cumulative Percent Revision of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Figure KT42	CIR Diagnosis of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Figure KT43	Cumulative Percent Revision of Primary Total Knee Replacement by Femoral Component Type (Primary Diagnosis OA)	
Figure KT44	CIR Diagnosis of Primary Total Knee Replacement by Femoral Component Type (All Diagnoses)	
Figure KT45	Cumulative Percent Revision of AS Primary Total Knee Replacement by AS Femoral Material (Primary Diagnosis OA)	
Figure KT46	Primary Total Knee Replacement by Technology Assistance (Primary Diagnosis OA)	
Figure KT47	Cumulative Percent Revision of Primary Total Knee Replacement by Navigation (Primary Diagnosis OA)	
Figure KT48	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Navigation (Primary Diagnosis OA)	
Figure KT49	Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation and Age (OA)	
Figure KT50	Cumulative Percent Revision of Primary Total Knee Replacement Since 2009 by IDI Usage (Primary Diagnosis OA)	
Figure KT51	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement Since 2007 by IDI Usage (OA)	
Figure KT52	Cumulative Percent Revision of Primary Total Knee Replacement Since 2009 by IDI Usage and Age (OA)	
Figure KT53	Cumulative Percent Revision of Primary Total Knee Replacement Since 2007 by Ibl osage and Age (OA)	
Figure KT54	Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement Since 2017 by Robotic Assistance (OA)	
Figure KT55	Cumulative Percent Revision of Primary Total Knee Replacement Since 2017 by Robotic Assistance and Age (OA)	· ?.

Shoulder Replacement......

Figure S1


Figure SP1	Primary Partial Shoulder Replacement by Class	277
Figure SP2	Cumulative Percent Revision of Primary Partial Shoulder Replacement by Class (All Diagnoses)	277
Figure SP3	Cumulative Percent Revision of Primary Hemi Resurfacing Shoulder Replacement by Gender (Primary Diagnosis OA)	278
Figure SP4	Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis	279
Figure SP5	Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis	
-		

Primary Tota	I Shoulder Replacement	281
Figure ST1	Primary Total Shoulder Replacement by Class	
Figure ST2	Cumulative Percent Revision of Primary Total Shoulder Replacement by Class (All Prostheses)	
Figure ST3	Primary Total Stemmed Shoulder Replacement by Gender	
Figure ST4	Primary Total Stemmed Shoulder Replacement by Age	
Figure ST5	Primary Total Stemmed Shoulder Replacement by Fixation	
Figure ST6	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Primary Diagnosis	
Figure ST7	Cumulative Incidence Revision Diagnosis of Primary Total Stemmed Shoulder Replacement	294
Figure ST8	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Age (Primary Diagnosis OA)	296

Figure ST9	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Gender (Primary Diagnosis OA)	207
Figure ST10	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Gender (Frimary Diagnosis OA)	
Figure ST11	CIR Diagnosis of Primary Total Stemmed Shoulder Replacement by ASA Score (Primary Diagnosis OA)	
Figure ST12	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by BMI Category (Primary Diagnosis OA)	
Figure ST13	Cumulative Incidence Revision Diagnosis of Primary Total Stemmed Shoulder Replacement by BMI Category (OA)	
Figure ST14	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Glenoid Morphology (OA)	
Figure ST15	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Fixation (Primary Diagnosis OA)	
Figure ST16	Cumulative Percent Revision of Primary Total Stemmed Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)	
Figure ST17	CPR of All-Polyethylene Cemented Primary Total Stemmed Shoulder Replacement by Glenoid Design (OA)	
Figure ST18	Primary Total Stemmed Shoulder Replacement by Polyethylene Type (All Diagnoses)	
Figure ST19	CPR of Primary Total Stemmed Shoulder Replacement using All Types of Glenoid by Polyethylene Type (OA)	
Figure ST20	CPR of Primary Total Stemmed Shoulder Replacement Using All-Polyethylene Glenoids by Polyethylene Type (OA)	
Figure ST21	CPR of Primary Total Stemmed Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)	309
Figure ST22	CIR Diagnosis of Primary Total Stemmed Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)	310
Figure ST23	Primary Total Reverse Shoulder Replacement by Primary Diagnosis	313
Figure ST24	Primary Total Reverse Shoulder Replacement by Gender	
Figure ST25	Primary Total Reverse Shoulder Replacement by Age	
Figure ST26	Primary Total Reverse Shoulder Replacement by Fixation	315
Figure ST27	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Primary Diagnosis	
Figure ST28	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement	
Figure ST29	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis OA)	321
Figure ST30	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis OA)	
Figure ST31	CIR Diagnosis of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis OA)	
Figure ST32	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Primary Diagnosis OA)	
Figure ST33	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by ASA Score (OA)	
Figure ST34	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis OA)	
Figure ST35	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by BMI Category (OA)	
Figure ST36	CPR of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (Primary Diagnosis OA)	
Figure ST37	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA)	
Figure ST38	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (OA)	
Figure ST39	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Polyethylene Type (OA)	
Figure ST40	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA)	
Figure ST41	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (OA)	
Figure ST42	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Rotator Cuff Arthropathy) Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Rotator Cuff Arthropathy)	
Figure ST43 Figure ST44	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Rotatol Curt Antrioparity)	
Figure ST45	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Rotator Cuff Arthropathy)	
Figure ST46	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by ASA Score (RCA)	
Figure ST47	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Rotator Cuff Arthropathy)	
Figure ST48	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by BMI Category (RCA)	
Figure ST49	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenoid Morphology (RCA)	
Figure ST50	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Rotator Cuff Arthropathy)	
Figure ST51	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (RCA)	
Figure ST52	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Polyethylene Type (RCA)	
Figure ST53	CPR of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Rotator Cuff Arthropathy)	
Figure ST54	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (RCA)	
Figure ST55	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Fracture)	
Figure ST56	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Fracture)	
Figure ST57	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Gender (Fracture)	357
Figure ST58	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by ASA Score (Primary Diagnosis Fracture)	358
Figure ST59	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by ASA Score (Fracture)	359
Figure ST60	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by BMI Category (Primary Diagnosis Fracture)	360
Figure ST61	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by BMI Category (Fracture)	361
Figure ST62	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture)	
Figure ST63	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Polyethylene Type (Fracture)	
Figure ST64	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Polyethylene Type (OA)	
Figure ST65	Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Fracture)	
Figure ST66	Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Fracture)	368

Figure IP1 Figure IP2 Figure IP3 Figure IP4 Figure IP5 Figure IP6 Figure IP7 Figure IP8 Figure IP9 Figure IP10

