NATIONAL JOINT REPLACEMENT REGISTRY

AOA australian orthopaedic association

Hip, Knee & Shoulder Arthroplasty

annual Report **2017**

Director: Professor Stephen Graves E: segraves@aoanjrr.org.au

Manager: Ms Cindy Turner E: cturner@aoanjrr.org.au AOANJRR SAHMRI, North Terrace ADELAIDE SA 5000 T: +61 8 8128 4280

The AOANJRR is funded by the Australian Government Department of Health

Photographer: John Gollings

Suggested citation: Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR). Hip, Knee & Shoulder Arthroplasty: 2017 Annual Report. Adelaide: AOA, 2017.

www.aoa.org.au

© Australian Orthopaedic Association National Joint Replacement Registry 2017 ISSN 1445-3657

AUSTRALIAN ORTHOPAEDIC ASSOCIATION NATIONAL JOINT REPLACEMENT REGISTRY

2017 ANNUAL REPORT

HIP, KNEE & SHOULDER ARTHROPLASTY

September 1999 to December 2016

Preface

Preface

It is my pleasure to present the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) 2017 Annual Report. Joint replacement is widely regarded to be amongst the most successful interventions in modern surgical practice. In 2016, almost 115,000 Australians underwent hip, knee or shoulder replacement. However, even good operations can be made better. This was the reason that the AOA established the AOANJRR in 1999. Its sole purpose is to enhance the outcomes of joint replacement surgery. It has been very successful at achieving this.

Through quality analysis and reporting of accurate, validated data on almost every joint replacement procedure undertaken in Australia, the Registry has been able to provide information that has consistently reduced the risk of revision surgery over many years. In the last year, the benefit that AOANJRR has produced was independently assessed by the Australian Commission for Safety and Quality. Their report identified a financial benefit of over \$600M for the period 2003-2014. Importantly, this reflects that many Australians have and continue to benefit because of the work of the Registry. This year the AOANJRR is reporting that there continues to be ongoing improvement. The current revision burden for hip, knee and shoulder replacement is now at its lowest level since the Registry began data collection.

Each year the Annual Report provides information on new and important themes. This year is no exception. For the first time, the AOANJRR has addressed the important issue of individual surgeon and hospital variation in outcomes and examined the role that prosthesis choice has in that variation.

An important AOANJRR function is to provide individual feedback to each surgeon. During the last year, the Registry has worked hard to improve this information by providing more detailed data to enable surgeons to more comprehensively assess their individual performance. In conjunction with this, the AOA has undertaken a focused campaign and developed strategies to assist surgeons in optimising the benefit of the information provided to them.

Another important AOA initiative developed in the last 12 months has been a two-year pilot study to assess the feasibility of the AOANJRR undertaking national collection of Patient Reported Outcome Measures (PROMs). If successful, it will enable the pre-operative severity of joint disease to be more accurately assessed as well as provide the patient's perspective on the results of their surgery. It has the potential to deliver new insights into the indications and outcomes of joint replacement surgery.

I would like to take this opportunity to thank all those involved with the production of the report and the continued success of the Registry. This includes AOANJRR staff as well as the South Australian Health and Medical Research Institute (SAHMRI) and the University of South Australia which are AOA's partners in managing the Registry and progressing registry science. The AOA is also grateful for the continued support of the Commonwealth Government which provides funding for the core activities of the Registry through a legislated cost recovery program. The Department of Health also provides ongoing support and advice in many other ways. In addition, there are a large number of other stakeholders supporting the Registry which include: state and territory governments; the Therapeutic Goods Administration; industry and particularly, orthopaedic manufacturers. Finally, a special thank you to all the hospitals, hospital coordinators, surgeons and patients for their continued support and provision of data that has enabled the production of another extremely high quality annual report.

Ian Incoll

President of the Australian Orthopaedic Association

A

THAN .

Executive Summary

This summary provides a brief overview of some of the major findings from this year's Annual Report. The basic structure of the report is similar to last year. Previously reported analysis on the outcome of primary hip, knee and shoulder replacement has been updated and extended. For this report, the analysis has been undertaken on 1,237,576 (545,831 hip, 653,480 knee and 38,265 shoulder) joint replacement procedures. Each year a number of new topics are carefully selected for more detailed analysis. This year the AOANJRR has focused on individual surgeon and hospital variation in rate of revision and how this is affected by prosthesis choice.

As in previous years, in addition to the main report the Registry is publishing supplementary reports. These include a Lay Summary and 11 different reports on arthroplasty topics. The Registry also provides detailed analysis of all prostheses identified as having a higher than anticipated rate of revision. The supplementary reports are listed in the introduction and will be available on the AOANJRR website <u>https://aoanjrr.sahmri.com/annual-reports-2017</u> from 1 October 2017.

Surgeon and Hospital Variation

Individual surgeon and hospital variation in the rate of revision were determined. Specifically, for surgeon variation, this was done for both revision for any reason as well as specific reasons for revision. To present variation data, funnel plots have been used for the first time. These are explained in the relevant chapter. There are many reasons why the rate of revision varies amongst surgeons. The Registry has on this occasion specifically focused on studying the impact of prosthesis choice. This was done for both primary total conventional hip replacement and primary total knee replacement. The results for both procedures were very similar. Outcomes are improved and surgeon variation is reduced when surgeons are consistent in their use of prosthesis combinations and when they choose to use devices that are known to have a lower rate of revision.

As with surgeon variation there are many factors that may influence hospital variation. This analysis included assessing the extent of individual hospital variation for primary total conventional hip replacement used in the management of osteoarthritis and fractured neck of femur, as well as primary total knee replacement for osteoarthritis. A comparison of the rate of revision in public and private hospital systems was also undertaken, and the impact of prosthesis choice on that comparison was studied. The initial higher rate of revision observed in private hospitals for primary total conventional hip (both diagnoses) and primary total knee replacement altered when the comparison was confined to prosthesis combinations that are known to have a lower rate of revision. For primary total conventional primary hip replacement with a primary diagnosis of osteoarthritis, the rate of revision in private hospitals was less in the first month and the same as for public hospitals after that time. When this procedure was performed for a primary diagnosis of fractured neck of femur, there was no difference in the rate of revision. For primary total knee replacement, the rate of revision was lower in private hospitals when procedures using only those prosthesis combinations with a lower rate of revision were considered.

10 and 15 Year Outcome Data

The Registry continues to highlight the 10 year and 15 year cumulative percent revision of prosthesis combinations used in primary total conventional hip and primary total knee replacement. These are important milestones to benchmark comparative prosthesis performance. Applying a more stringent benchmarking approach at 10 years (explained in the relevant chapter), 19.2% of hip prosthesis combinations and 16.1% of knee prosthesis combinations achieve a 10 year superiority benchmark.

Hip Replacement Data

In 2016, hip replacement increased by 3.7% and revision burden declined to 8.9%, which is the lowest level reported by the Registry. In primary partial hip replacement, the use of bipolar prostheses continues to increase and has a lower rate of revision compared to other types of partial hip replacement in the management of fractured neck of femur. Cement fixation of the femoral component is associated with the lowest rate of revision.

There have been a number of changes in the analysis of primary total conventional hip replacement. Non cross-linked polyethylene (non XLPE) has been excluded from the fixation analysis. Consequently, the outcome of cement fixation has improved compared to that previously

reported by the Registry. The rate of revision of cross-linked polyethylene (XLPE) + antioxidant is included for the first time. The follow up period is short (maximum 4 years), but at this point in time there is no difference when compared to XLPE. To reflect current surgical practice the analysis of ceramic on ceramic bearings has been limited to mixed ceramic. A separate section on the outcome of primary total conventional hip replacement for fractured neck of femur has been included for the first time. In addition, primary total conventional hip replacement is compared to primary partial hip replacement, with an analysis and explanation of competing risks also included. This approach better addresses the high but variable mortality associated with the different prosthesis classes used in fractured neck of femur, and enables a more relevant comparison of the comparative revision incidence.

The data on total resurfacing hip replacement is similar to previous years.

Knee Replacement Data

In 2016, knee replacement increased by 3.5% and revision burden declined to 7.4%. As with hip replacement, this is the lowest knee revision burden reported by the Registry. The major change in the knee replacement analysis has been the inclusion of medial pivot knee replacement as a separate class of primary total knee replacement. The rate of revision of XLPE + antioxidant is also included for the first time.

Shoulder Replacement Data

In 2016, shoulder replacement increased by 11.1% and revision burden declined to its lowest level of 9.1%. The use of total reverse shoulder replacement continues to increase and in 2016 accounted for 69.3% of all total shoulder replacements. After 3 months, total reverse shoulder replacement has a lower rate of revision compared to total conventional shoulder replacement when the SMR L2 is excluded. In primary total conventional shoulder replacement, the use of cemented glenoid fixation continues to increase and its lower rate of revision is again highlighted. Larger head sizes are associated with a lower rate of revision. There is no difference related to fixation in total reverse shoulder replacement, but there are differences related to glenosphere size when used in the management of osteoarthritis.

Prostheses with Higher than Anticipated Rates of Revision

Each year, the AOANJRR identifies prostheses with higher than anticipated rates of revision. This year, six new prostheses have been identified: one acetabular prosthesis, four hip prosthesis combinations and one primary total knee prosthesis.

Acknowledgements

The Registry continues to receive support and invaluable assistance from the Commonwealth Government, state and territory health departments and orthopaedic companies.

The Registry acknowledges the cooperation and support provided by those undertaking the surgery and completing the data forms, in particular, all orthopaedic surgeons, registrars and nursing staff.

The Registry would also like to acknowledge the ongoing support of all hospitals, both public and private, that undertake arthroplasty surgery nationally. The support provided by each hospital through their nominated coordinator(s) is appreciated. A complete list of participating hospitals and coordinators is presented at the end of this report (Appendix 1).

The Registry greatly appreciates the participation of all joint replacement patients throughout Australia. It is their contribution that allows ongoing improvements in arthroplasty outcomes to be achieved.

DEPUTY DIRECTORS Professor Richard de Steiger

Mr Peter Lewis

Professor Ian Harris

DIRECTOR Professor Stephen Graves AOANJRR STAFF

Ms Cindy Turner (Manager) Dr Sophia Rainbird Ms Rychelle Brittain Ms Grace O'Donohue

Assistant Deputy Directors

Mr James Stoney Mr Bill Donnelly

Clinical Advisors

Professor Richard Page (Upper Limb Joint Replacement) Mr Andrew Beischer (Ankle Replacement)

SOUTH AUSTRALIAN HEALTH AND MEDICAL RESEARCH INSTITUTE STAFF

Ms Liddy Griffith Dr Mandy Anderson Ms Michelle Lorimer Ms Alana Cuthbert Ms Andrea Peng Ms Alesha Hatton Ms Janey Barrow Mr Robert Armitage Many thanks to the Data Entry Team

AOANJRR COMMITTEE

David Hale Stephen Graves Richard de Steiger Peter Lewis Ian Harris Roger Brighton John Radovanovic Alexander Burns Sean Williams **Russell Furzer** David Campbell Neil Bergman Peter Myers Richard Page Andrew Beischer Matthew Scott-Young James Stoney **Bill Donnelly**

Chairperson Director Deputy Director (Victoria) Deputy Director (South Australia) Deputy Director (New South Wales) New South Wales Queensland Australian Capital Territory Western Australia Tasmania President, Arthroplasty Society of Australia AOA Representative - AOANJRR Consultative Committee Australian Knee Society Shoulder & Elbow Society Representative Foot & Ankle Society Representative Spine Society of Australia Representative Assistant Deputy Director (observer status) Assistant Deputy Director (observer status)

Contents

INTRODUCTION	.12
Background	.12
Purpose	
Aims	
Benefits	
Governance	.13
DATA QUALITY	.15
Data Collection	.15
Data Validation	
Outcome Assessment	
Report Review Prior to Publication	.16
SURGEON AND HOSPITAL VARIATION	.19
Surgeon Variation	.19
Hospital Variation	.36
TEN AND FIFTEEN YEAR PROSTHESIS OUTCOMES	.45
Ten Year Outcomes	
Hip Replacement	
Knee Replacement	
Fifteen Year Outcomes	
Hip Replacement	
Knee Replacement	.50
HIP REPLACEMENT	.53
Categories of Hip Replacement	
Use of Hip Replacement	
ASA Score and BMI in Hip Replacement	.55
PRIMARY PARTIAL HIP REPLACEMENT	.57
Classes of Partial Hip Replacement	.57
Use of Partial Hip Replacement	
Unipolar Monoblock	
Unipolar Modular	
Bipolar	./3
PRIMARY TOTAL HIP REPLACEMENT	
Classes of Total Hip Replacement	
Use of Total Hip Replacement	.80
Primary Total Conventional Hip Replacement	
Primary Total Resurfacing Hip Replacement	
Categories of Knee Replacement	
Use of Knee Replacement	
ASA Score and BMI in Knee Replacement	6/
PRIMARY PARTIAL KNEE REPLACEMENT	
Classes of Partial Knee Replacement	
Use of Partial Knee Replacement	
Partial Resurfacing	
Patella/Trochlea	
Unicompartmental	
PRIMARY TOTAL KNEE REPLACEMENT	
Class of Total Knee Replacement	86

LIST OF FIGURES	
LIST OF TABLES	
APPENDIX 7	
APPENDIX 6	
APPENDIX 5	
APPENDIX 4	
APPENDIX 2	
APPENDIX 1	
APPENDICES	
APPENDICES	
Primary Total Ankle Replacement	
Primary Total Reverse Shoulder Replacement	
Primary Total Shoulder Replacement	
Primary Partial Shoulder Replacement	
Primary Total Knee Replacement	
Primary Partial Knee Replacement	
Total Resurfacing	
Primary Total Hip Replacement	
Primary Partial Hip Replacement	
Identified Prostheses	
Introduction	
PROSTHESES WITH HIGHER THAN ANTICIPATED RATES OF REVISION	
Primary Total Reverse Shoulder Replacement	
Primary Total Conventional Shoulder Replacement	
Primary Total Mid Head Shoulder Replacement	
Primary Total Resurfacing Shoulder Replacement	
Use of Total Shoulder Replacement	
Classes of Total Shoulder Replacement	
PRIMARY TOTAL SHOULDER REPLACEMENT	259
Primary Hemi Stemmed Shoulder Replacement	244
Primary Hemi Mid Head Shoulder Replacement	
Primary Hemi Resurfacing Shoulder Replacement	
Primary Partial Resurfacing Shoulder Replacement	
Use of Partial Shoulder Replacement	
Classes of Partial Shoulder Replacement	
PRIMARY PARTIAL SHOULDER REPLACEMENT	
ASA Score and BMI	
Use of Shoulder Replacement	
Categories of Shoulder Replacement	
SHOULDER REPLACEMENT	

Introduction

The 2017 Hip, Knee and Shoulder Arthroplasty Report is based on the analysis of 1,237,576 (545,831 hip, 653,480 knee and 38,265 shoulder) primary and revision procedures recorded by the Registry, with a procedure date up to and including 31 December 2016. Shoulder arthroplasty has been included in this report with hip and knee arthroplasty since 2016.

In addition, there are 12 supplementary reports that complete the AOANJRR Annual Report for 2017:

- 1. Lay Summary Hip & Knee Replacement
- 2. Demographics of Hip, Knee & Shoulder Arthroplasty
- 3. Cement in Hip and Knee Arthroplasty
- 4. Mortality of Hip and Knee Arthroplasty
- 5. Revision of Hip and Knee Arthroplasty
- 6. Metal/Metal Bearing Surface in Total Conventional Hip Arthroplasty
- 7. Metal and Ceramic Bearing Surface in Total Conventional Hip Arthroplasty
- 8. The Outcome of Classes of Hip and Knee Prostheses No Longer Used
- 9. Demographics and Outcome of Elbow and Wrist Arthroplasty
- 10. Demographics and Outcome of Ankle Arthroplasty
- 11. Demographics of Spinal Disc Arthroplasty
- 12. Analysis of State and Territory Health Data All Arthroplasty 1993/1994 – 2015/2016

In addition to the 12 supplementary reports, investigations of prostheses with higher than anticipated rates of revision are published on https://aoanjrr.sahmri.com/annual-reports-2017.

All hospitals, public and private, undertaking joint replacement submit their data to the Registry. Currently, there are 310 participating hospitals. However, this may vary from time to time due to hospital closures, new hospitals, or changes to services within hospitals.

BACKGROUND

Joint replacement is a commonly performed major surgical procedure that has considerable success in alleviating pain and disability. The Australian Orthopaedic Association (AOA) recognised the need to establish a national joint replacement registry in 1993. At that time, the outcome of joint replacement in Australia was unknown. Patient demographics were not available and the types of prostheses and techniques used to implant them were unknown.

The need to establish a Registry was, in part, based on the documented success of a number of arthroplasty registries in other countries. In particular, the Swedish arthroplasty registries. In Sweden, the ability to identify factors important in achieving successful outcomes has resulted in both improved standards and significant cost savings.

In 1998, the Commonwealth Department of Health (DoH) funded the AOA to establish the Registry. The Department of Health continues to provide funding to maintain the Registry. In June 2009, Federal Parliament passed legislation to enable the government to cost recover this funding from the orthopaedic industry. This legislation was updated in 2015.

The Registry began hip and knee data collection on 1 September 1999. Implementation was undertaken in a staged manner in each of the Australian states and territories, becoming national during 2002. The first year of full national data collection for shoulder procedures was 2008 (Appendix 6).

The AOA contracts the South Australian Health and Medical Research Institute (SAHMRI) to provide data management and independent data analysis services for the Registry.

The SAHMRI team contribute crucial data management and analysis expertise through the Registry Working Group and a variety of project working groups.

The AOA also contracts the University of South Australia to provide specific expertise in the ongoing development of analytical techniques for registry data.

PURPOSE

The purpose of the Registry is to define, improve and maintain the quality of care for individuals receiving joint replacement surgery. This is achieved by collecting a defined minimum data set that enables outcomes to be determined based on patient characteristics, prosthesis type and features, method of prosthesis fixation and surgical technique used.

The principal outcome measure is time to first revision surgery. This is an unambiguous measure of the need for further intervention. Combined with a careful analysis of potential confounding factors, this can be used as an accurate measure of the success, or otherwise, of a procedure. The Registry also monitors mortality of patients, which is critical when determining the rate of revision.

AIMS

- 1. Establish demographic data related to joint replacement surgery in Australia.
- 2. Provide accurate information on the use of different types of prostheses.
- 3. Determine regional variation in the practice of joint surgery.
- 4. Identify the demographic and diagnostic characteristics of patients that affect outcomes.
- 5. Analyse the effectiveness of different prostheses and treatment for specific diagnoses.
- 6. Evaluate the effectiveness of the large variety of prostheses currently on the market by analysing their survival rates.
- Educate orthopaedic surgeons on the most effective prostheses and techniques to improve patient outcomes.
- 8. Provide surgeons with an auditing facility.
- 9. Provide information that can instigate tracking of patients if necessary.
- 10. Provide information for the comparison of the practice of joint replacement in Australia and other countries.

BENEFITS

Since its inception, the Registry has enhanced the outcome of joint replacement surgery in Australia.

There are many factors known to influence the outcome of joint replacement surgery. Some of these include age, gender, diagnosis, ASA score and BMI of patients, as well as the type of prosthesis and surgical technique used. Another coexisting influence is the rapid rate of change in medical technology. There is continual development and use of new types of prostheses and surgical techniques, for many of which the outcome remains uncertain.

Information obtained by the analysis of Registry data is used to benefit the community. The Registry releases this information through publicly available annual and supplementary reports, journal publications and ad hoc reports (256 in 2016). These ad hoc reports are specific analyses requested by surgeons, hospitals, academic institutions, government and government agencies as well as orthopaedic companies.

The Registry provides surgeons with access to their individual data and downloadable reports through a secure online portal. Separate online facilities are available for orthopaedic companies to monitor their own prostheses, and for Australian and regulatory bodies in other countries to monitor prostheses used in Australia. The data obtained through the online facilities are updated daily and are over 90% complete within six weeks of the procedure date.

The percentage of revision hip procedures has declined from a peak of 12.9% in 2003 to 8.9% in 2016, equating to 1,871 fewer hip revisions in 2016. The percentage of revision knee procedures has declined from a peak of 8.8% in 2004 to 7.4% in 2016, equating to 834 fewer knee revisions in 2016. Revision shoulder arthroplasty peaked at 10.8% in 2012 and 2015, and has declined to 9.1% in 2016.

A major reason for the reduction in revision following hip, knee and shoulder joint replacement is the increased use of the type and class of prostheses shown to have better outcomes, and an associated decline in use of prostheses when less satisfactory outcomes are identified.

GOVERNANCE

The AOANJRR is an initiative of the AOA funded by the Commonwealth Government. In 2009, the Commonwealth established the AOANJRR Consultative Committee, which is administered and chaired by the Department of Health. The purpose is to provide advice on the overall strategic direction of the Registry.

Consultative Committee Members

- 1. Chair, Department of Health
- 2. AOANJRR Director
- 3. A representative of:
 - a. Department of Health
 - b. Australian Orthopaedic Association
 - c. Consumers Health Forum
 - d. Therapeutic Goods Administration
 - e. Prostheses List Advisory Committee
 - f. Private Healthcare Australia
 - g. Australian Private Hospitals Association
 - h. Orthopaedic Industry (2):
 - i. Medical Technology Association of Australia
 - ii. Non Medical Technology Association of Australia

The National Board of the AOA established the AOANJRR Committee to develop and manage AOANJRR policies. The Committee reports to the AOA Board. Members include the Chairperson, AOANJRR Director, three AOANJRR Deputy Directors and two Assistant Deputy Directors. In addition, an orthopaedic surgeon from each state, the ACT, and a representative from each of the AOA specialty arthroplasty groups are included. A complete list of the current AOANJRR Committee is provided in the acknowledgements section of this report.

The Director, Deputy Directors and Assistant Deputy Directors are appointed by the AOA Board and are responsible for providing strategic and clinical guidance. Additionally, the Directors are responsible for ensuring the cooperation of hospitals, surgeons and government, maintaining the profile and reputation of the Registry, continued collaboration with other arthroplasty registries internationally, and sustaining the current level of excellence.

The AOANJRR staff include the Registry Manager, Administration Officer, Research Coordinator and Prosthesis Library Coordinator. The AOANJRR team are responsible for the dayto-day operations, implementing new strategies, provision of data reports, research and publications activity, and coordinating the preparation of the Annual Report.

Data Quality

DATA COLLECTION

Hospitals provide data on specific Registry forms, which are completed in theatre at the time of surgery and submitted to the Registry each month. Examples of Registry data forms are available on the website.

Hard copy forms are sent to the Registry where a small team of expert data entry staff enter the data directly into the database. Onsite Data Managers are available to resolve queries at the time of data entry to reduce any potential data entry errors. The Registry data entry system uses a predictive text function which greatly reduces the possibility of transcription errors and enables the experienced data entry staff to enter the data rapidly and accurately.

The Registry has also established mechanisms to collect data electronically when it becomes feasible for contributing hospitals to do so. To date, there are no hospitals providing data electronically.

DATA VALIDATION

The Registry validates data collected from both public and private hospitals by comparing it to data provided by state and territory health departments. Validation of Registry data is a sequential multi-level matching process against health department unit record data.

The validation process identifies:

- 1. Registry procedure records for procedures notified to state/territory health departments by hospitals.
- 2. State/territory records for procedures not submitted to the Registry by hospitals.
- 'Exact match' procedures, that is, records held by the Registry and state/territory health departments.
- 4. Procedures that match on some parameters, but which require additional checking with hospitals to enable verification.

Initial validation is performed using hospital and patient identity numbers with subsequent verification undertaken on relevant procedure codes and appropriate admission periods. Data errors can occur within Government or Registry data at any of these levels; that is, errors in patient identification, coding or admission period attribution by either the hospital, state/territory health department or the Registry. Data mismatches are managed depending on the nature of the error. For example, a health department record for a primary 'knee' may match a Registry held record for a 'hip' on all parameters except procedure type. The Registry would regard the Registry data to be correct in this instance as the Registry record contains details of the prostheses implanted. Other errors may be resolved by contacting hospitals for clarification. Most commonly, this may include a reassessment of procedure codes or admission period.

In the 2016/17 financial year, the Registry received 202 more hip, knee and shoulder procedures than were provided in the various health department data files.

The validation process identifies procedures not submitted to the Registry. As in previous years, the majority of these procedures have an ICD10 code for hemiarthroplasty of the femur. Sufficient information is provided in the state unit record data to enable the Registry to request hospitals to provide forms for unreported procedures.

The Registry is able to obtain over 98% of joint replacement procedures undertaken in Australia. On initial submission of forms from participating hospitals, the Registry's capture rate is 96.8%. Following verification against health department data, checking of unmatched data and subsequent retrieval of unreported procedures, the Registry is able to obtain an almost complete dataset relating to hip, knee and shoulder replacement in Australia.

OUTCOME ASSESSMENT

The Registry describes the time to first revision using the Kaplan-Meier estimates of survivorship. The cumulative percent revision at a certain time, for example five years, is the complement (in probability) of the Kaplan-Meier survivorship function at that time, multiplied by 100. The cumulative percent revision accounts for right censoring due to death and 'closure' of the database at the time of analysis. Mortality information is obtained by matching all procedures with the National Death Index (NDI) biannually. The NDI is the national mortality database maintained by the Australian Institute of Health and Welfare (AIHW). The AIHW requires ethics approval for access to the NDI data.

Prior to 2013, the Registry reported the revisions per 100 observed component years. This statistic provides a good estimate of the overall rate of revision. However, it does not allow for changes in the rate of revision over time. A more informative estimate of the rate of revision over time is the cumulative percent revision.

Confidence intervals for the cumulative percent revision are unadjusted point-wise Greenwood estimates and should not be used to infer significant differences in revision between groups. Reported hazard ratios should be used when judging statistical significance.

Hazard ratios (HR) from Cox proportional hazards models, adjusting for age and gender where appropriate, are used to compare rates of revision. For each model, the assumption of proportional hazards is checked analytically. If the interaction between the predictor and the log of time is statistically significant in the standard Cox model, then a time varying model is estimated. Time points are iteratively chosen until the assumption of proportionality is met, then the hazard ratios are calculated for each selected time period. If no time period is specified, then the hazard ratio is over the entire follow up period. All tests are two-tailed at the 5% level of significance.

The cumulative percent revision (CPR) is displayed until the number at risk for the group reaches 40, unless the initial number for the group is less than 100, in which case the cumulative percent revision is reported until 10% of the initial number at risk remains. This avoids uninformative, imprecise estimates at the right tail of the distribution where the number at risk is low. Analytical comparisons of revision rates using the proportional hazards model are based on all available data¹.

In the presence of a competing risk for revision, the Kaplan-Meier method is known to overestimate the true probability of revision. Death of the patient before revision presents such a competing risk. In circumstances where the risk of death is high, e.g. in elderly patients with fractured neck of femur, the bias in the Kaplan-Meier estimates may be substantial and the reported cumulative percent revision should be interpreted with caution.

The Registry is currently investigating the introduction of different analytical methods to cope with competing risks. Cumulative incidence is one method of estimating the probability of revision in the presence of competing risks. Cumulative incidence revision diagnosis graphs deal with the competing risks of reasons for revision, highlighting the differences between groups in the pattern of revision over time. They also provide important insight into different mechanisms of failure. This year the Registry has provided cumulative incidence of revision for primary total conventional hip replacement compared to other types of primary hip arthroplasty used for the management of fractured neck of femur.

More detailed information on the statistical methods used in this report is presented in Appendix 2.

An important Registry focus has been the continued development of a standardised algorithm to identify prostheses or combination of prostheses not performing to the level of others in the same class. The Registry refers to this group as 'prostheses with a higher than anticipated rate of revision'. A three-stage approach has been developed and is outlined in detail in the relevant chapter of the report.

REPORT REVIEW PRIOR TO PUBLICATION

Prior to publication there are two workshops held to review, comment, and provide advice on the report. Members of the AOA and Arthroplasty Society are invited to attend a two-day workshop to review all sections of the report other than the shoulder procedures section. This workshop was held in Adelaide on the weekend of 5 and 6 August 2017. Members of the AOA with expertise in shoulder surgery are invited to attend a separate workshop to review this section of the report. This second workshop was held in Adelaide on 12 August 2017. Following these workshops, the report was provided to the AOA Board for consideration and final approval prior to publication.

¹ Pocock SJ, Clayton TC, Altman DG. *Survival plots of time to event outcomes in clinical trials: good practice and pitfalls*, Lancet 2002; 359: 1686-89.

Surgeon and Hospital Variation

This year, the Registry reports on the variation in rate of revision between surgeons and hospitals. The purpose is to provide insight into the role of surgeon and hospital related factors in the outcome of joint replacement surgery.

The Registry has previously reported on surgeon factors such as surgeon volume (number of procedures performed each year) and surgeon experience (time since qualification). This chapter further explores surgeon variation in the rate of revision for both primary total conventional hip and primary total knee replacement, the reasons for revision and the impact of prosthesis choice on the degree of surgeon variation. In addition, it also examines the impact of prosthesis choice on hospital variation.

Funnel plots (in addition to previously used graphs) are used to display variation in revision. A funnel plot is a scatter plot where each point represents a single surgeon or single hospital. The X (horizontal) axis represents volume: the total number of relevant surgical procedures recorded by the Registry for each surgeon or hospital. The Y-axis is a measure of performance given by the standardised proportion. This is calculated for each surgeon or hospital as the ratio of the number of revisions observed to the number of revisions expected, multiplied by the overall proportion of revisions. To calculate the expected number of revisions, a logistic regression model is used to determine the probability of revision based on a patient's age and gender. The sum of these predicted values for each surgeon or hospital is the estimate of the expected number of revisions.

The degree of variation expected is displayed on the graph as yellow (95% upper confidence limit) and red (99.7% upper confidence limit) lines which indicate the upper confidence limits around the average (or overall) revision rate for all procedures (indicated by the green line).

SURGEON VARIATION

Variation between surgeons should be interpreted within the limitations of the data. Firstly, some degree of random variation between surgeons is expected. For surgeons who undertake fewer procedures, more random variation is expected; this gives rise to the 'funnel' shape of the graph, with wider confidence limits to the left of the graph.

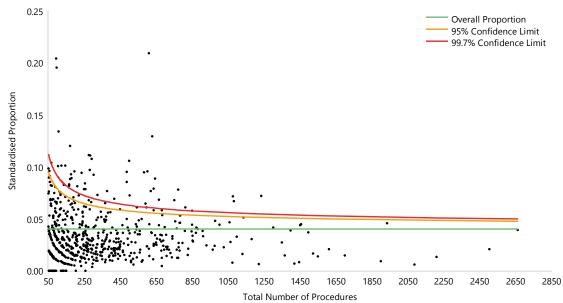
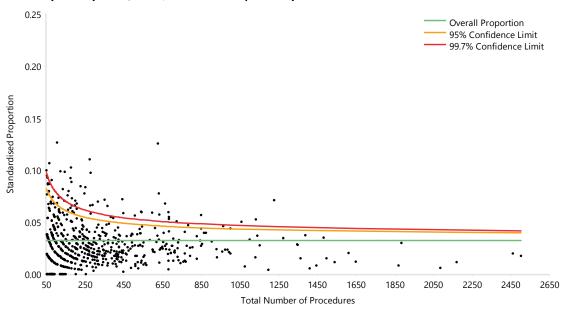
Secondly, the variation seen between surgeons may be due to factors unrelated to surgeon performance or surgeon preference. All funnel plots in this chapter are adjusted for differences in patient age and gender, but not for other factors that may also influence the outcome. For example, a higher proportion may be expected for surgeons performing more difficult procedures.

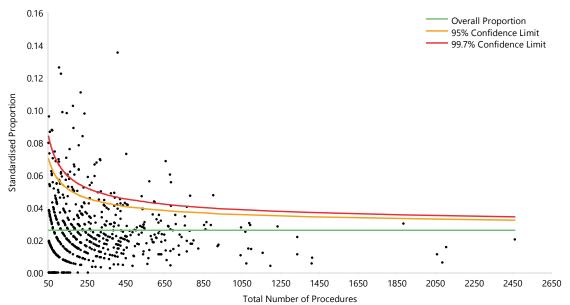
Due to the increased variation seen with low numbers, we have restricted the graphs to only include surgeons with at least 50 procedures recorded by the Registry.

This analysis is restricted to primary total conventional hip replacement and primary total knee replacement performed for osteoarthritis since 1 January 2003. The Registry contains data on 1,427 surgeons who have performed primary hip or knee replacement surgery, 1,010 (70.8%) of which contributed new procedures in 2016. The number of surgeons that have performed 50 or more total conventional hip replacements is 651 and 50 or more total knee replacements is 800.

TOTAL CONVENTIONAL HIP REPLACEMENT

Individual surgeon variation in revision for any reason following primary total conventional hip replacement, irrespective of prostheses used, was assessed. Overall, the proportion of primary procedures revised is 4.0%. The percentage of surgeons who are outliers (above the upper 99.7% confidence limit) is 7.4% (Figure SV1). This analysis was repeated excluding large head metal/metal prostheses, for which the overall proportion of procedures revised is 3.3% and the percentage of surgeon outliers is 6.8% (Figure SV2).


Figure SV2 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Excluding Large Head (>32mm) Metal/Metal, Revision for Any Reason)

The analysis excluding large head metal/metal prostheses was repeated but restricted to procedures performed from 2008 to 2016. This period was selected for several reasons, the most important being that 2008 was the first year the Registry could reliably link almost all procedures to specific surgeons. In addition, the outcomes during this period more accurately reflect current surgical practice. For this period, the overall proportion of procedures revised is 2.6% and the percentage of surgeon outliers is 7.9% (Figure SV3).

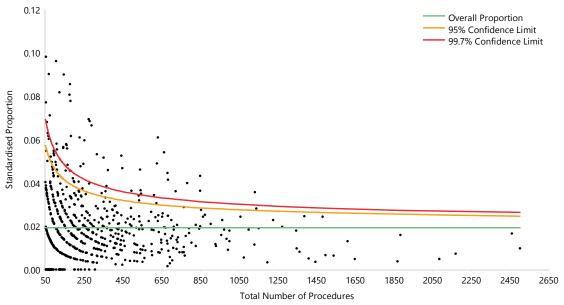
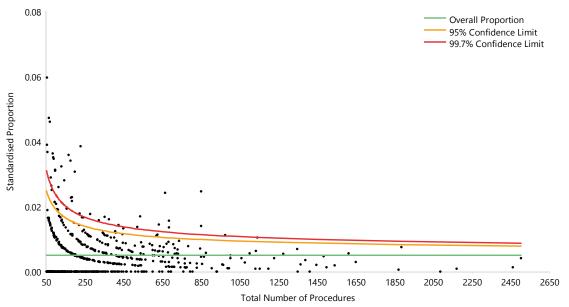

Further restricting the analysis to a shorter follow up time (two years) minimises the impact of revision for reasons such as implant wear, and focuses the analysis more on surgeon factors. The proportion of procedures revised for any reason within two years is 1.9% and the percentage of surgeon outliers is 7.4% (Figure SV4).

Figure SV3 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon performed from 1 January 2008 (Primary Diagnosis OA, Revision for Any Reason)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded


Figure SV4 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Any Reason Within 2 Years)

An analysis was undertaken to determine the percentage of surgeon outliers for specific reasons for revision. The four most common reasons for revision of primary total conventional hip replacement are: dislocation, infection, fracture and loosening. Knowing the reason and timing of the revision has the potential to enable surgeons to identify modifiable factors, which may enable them to enhance the outcomes of their surgery. The proportion of procedures revised within two years for dislocation, infection, fracture and loosening are 0.51%, 0.45%, 0.38% and 0.37%, respectively. The percentage of surgeon outliers for each of these revision diagnoses is 5.9%, 6.2%, 3.9%, and 5.4% respectively (Figures SV5 to SV8).

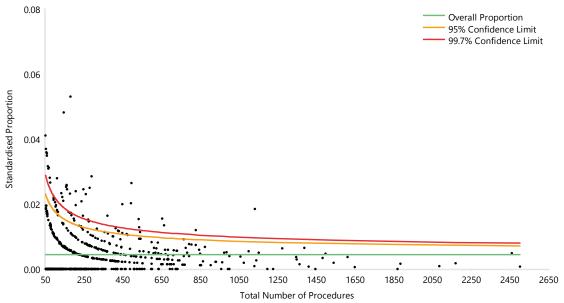

Of the 122 surgeon outliers in these four plots, 87.7% appear in one, 11.5% appear in two and 0.8% appear in three plots.

Figure SV5 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Prosthesis Dislocation Within 2 Years)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure SV6 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Infection Within 2 Years)

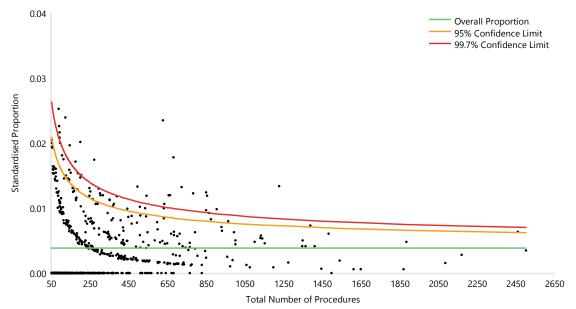


Figure SV7 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Fracture Within 2 Years)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

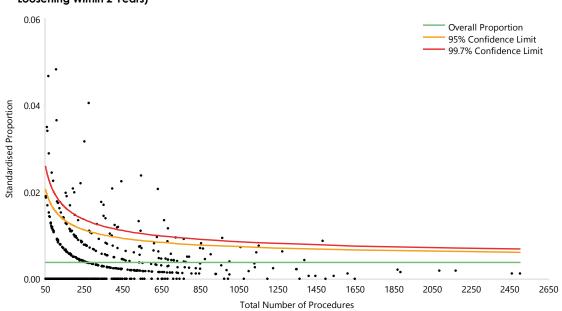


Figure SV8 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Loosening Within 2 Years)

PROTHESIS CHOICE

The effect of prosthesis choice on surgeon variation was explored. Two approaches were used. The first involved assessing the rate of revision based on the consistency of prosthesis combinations used by a surgeon. The second compared the extent of surgeon variation when only better performing prosthesis combinations were used.

Consistency of Prosthesis Use

This analysis is based on the proportion of procedures where a surgeon used up to two prosthesis combinations. As an example, a figure of 75% for a given surgeon means that they used two prostheses for 75% of all their procedures. In the remaining 25%, different prosthesis combinations were used. The Registry regards this as a measure of surgeon consistency in prosthesis choice.

Surgeons were then grouped according to consistency. Three surgeon groups were selected: when a surgeon used a maximum of two prosthesis combinations in more than 90%, 70 to 90% and less than 70% of their procedures.

Two prosthesis combinations were chosen, as surgeons will often use two different prosthesis combinations depending on the clinical indications. Due to limitations in surgeon specific data prior to 2008, and to provide more recent data, this analysis was restricted to procedures from 2008. The number of surgeons in each group is shown in Table SV1.

Table SV1 Number of Surgeons within each Prosthesis Consistency Group

Prosthesis Consistency Group	N Surgeons
>90%	224
70-90%	213
<70%	185

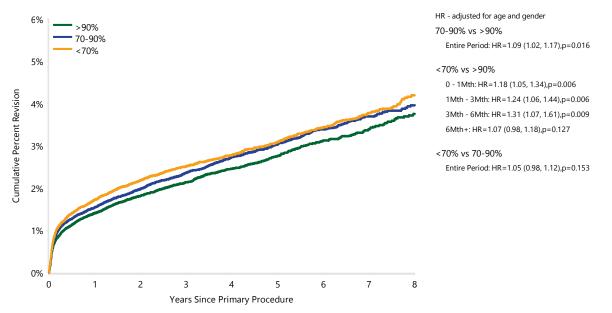
The cumulative percent revision decreases with increased surgeon consistency (less variability) in prosthesis choice (Table SV2 and Figure SV9). This indicates that surgeons who are more consistent in prosthesis choice have a lower rate of revision. Surgeons who are more consistent in prosthesis choice have a lower rate of revision.

Use of Better Performing Prostheses

An analysis was undertaken to determine if the association between consistency and a lower rate of revision may be due to preferential selection of better performing prosthesis combinations by surgeons using fewer devices. The 10 prosthesis combinations with the lowest cumulative percent revision at five years and at least 1,000 procedures were chosen for this analysis. The number of prosthesis combinations (10) was chosen to focus on the effect of prosthesis choice and still provide enough data (procedure numbers) to preserve statistical power. There are many prosthesis combinations with a similar low rate of revision that were not included in this analysis.

Surgeons with greater consistency in prosthesis choice are more likely to use these 10 prosthesis combinations (30.8% compared to 25.3% and 17.4% for the other two surgeon groups) (Table SV3).

The cumulative percent revision for each surgeon group, restricted to procedures using these 10 prosthesis combinations, is provided in Table SV4 and Figure SV10. After six months, there is no difference in outcome between surgeon groups when these 10 prosthesis combinations are used.


The role of prosthesis selection was also evaluated by determining the percentage of surgeon outliers when the 10 prosthesis combinations with the lowest five year cumulative percent revision were used, compared to when all other prosthesis combinations were used. The proportion of surgeon outliers when the 10 prosthesis combinations with the lowest five year cumulative percent revision were used is 1.7% and when all other prosthesis combinations were used the proportion of surgeon outliers is 7.8% (Figures SV11 and SV12).

Prosthesis Consistency	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	1424	60949	1.4 (1.3, 1.5)	2.1 (2.0, 2.3)	2.8 (2.6, 2.9)	3.1 (2.9, 3.3)	3.4 (3.2, 3.6)	3.8 (3.5, 4.0)
70-90%	1609	64522	1.5 (1.4, 1.6)	2.4 (2.2, 2.5)	3.0 (2.9, 3.2)	3.4 (3.2, 3.6)	3.7 (3.5, 3.9)	4.0 (3.7, 4.2)
<70%	1704	64170	1.7 (1.6, 1.8)	2.5 (2.4, 2.6)	3.1 (2.9, 3.3)	3.4 (3.3, 3.6)	3.8 (3.6, 4.0)	4.2 (3.9, 4.5)
TOTAL	4737	189641						

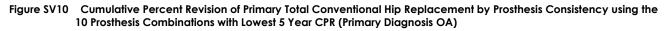
Table SV2 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Prosthesis Consistency (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure SV9 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Prosthesis Consistency (Prosthesis Combinations) (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	60949	50942	33203	19336	12915	7534	3015
70-90%	64522	53034	33691	18692	12526	7416	3039
<70%	64170	53253	34693	19599	13221	7732	2956

	10 Prosthesis Combinations with Lowest 5 Year CPR			rosthesis nations	TOTAL	
Prosthesis Consistency	N Row%		Ν	Row%	Ν	Row%
>90%	18752	30.8	42197	69.2	60949	100.0
70-90%	16331	25.3	48191	74.7	64522	100.0
<70%	11175	17.4	52995	82.6	64170	100.0
TOTAL	46258 24.4		143383	75.6	189641	100.0


Table SV3 Primary Total Conventional Hip Replacement by Prosthesis Consistency and Prosthesis Combination Used (Primary Diagnosis OA)

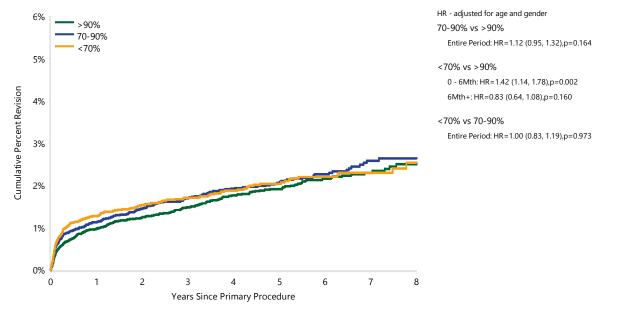

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

 Table SV4
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Prosthesis Consistency, using the 10 Prosthesis Combinations with Lowest 5 Year CPR (Primary Diagnosis OA)

Prosthesis Consistency	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	302	18752	1.0 (0.8, 1.1)	1.5 (1.3, 1.7)	1.9 (1.7, 2.2)	2.2 (1.9, 2.4)	2.3 (2.0, 2.6)	2.5 (2.2, 2.9)
70-90%	292	16331	1.1 (1.0, 1.3)	1.7 (1.5, 1.9)	2.1 (1.8, 2.3)	2.3 (2.0, 2.6)	2.6 (2.2, 3.0)	2.6 (2.3, 3.1)
<70%	200	11175	1.3 (1.1, 1.5)	1.7 (1.5, 2.0)	2.0 (1.8, 2.4)	2.2 (1.9, 2.6)	2.3 (2.0, 2.7)	2.5 (2.1, 3.1)
TOTAL	794	46258						

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	18752	15789	10067	6005	4074	2472	1035
70-90%	16331	13696	9042	4980	3274	1902	726
<70%	11175	9655	6067	3303	2295	1343	525

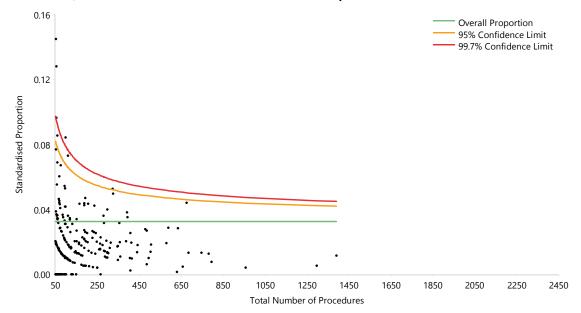
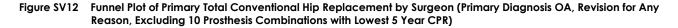
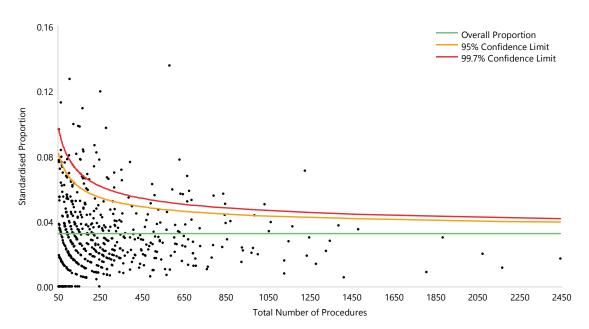
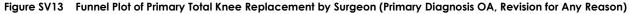
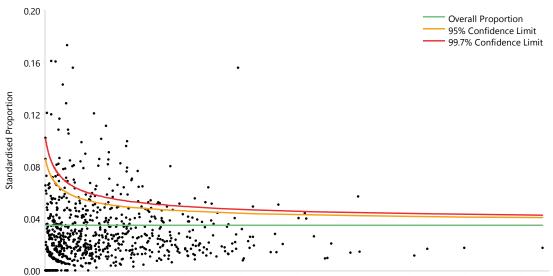




Figure SV11 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Any Reason, 10 Prosthesis Combinations with Lowest 5 Year CPR)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

PRIMARY TOTAL KNEE REPLACEMENT


This section provides a similar analysis to the previous section on hip replacement. More detailed explanation of the analysis is provided in that section.


Individual surgeon variation in revision for any reason following primary total knee replacement, irrespective of prostheses used, was assessed. Overall, the proportion of primary procedures revised is 3.7%. The percentage of surgeons who are outliers (above the upper 99.7% confidence limit) is 8.6% (Figure SV13).

Limiting this analysis to procedures undertaken between 2008 and 2016, the overall proportion of primary procedures revised is 2.8% and the percentage of surgeon outliers is 10.9% (Figure SV14). Further restricting the analysis to revisions performed within two years, the overall proportion revised is 1.8% and the percentage of surgeon outliers is 10.3% (Figure SV15).

The four most common reasons for revision are: infection, loosening, patellofemoral pain and pain. The proportion of procedures revised within two years for these four diagnoses are 0.55%, 0.38%, 0.20% and 0.15%, respectively. The percentage of surgeon outliers for each of these revision diagnoses is 5.9%, 5.8%, 5.0% and 4.4%, respectively.

Of the 128 surgeon outliers in these four funnel plots, 75.8% appear in one, 18.0% appear in two, 5.5% appear in three and 0.8% appear in all four funnel plots (Figures SV16 to SV19).

50 250 450 650 850 1050 1250 1450 1650 1850 2050 2250 2450 2650 2850 3050 3250 3450 3650 Total Number of Procedures

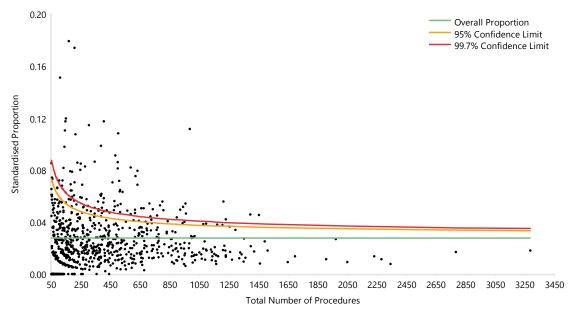


Figure SV14 Funnel Plot of Primary Total Knee Replacement by Surgeon performed from 1 January 2008 (Primary Diagnosis OA, Revision for Any Reason)

Figure SV15 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Any Reason Within 2 Years)

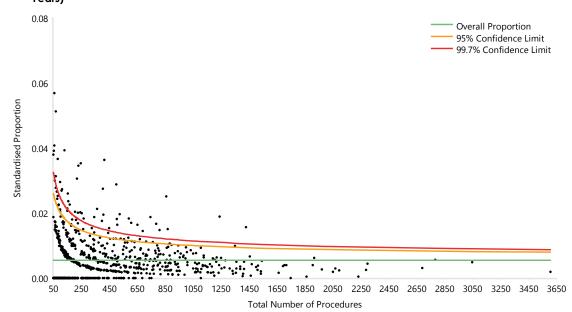
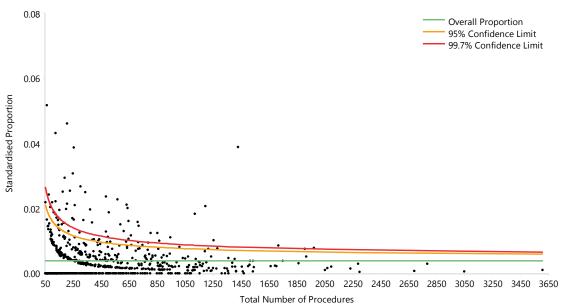



Figure SV16 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Infection Within 2 Years)

Figure SV17 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Loosening Within 2 Years)

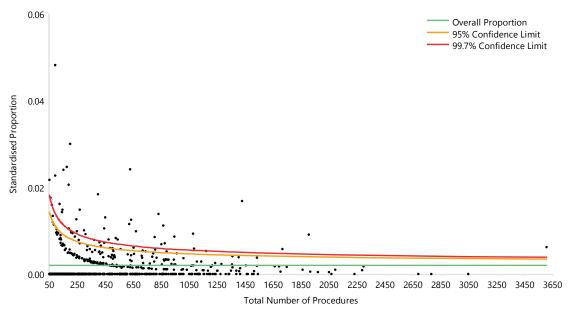
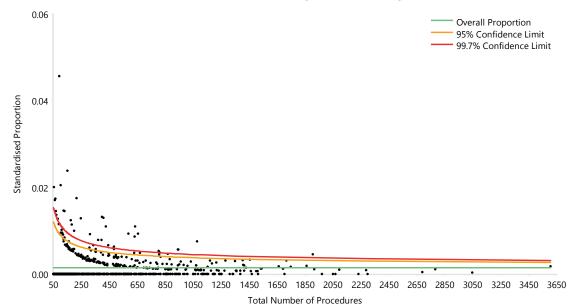



Figure SV18 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Patellofemoral Pain Within 2 Years)

Figure SV19 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Pain Within 2 Years)

PROSTHESIS CHOICE

The effect of prosthesis choice on surgeon variation following primary total knee replacement, was explored. Two approaches were used. The first involved assessing the rate of revision based on the consistency of prosthesis combinations used by a surgeon. The second compared the extent of surgeon variation when only better performing prosthesis combinations were used.

Consistency of Prosthesis Use

Surgeons were divided into three groups based on the proportion of procedures in which they used their preferred knee prosthesis combination. Unlike in the hip analysis, the knee analysis was limited to one rather than two prosthesis combinations. The three groups were: >90%, 70-90% and <70%. The number of surgeons in each group is shown in Table SV5.

Table SV5 Number of Surgeons within each Prosthesis Consistency Group

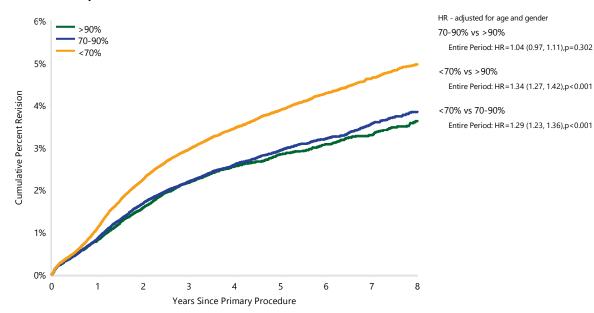
Prosthesis Consistency	N Surgeons
>90%	197
70-90%	227
<70%	353

The group with least consistency (<70%) had the highest rate of revision compared to the other two groups (Table SV6 and Figure SV20).

The association between consistency and preferential selection of prostheses was examined. The 10 prosthesis combinations with the lowest cumulative percent revision at five years and used in at least 1,000 procedures, were chosen for this analysis. It should be noted that there are many other prosthesis combinations with a low rate of revision that were not included in the analysis. These 10 were chosen simply to test the effect of prosthesis choice.

Surgeons with less consistency were less likely to use the 10 prosthesis combinations with the lowest five year cumulative percent revision (26.6% compared to 41.7% and 45.7%) (Table SV7). The rate of revision for the three surgeon groups when only these 10 prosthesis combinations were used is reduced for each group. However, the <70% group continues to have a higher rate of revision compared to the other two groups (Table SV8 and Figure SV21).

Use of Better Performing Prostheses


The role of prosthesis selection was also evaluated by determining the percentage of surgeon outliers when the 10 prosthesis combinations with the lowest five year cumulative percent revision were used, compared to when all other prosthesis combinations were used. The number of surgeon outliers when the 10 prosthesis combinations with the lowest five year cumulative percent revision were used, was 1.0% compared to 14.1% when all other prosthesis combinations were used (Figures SV22 and SV23). This indicates that the proportion of surgeon outliers is largely explained by prosthesis choice.

The proportion of surgeon outliers is largely explained by prosthesis choice.

Table SV6 Cumulative Percent Revision of Primary Total Knee Replacement by Prosthesis Consistency (Primary Diagnosis OA)

Prosthesis Consistency	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	1492	68443	0.8 (0.7, 0.9)	2.2 (2.1, 2.3)	2.8 (2.7, 3.0)	3.1 (2.9, 3.2)	3.3 (3.1, 3.5)	3.6 (3.4, 3.9)
70-90%	1986	88276	0.9 (0.8, 0.9)	2.2 (2.1, 2.3)	2.9 (2.8, 3.1)	3.2 (3.1, 3.4)	3.6 (3.4, 3.8)	3.8 (3.6, 4.1)
<70%	5042	167545	1.1 (1.1, 1.2)	3.0 (2.9, 3.1)	3.9 (3.8, 4.0)	4.3 (4.2, 4.4)	4.6 (4.5, 4.8)	5.0 (4.8, 5.1)
TOTAL	8520	324264						

Figure SV20 Cumulative Percent Revision of Primary Total Knee Replacement by Prosthesis Consistency (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	68443	57540	37701	22155	15275	9207	3895
70-90%	88276	73734	47761	27599	18759	11442	4843
<70%	167545	141131	92340	52646	35917	21351	8817

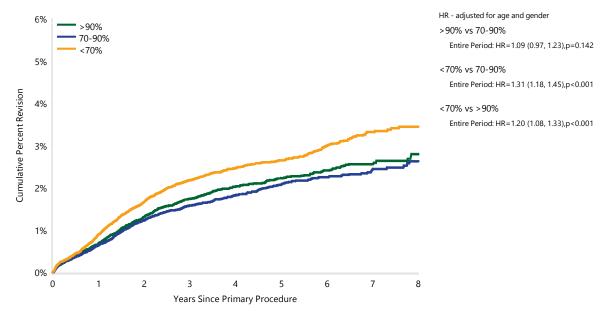

		mbinations with Year CPR	Other Pi	ostheses	TOTAL	
Prosthesis Consistency	Ν	Row%	Ν	Row%	Ν	Row%
>90%	31245	45.7	37198	54.3	68443	100.0
70-90%	36770	41.7	51506	58.3	88276	100.0
<70%	44638	26.6	122907	73.4	167545	100.0
TOTAL	112653	34.7	211611	65.3	324264	100.0

Table SV7 Primary Total Knee Replacement by Prosthesis Consistency and Prosthesis Used (Primary Diagnosis OA)

 Table SV8
 Cumulative Percent Revision of Primary Total Knee Replacement by Prosthesis Consistency using the 10 Prosthesis Combinations with Lowest 5 Year CPR (Primary Diagnosis OA)

Prosthesis Consistency	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	526	31245	0.7 (0.6, 0.8)	1.7 (1.6, 1.9)	2.2 (2.0, 2.4)	2.4 (2.2, 2.6)	2.6 (2.3, 2.8)	2.8 (2.5, 3.1)
70-90%	570	36770	0.6 (0.6, 0.7)	1.6 (1.4, 1.7)	2.1 (1.9, 2.3)	2.3 (2.1, 2.5)	2.4 (2.2, 2.7)	2.6 (2.3, 2.9)
<70%	937	44638	0.9 (0.8, 1.0)	2.2 (2.0, 2.3)	2.7 (2.5, 2.8)	3.0 (2.8, 3.2)	3.3 (3.1, 3.6)	3.4 (3.2, 3.7)
TOTAL	2033	112653						

Figure SV21 Cumulative Percent Revision of Primary Total Knee Replacement by Prosthesis Consistency using the 10 Prosthesis Combinations with Lowest 5 Year CPR (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	6 Yrs	7 Yrs	8 Yrs
>90%	31245	25826	16493	9480	6426	3813	1526
70-90%	36770	30675	19528	10468	6655	3715	1467
<70%	44638	37775	24185	11929	7444	4186	1579

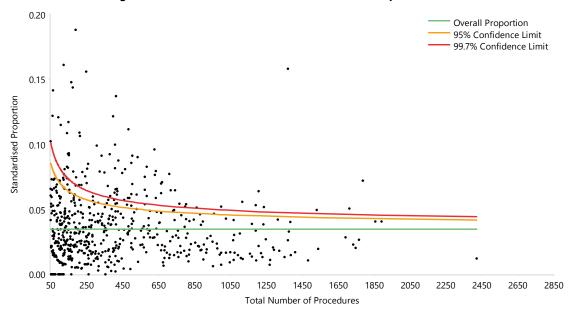
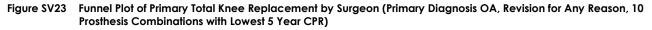
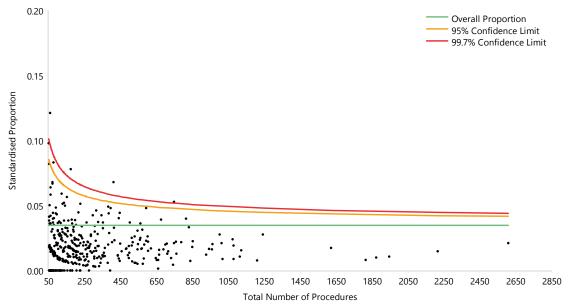




Figure SV22 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Any Reason, Excluding 10 Prosthesis Combinations with Lowest 5 Year CPR)

HOSPITAL VARIATION

The Registry assessed whether there was variation in revision for both primary total conventional hip and primary total knee replacement when individual hospitals were compared. Only hospitals with 50 or more procedures were included.

In addition, the rates of revision for public and private hospitals were also compared. There are many potential factors that may influence these rates. These include differences in patient characteristics, patient expectations, access to healthcare, prostheses used, and variation in surgeon experience and training. Many of these factors cannot be controlled for in this type of comparative analysis. One factor that can be controlled for is prosthesis choice. As this was identified as an important factor in surgeon variation, an analysis was undertaken to determine if prosthesis choice had an effect on the rate of revision in public and private hospitals.

PRIMARY TOTAL CONVENTIONAL HIP REPLACEMENT

Variation in revision between hospitals following primary total conventional hip replacement for osteoarthritis was assessed. The percentage of hospital outliers (above the upper 99.7% confidence limit) is 11.5% (Figure SV24).

The rate of revision following primary total conventional hip replacement (for osteoarthritis and fractured neck of femur separately) undertaken in public and private hospital groups was also compared.

For those procedures undertaken for osteoarthritis, private hospitals have a higher rate of revision after three months (Table SV9 and Figure SV25).

This difference was also evident when primary total conventional hip replacement was undertaken for fractured neck of femur (Table SV10 and Figure SV26).

Use of Better Performing Prostheses

The difference in the rate of revision between public and private hospitals was further explored by restricting the analysis to the 10 prosthesis combinations with the lowest cumulative percentage revision at five years and used in at least 1,000 procedures. The number of prosthesis combinations (10) was chosen to examine the effect of prosthesis choice. As mentioned previously in the section on surgeon variation, there are many other prosthesis combinations with a similar low rate of revision.

For procedures undertaken for osteoarthritis using only the 10 prosthesis combinations with the lowest cumulative percent revision at five years, there is a lower rate of revision in private hospitals in the first month, and no difference after that time (Table SV11 and Figure SV27).

For procedures undertaken for fractured neck of femur using only the 10 prosthesis combinations with the lowest cumulative percent revision at five years, there is no difference in the rate of revision between private and public hospitals (Table SV12 and Figure SV28).

These results suggest that the difference in the rate of revision between public and private hospitals is largely due to prosthesis choice.

The difference in rates of revision between public and private hospitals is largely due to prosthesis choice.

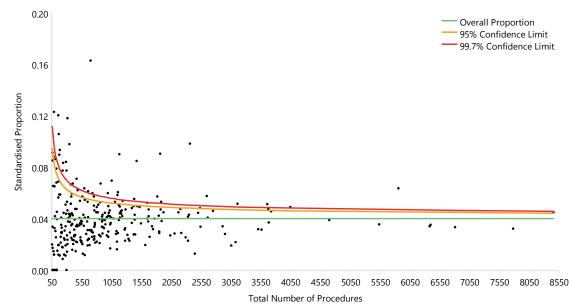
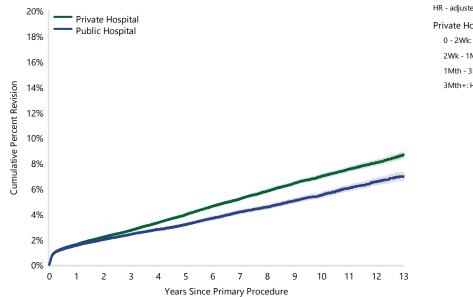
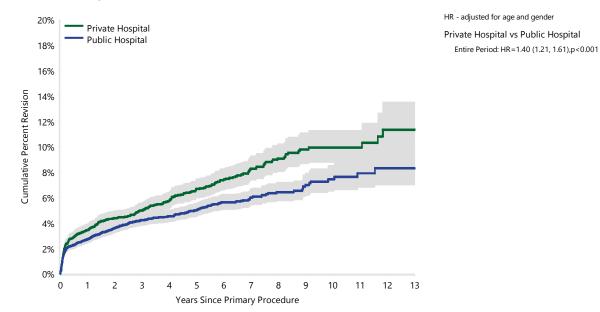



Figure SV24 Funnel plot of Primary Total Conventional Hip Replacement by Hospital (Primary Diagnosis OA, Revision for Any Reason)

Hospital Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	8910	210828	1.6 (1.5, 1.7)	2.7 (2.6, 2.8)	3.9 (3.8, 4.0)	5.2 (5.1, 5.3)	7.0 (6.8, 7.1)	8.7 (8.4, 8.9)
Public Hospital	3609	100931	1.5 (1.4, 1.6)	2.4 (2.3, 2.5)	3.2 (3.0, 3.3)	4.2 (4.0, 4.3)	5.5 (5.3, 5.7)	6.9 (6.6, 7.3)
TOTAL	12519	311759						

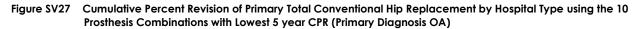
 Table SV9
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Hospital Type (Primary Diagnosis OA)

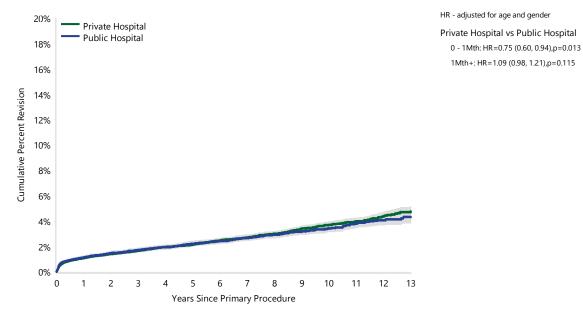

HR - adjusted for age and gender Private Hospital vs Public Hospital 0 - 2Wk: HR=1.07 (0.92, 1.23),p=0.385 2Wk - 1Mth: HR=0.89 (0.79, 1.00),p=0.053 1Mth - 3Mth: HR=1.10 (0.97, 1.24),p=0.128 3Mth+: HR=1.31 (1.25, 1.37),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	210828	184220	138555	99366	66029	29927	5808
Public Hospital	100931	88836	68381	50871	34854	16112	3098

Hospital Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	354	6118	3.4 (3.0, 3.9)	5.0 (4.4, 5.6)	6.7 (5.9, 7.5)	8.3 (7.3, 9.3)	9.9 (8.8, 11.3)	11.3 (9.5, 13.5)
Public Hospital	413	9484	2.7 (2.4, 3.1)	4.2 (3.8, 4.7)	5.0 (4.5, 5.6)	6.0 (5.4, 6.7)	7.4 (6.5, 8.5)	8.3 (7.0, 9.8)
TOTAL	767	15602						

Table SV10 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Hospital Type (Primary Diagnosis Fractured NOF)

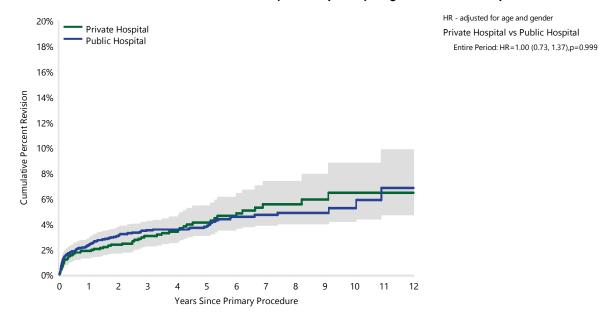

Figure SV26 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Hospital Type (Primary Diagnosis Fractured NOF)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	6118	4752	3188	2040	1183	431	63
Public Hospital	9484	7467	4846	2975	1634	497	71

Table SV11	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Hospital Type using the 10
	Prosthesis Combinations with Lowest 5 year CPR (Primary Diagnosis OA)

Hospital Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	1148	44909	1.1 (1.0, 1.2)	1.7 (1.6, 1.8)	2.1 (2.0, 2.3)	2.7 (2.5, 2.9)	3.7 (3.5, 3.9)	4.8 (4.4, 5.2)
Public Hospital	654	27522	1.1 (1.0, 1.3)	1.7 (1.6, 1.9)	2.2 (2.0, 2.4)	2.7 (2.5, 2.9)	3.4 (3.1, 3.7)	4.3 (3.8, 4.8)
TOTAL	1802	72431						



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	44909	40668	32326	24506	17536	9048	1671
Public Hospital	27522	24372	18710	14103	9953	4738	730

Table SV12 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Hospital Type using the 10 Prosthesis Combinations with Lowest 5 year CPR (Primary Diagnosis Fractured NOF)

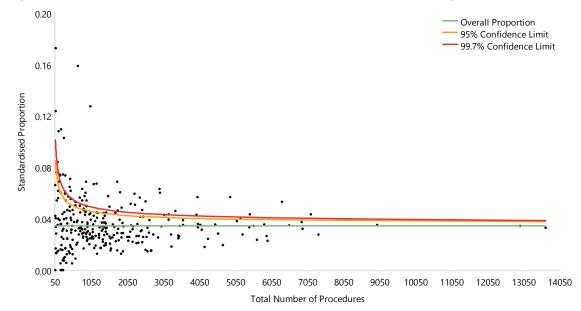
Hospital Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	59	1634	1.9 (1.3, 2.7)	3.0 (2.2, 4.1)	4.1 (3.1, 5.4)	5.5 (4.2, 7.4)	6.4 (4.7, 8.8)	
Public Hospital	129	3688	2.3 (1.9, 2.9)	3.5 (2.9, 4.2)	3.8 (3.2, 4.6)	4.7 (3.9, 5.7)	5.2 (4.2, 6.6)	
TOTAL	188	5322						

Figure SV28 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Hospital Type using the 10 Prosthesis Combinations with Lowest 5 year CPR (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	1634	1322	917	570	357	128	18
Public Hospital	3688	2927	1918	1191	631	158	19

PRIMARY TOTAL KNEE REPLACEMENT

Variation in revision between hospitals following primary total knee replacement for osteoarthritis was assessed. The percentage of hospital outliers (above the upper 99.7% confidence limit) is 15.2% (Figure SV29).


The rate of revision following primary total knee replacement for osteoarthritis, undertaken in public and private hospital groups, was also compared. Private hospitals have a higher rate of revision after four years (Table SV13 and Figure SV30).

Use of Better Performing Prostheses

The difference in the rate of revision was further explored by comparing the outcomes of all

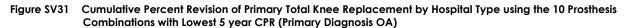
procedures performed using only the 10 prosthesis combinations with the lowest cumulative percentage revision at five years and used in at least 1,000 procedures. In this analysis, private hospitals have a lower rate of revision in the first three months and after 1.5 years (Table SV14 and Figure SV31).

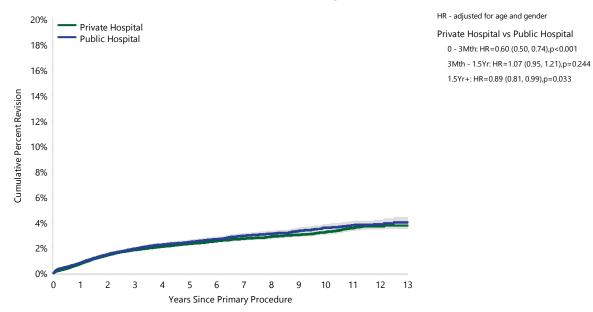
As with primary total conventional hip replacement, it appears that the difference in rate of revision between private and public hospitals is largely due to prosthesis choice.

Figure SV29 Funnel plot of Primary Total Knee Replacement by Hospital (Primary Diagnosis OA, Revision for Any Reason)

Table SV13	Cumulative Percent Revision of Primary	• Total Knee Replacement by	/ Hospital Type (Primary Diagnosis OA)

Hospital Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	12111	338259	1.0 (1.0, 1.1)	2.8 (2.7, 2.9)	3.7 (3.7, 3.8)	4.5 (4.4, 4.6)	5.6 (5.4, 5.7)	6.7 (6.5, 6.9)
Public Hospital	5151	160642	0.9 (0.9, 1.0)	2.5 (2.5, 2.6)	3.3 (3.2, 3.4)	4.0 (3.9, 4.1)	4.7 (4.6, 4.9)	5.6 (5.4, 5.8)
TOTAL	17262	498901						




HR - adjusted for age and gender Private Hospital vs Public Hospital 0 - 6Mth: HR=0.87 (0.80, 0.95),p=0.001 6Mth - 1Yr: HR=1.34 (1.22, 1.47),p<0.001 1Yr - 1.5Yr: HR=1.21 (1.11, 1.32),p<0.001 1.5Yr - 2.5Yr: HR=1.00 (0.93, 1.08),p=0.925 2.5Yr - 3Yr: HR=0.90 (0.79, 1.03),p=0.125 3Yr - 4Yr: HR=1.04 (0.93, 1.16),p=0.482 4Yr+: HR=1.24 (1.16, 1.33),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	338259	297471	222071	158463	104436	45000	8199
Public Hospital	160642	142391	108647	79446	53476	23973	4106

Table SV14	Cumulative Percent Revision of Primary Total Knee Replacement by Hospital Type using the 10 Prosthesis
	Combinations with Lowest 5 year CPR (Primary Diagnosis OA)

Hospital Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	2017	99701	0.7 (0.7, 0.8)	1.8 (1.7, 1.9)	2.3 (2.2, 2.4)	2.7 (2.6, 2.8)	3.2 (3.0, 3.4)	3.7 (3.5, 4.0)
Public Hospital	1131	53865	0.8 (0.7, 0.9)	1.9 (1.8, 2.1)	2.4 (2.3, 2.6)	2.9 (2.8, 3.1)	3.6 (3.3, 3.8)	4.0 (3.6, 4.4)
TOTAL	3148	153566						

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs	13 Yrs
Private Hospital	99701	87030	62335	39921	22725	7667	1068
Public Hospital	53865	45733	32051	20045	11197	4344	722

Ten and Fifteen Year Prosthesis Outcomes

TEN YEAR OUTCOMES

The Registry first reported 10 year outcomes in 2011. Since that time, the Registry has reported on an increasing number of hip and knee prostheses that have achieved this length of follow up. This outcome is widely regarded as an important milestone in assessing the performance of prostheses.

This year, the number of individual combinations of femoral and acetabular hip prostheses with 10 year outcomes has increased by 9.9% and the number of individual combinations of femoral and tibial knee prostheses has increased by 21.7%.

HIP REPLACEMENT

Individual femoral and acetabular prosthesis combinations are reported. A combination is included if more than 350 procedures have been reported and the follow up period is 10 or more years.

When combinations include a variety of bearing surfaces, large head metal/metal surfaces have been reported separately.

There are 78 femoral and acetabular combinations with 10 year outcome data. This is seven more than last year. These prosthesis combinations account for 61.8% of all primary total conventional hip procedures for osteoarthritis. Of these 78 combinations, 36 were not used in 2016. These 36 combinations account for 8.0% of all primary total conventional hip procedures. The 10 year cumulative percent revision for the prosthesis combinations ranges from 1.9% to 45.8%. A commonly accepted benchmark standard is a 5% cumulative percent revision at 10 years. There are 35 (44.9%) hip prosthesis combinations with a 10 year cumulative rate of revision (for any reason) of less than 5.0%. These are indicated in bold text in Table TY1.

Recently, an international working group reviewed approaches to benchmarking hip and knee prostheses. An important recommendation was to use confidence intervals (CIs) rather than the rate of revision as used above. The reason for this is that data quality is inherently reflected in the CIs. To identify better performing prosthesis combinations, the following two approaches were recommended:

Superiority approach: the upper CI is less than, or equal to, the benchmark standard. If the benchmark is 5% at 10 years, then 15 (19.2%) hip prosthesis combinations would qualify for the superiority benchmark.

Non-inferiority approach: the permitted upper CI level is 20% above the benchmark standard. For the benchmark standard of 5% at 10 years, the accepted upper CI is 6% or less. Using this approach, an additional 11 prosthesis combinations can be benchmarked i.e. 26 (33.3%) prosthesis combinations would receive a non-inferiority benchmark.

Table TY1 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Combinations with 10 Year Data (Primary Diagnosis OA)

					Type	of Revision				
Femoral	Acetabular	N	N		Type (DI REVISION				
Stem	Component	Revised	Total	THR	Femoral	Acetabular	Other	1 Yr	5 Yrs	10 Yrs
ABGII	ABGII	237	2755	31	116	60	30	1.7 (1.3, 2.3)	4.1 (3.4, 4.9)	6.9 (6.0, 8.0)
ABGII	ABGII (Shell/Insert)	57	841	11	32	10		1.4 (0.8, 2.5)	2.8 (1.9, 4.2)	6.5 (4.9, 8.7)
ABGII	Trident (Shell)	183	2383	9	111	23	40	2.6 (2.0, 3.3)	4.9 (4.1, 5.9)	8.5 (7.3, 10.0)
Accolade I	Trident (Shell)	413	8521	47	162	81		1.7 (1.4, 2.0)	3.8 (3.4, 4.2)	5.8 (5.2, 6.4)
Adapter	Bionik ^{MoM} *	81	376	11	8	21	41	3.5 (2.0, 5.9)	15.3 (12.0, 19.5)	23.5 (19.3, 28.4)
Alloclassic	Allofit	215	4914	24	83	43	65	1.2 (0.9, 1.5)	2.8 (2.3, 3.3)	4.9 (4.2, 5.6)
Alloclassic	Durom ^{MoM} *	80	547	21	12	37	10	1.3 (0.6, 2.7)	7.4 (5.5, 10.0)	16.3 (13.1, 20.2)
Alloclassic	Fitmore	118	1709	12	60	12	34	3.3 (2.5, 4.3)	5.8 (4.7, 7.0)	7.7 (6.4, 9.2)
Alloclassic	Metasul*	20	371	3	2	10	5	0.8 (0.3, 2.5)	3.6 (2.1, 6.1)	4.8 (3.0, 7.7)
Alloclassic	Trabecular Metal (Shell)	36	957	2	11	4	19	2.3 (1.5, 3.5)	3.7 (2.6, 5.2)	4.2 (3.0, 5.9)
Alloclassic	Trilogy	10	833		7	1	2	0.4 (0.1, 1.1)	0.5 (0.2, 1.4)	2.4 (1.2, 4.8)
Anthology	Reflection (Shell)	34	908	3	12	11	8	2.0 (1.3, 3.2)	3.2 (2.2, 4.6)	4.6 (3.2, 6.5)
Apex	Fin II*	38	923	4	8	14	12	1.7 (1.1, 2.8)	3.6 (2.5, 5.1)	5.4 (3.9, 7.5)
C-Stem	Duraloc*	70	894	9	17	11	33	2.0 (1.3, 3.2)	3.8 (2.7, 5.3)	7.0 (5.4, 9.0)
C-Stem	Elite Plus LPW*	19	367	9	4	6		0.6 (0.1, 2.2)	2.7 (1.4, 5.0)	5.4 (3.3, 8.8)
C-Stem	Pinnacle	24	760	1	10	5	8	1.7 (1.0, 3.0)	2.8 (1.8, 4.3)	4.0 (2.6, 6.2)
CLS	Allofit	48	800	5	26	11	6	1.4 (0.8, 2.5)	3.9 (2.7, 5.5)	6.4 (4.7, 8.6)
CLS	Fitmore	46	712	5	21	7	13	2.0 (1.2, 3.3)	4.8 (3.4, 6.8)	6.2 (4.5, 8.5)
CPCS	Reflection (Cup)	51	716	18	2	20	11	0.6 (0.2, 1.5)	2.5 (1.5, 4.1)	8.8 (6.3, 12.2)
CPCS	Reflection (Shell)	67	2616	6	27	10	24	0.8 (0.5, 1.2)	1.6 (1.2, 2.2)	3.6 (2.7, 4.7)
CPT	Allofit	21	1027	3	9	•	9	0.8 (0.4, 1.6)	2.7 (1.7, 4.1)	3.1 (1.9, 5.0)
CPT	Trabecular Metal (Shell)	50	1275	4	22	8	16	1.7 (1.1, 2.6)	4.1 (3.0, 5.6)	6.5 (4.7, 9.0)
CPT	Trilogy	246	6962	22	74	33	117	1.6 (1.3, 1.9)	3.2 (2.8, 3.7)	4.8 (4.1, 5.5)
CPT	ZCA	29	780	10	5	8	6	0.5 (0.2, 1.4)	2.4 (1.4, 3.8)	4.7 (3.1, 7.2)
Charnley	Charnley Ogee*	54	630	31	7	4	12	1.1 (0.5, 2.3)	4.9 (3.5, 7.0)	8.1 (6.1, 10.8)
Charnley	Charnley*	39	563	30	6	3		0.5 (0.2, 1.7)	2.2 (1.3, 3.9)	6.5 (4.5, 9.4)
Charnley	Vitalock*	35	370	5	17	2	11	1.9 (0.9, 3.9)	4.4 (2.7, 7.1)	7.9 (5.5, 11.4)
Citation	Trident (Shell)*	42	1035	3	9	11	19	1.7 (1.1, 2.8)	3.2 (2.3, 4.5)	3.9 (2.9, 5.3)
Citation	Vitalock*	34	508	2	5	11	16	0.4 (0.1, 1.6)	2.0 (1.1, 3.7)	5.0 (3.3, 7.4)
Corail	ASR ^{MoM} *	1113	2653	196	37	837	43	2.0 (1.6, 2.7)	27.3 (25.6, 29.0)	45.8 (43.7, 48.0)
Corail	Duraloc*	64	1267	7	30	11	16	1.0 (0.6, 1.8)	2.5 (1.8, 3.6)	5.7 (4.3, 7.4)
Corail	Pinnacle	942	34210	82	314	155	391	1.6 (1.5, 1.8)	3.1 (2.9, 3.3)	5.2 (4.6, 5.8)
Corail	Pinnacle ^{MoM} *	94	880	14	31	17	32	2.3 (1.5, 3.5)	6.1 (4.7, 8.0)	13.0 (10.4, 16.1)
Elite Plus	Duraloc*	97	953	14	57	6	20	1.6 (1.0, 2.6)		8.8 (7.0, 10.9)
Epoch	Trilogy*	42	990	1	9	7	25	2.4 (1.6, 3.6)		4.4 (3.2, 6.0)
Exeter	Contemporary*	35	427	8	6	13		1.9 (1.0, 3.8)		6.0 (4.0, 8.9)
Exeter	Vitalock*	58	1076	7	10	23		1.4 (0.8, 2.3)		4.6 (3.4, 6.1)
Exeter V40	ABGII	34	973	8	12	8	6	0.8 (0.4, 1.7)		3.4 (2.3, 4.8)
Exeter V40	Contemporary	215	4398	48	38	98		1.4 (1.1, 1.8)		5.8 (5.0, 6.7)
Exeter V40	Exeter Contemporary	112	2821	32	28	31	21	1.4 (1.0, 1.9)	2.9 (2.3, 3.6)	4.5 (3.7, 5.5)
Exeter V40	Exeter*	73	1526	12	14	30		0.9 (0.5, 1.5)		4.5 (3.5, 5.8)
Exeter V40	Hemispherical	24	655	6	5	1		1.8 (1.1, 3.2)		5.0 (3.2, 7.8)
Exeter V40	Mallory-Head	32	1347	3	20	2		0.5 (0.3, 1.1)		2.8 (1.9, 4.2)
Exeter V40	Pinnacle	31	1296	1	12	8		1.4 (0.9, 2.3)		6.2 (3.1, 12.0)
	Trident (Shell)	1083	45826	143	319	161	460	1.1 (1.0, 1.2)	2.3 (2.1, 2.4)	3.7 (3.5, 4.0)
Exeter V40										
Exeter V40 Exeter V40 Exeter V40	Trilogy* Vitalock*	18 66	516 1795	2 14	5 19	2 19	9	1.9 (1.0, 3.6) 0.8 (0.5, 1.4)		4.2 (2.5, 6.9) 3.2 (2.5, 4.2)

					Туре с	of Revision				
Femoral Stem	Acetabular Component	N Revised	N Total	THR	Femoral	Acetabular	Other	1 Yr	5 Yrs	10 Yrs
F2L	SPH-Blind*	53	571	6	19	15	13 2	2.8 (1.7, 4.5)	6.1 (4.4, 8.4)	7.6 (5.7, 10.2)
M/L Taper	Trilogy	20	686		4	6	10 [·]	1.3 (0.7, 2.5)	2.8 (1.7, 4.6)	4.2 (2.6, 6.6)
MS 30	Allofit	49	1473	8	16	14	11 '	1.2 (0.7, 1.9)	2.2 (1.5, 3.1)	3.5 (2.6, 4.9)
MS 30	Fitmore	19	572	1	4	7	7 (0.4 (0.1, 1.4)	1.5 (0.7, 3.2)	2.8 (1.5, 5.1)
MS 30	Low Profile Cup	14	594	5	2	6	1 (0.3 (0.1, 1.4)	1.0 (0.4, 2.3)	2.4 (1.3, 4.4)
Mallory-Head	Mallory-Head	156	2863	13	13	50	80 ⁻	1.8 (1.4, 2.4)	3.0 (2.4, 3.7)	4.9 (4.1, 5.9)
Mallory-Head	Recap ^{MoM} *	26	395	6		18	2 '	1.0 (0.4, 2.7)	2.6 (1.4, 4.7)	6.8 (4.4, 10.4)
Meridian	Vitalock*	29	354	2	2	12	13 (0.9 (0.3, 2.6)	3.5 (2.0, 6.1)	6.4 (4.2, 9.6)
Natural Hip	Allofit*	10	529	•	3	3	4 (0.8 (0.3, 2.0)	1.1 (0.5, 2.5)	1.9 (1.0, 3.6)
Natural Hip	Fitmore*	35	882	2	5	11	17 (0.5 (0.2, 1.2)	2.0 (1.3, 3.2)	4.1 (2.9, 5.9)
Omnifit	Secur-Fit*	77	716	7	21	17	32 2	2.4 (1.5, 3.8)	6.2 (4.6, 8.2)	9.9 (7.9, 12.5)
Omnifit	Trident (Shell)	134	3613	12	31	22	69 ⁻	1.7 (1.3, 2.2)	3.1 (2.5, 3.7)	3.9 (3.3, 4.7)
S-Rom	Duraloc Option*	25	523	4	9	5	7 '	1.7 (0.9, 3.3)	3.3 (2.1, 5.2)	4.6 (3.1, 6.8)
S-Rom	Pinnacle	97	2249	8	58	8	23 2	2.1 (1.6, 2.8)	3.9 (3.1, 4.8)	5.2 (4.2, 6.4)
SL-Plus	EP-Fit Plus	102	2062	5	45	20	32	1.6 (1.1, 2.2)	3.5 (2.8, 4.4)	5.6 (4.6, 6.9)
Secur-Fit	Trident (Shell)	303	8524	22	128	56	97 ⁻	1.6 (1.3, 1.9)	3.3 (2.9, 3.7)	4.4 (3.9, 5.0)
Secur-Fit Plus	Trident (Shell)	155	5333	12	40	35	68 ⁻	1.1 (0.9, 1.4)	2.2 (1.8, 2.6)	3.1 (2.6, 3.7)
Spectron EF	BHR ^{MoM*}	45	430	9	•	32	4 (0.9 (0.4, 2.5)	6.0 (4.1, 8.8)	13.9 (10.2, 18.8)
Spectron EF	Reflection (Cup)	104	1398	36	10	49	9 '	1.0 (0.6, 1.7)	2.8 (2.1, 3.9)	7.2 (5.7, 9.0)
Spectron EF	Reflection (Shell)	243	4584	52	79	37	75 ⁻	1.0 (0.7, 1.3)	2.7 (2.2, 3.2)	5.5 (4.7, 6.3)
Stability	Duraloc*	44	374	1	9	13	21 (0.5 (0.1, 2.1)	2.2 (1.1, 4.3)	8.9 (6.3, 12.5)
Summit	ASR ^{MoM} *	426	1041	14	6	384	22	1.1 (0.6, 1.9)	19.6 (17.3, 22.2)	44.0 (40.8, 47.4)
Summit	Pinnacle	90	4115	6	19	14	51 ⁻	1.1 (0.9, 1.5)	2.0 (1.6, 2.5)	3.1 (2.4, 4.1)
Summit	Pinnacle ^{MoM} *	59	730	3	5	10	41	1.4 (0.7, 2.5)	3.4 (2.3, 5.0)	9.0 (6.9, 11.5)
Synergy	BHR ^{MoM*}	73	698	4	5	46	18	1.4 (0.8, 2.6)	4.8 (3.4, 6.7)	12.3 (9.8, 15.5)
Synergy	Reflection (Shell)	299	7314	26	61	99	113 ⁻	1.5 (1.3, 1.8)	2.6 (2.3, 3.0)	3.9 (3.4, 4.4)
Synergy	Trident (Shell)*	13	438		3	4	6 (0.9 (0.3, 2.4)	1.9 (0.9, 3.7)	4.5 (2.5, 8.2)
Taperloc	M2a ^{MoM} *	54	471	11	2	38	3 '	1.5 (0.7, 3.1)	6.9 (4.9, 9.6)	12.2 (9.4, 15.8)
Taperloc	Mallory-Head	69	1657	6	15	24	24	1.9 (1.3, 2.7)	3.1 (2.3, 4.2)	5.6 (4.3, 7.3)
Taperloc	Recap ^{MoM} *	40	456	10	5	20	5 2	2.0 (1.0, 3.8)	5.6 (3.8, 8.2)	9.7 (7.2, 13.0)
VerSys	Trilogy	203	4363	13	71	36	83 2	2.5 (2.1, 3.0)	3.7 (3.2, 4.4)	4.9 (4.2, 5.6)
TOTAL		9596	209670	1243	2541	3017	2795			

Note: Only combinations with over 350 procedures have been listed ^{MoM} denotes metal/metal prosthesis combinations used with head size larger than 32mm * denotes prosthesis combinations with no reported use in primary total conventional hip replacement in 2016

KNEE REPLACEMENT

Individual femoral and tibial prosthesis combinations are reported. A combination is included if more than 350 procedures have been reported to the Registry and the follow up is 10 or more years.

The listed prostheses most often represent a family of devices that have a range of different femoral and tibial components, combined with different tibial inserts, listed under one prosthesis name. Prosthesis types are separated as to whether they are minimally or posteriorly stabilised.

There are 56 total knee replacement combinations with 10 year outcome data; 10 more than last year. These prosthesis combinations account for 84.8% of all primary total knee replacement procedures for osteoarthritis. Of these 56 prosthesis combinations, 18 were not used in 2016. These 18 account for 10.6% of all primary total knee procedures.

The 10 year cumulative percent revision ranges from 3.0% to 13.1%. There are 16 knee prosthesis combinations (28.6%) with a 10 year cumulative percent revision (for any reason) of less than 5.0%. These are indicated in bold text in Table TY2.

Applying the recommendations of the international benchmarking working group, nine (16.1%) knee prosthesis combinations would qualify for a superiority benchmark and 25 (44.6%) would qualify for a non-inferiority benchmark.

Table TY2 Cumulative Percent Revision of Primary Total Knee Replacement Combinations with 10 Year Data (Primary Diagnosis OA)

					Type of	Revision	1			
Femoral Component	Tibial Component	N Revised	N Total	TKR	Femora	l Tibial (Other	1 Yr	5 Yrs	10 Yrs
AGC	AGC	245	5026	90	5	25	125	0.5 (0.4, 0.8)	3.1 (2.7, 3.7)	4.9 (4.3, 5.7)
Active Knee	Active Knee	527	8533	148	25	36	318	1.1 (0.9, 1.3)	4.9 (4.4, 5.4)	8.0 (7.3, 8.8)
Advance	Advance	33	741	9	1	8	15	2.1 (1.2, 3.5)	4.6 (3.2, 6.6)	8.0 (4.9, 13.0)
Advance	Advance II	96	1596	32	2	13	49	1.6 (1.1, 2.3)	4.9 (3.9, 6.1)	6.9 (5.7, 8.5)
Advantim	Advantim*	61	1454	28	3	3	27	0.7 (0.4, 1.3)	3.1 (2.3, 4.1)	4.7 (3.6, 6.2)
BalanSys	BalanSys	33	2277	8	3	3	19	0.4 (0.2, 0.8)	2.3 (1.5, 3.4)	4.3 (2.7, 7.0)
Columbus	Columbus	90	1174	27	4	5	54	1.9 (1.2, 2.9)	7.6 (6.1, 9.4)	11.6 (9.1, 14.6)
Duracon	Duracon*	1044	19830	251	29	67	697	1.1 (1.0, 1.3)	3.4 (3.2, 3.7)	5.0 (4.7, 5.3)
Genesis II CR	Genesis II	760	20944	144	49	49	518	0.9 (0.8, 1.1)	3.4 (3.2, 3.7)	4.7 (4.3, 5.0)
Genesis II CR	Profix Mobile*	100	1209	38	9	7	46	1.9 (1.3, 2.9)	5.4 (4.2, 6.9)	7.9 (6.4, 9.7)
Genesis II Oxinium CR (ct	Genesis II	354	7468	60	23	22	249	1.0 (0.8, 1.3)	3.7 (3.3, 4.2)	6.2 (5.6, 7.0)
Genesis II Oxinium PS (ct	Genesis II	785	15524	92	26	129	538	1.5 (1.4, 1.8)	5.3 (4.9, 5.7)	7.6 (7.0, 8.2)
Genesis II PS	Genesis II	631	16463	96	26	45	464	1.3 (1.1, 1.4)	3.8 (3.5, 4.1)	5.3 (4.8, 5.8)
Journey Oxinium	Journey*	243	2975	37	5	26	175	1.4 (1.0, 1.9)	6.5 (5.6, 7.5)	11.1 (9.5, 12.9)
Kinemax Plus	Kinemax Plus*	112	1815	64	3	5	40	0.9 (0.6, 1.5)	3.2 (2.4, 4.1)	4.7 (3.8, 5.8)
LCS CR	LCS	554	8301	221	23	84	226	1.1 (0.9, 1.3)	4.4 (4.0, 4.9)	6.2 (5.7, 6.8)
LCS CR	MBT	879	25962	282	41	118	438	0.9 (0.8, 1.0)	3.5 (3.3, 3.8)	5.0 (4.6, 5.3)
LCS CR	MBT Duofix	605	13412	164	26	38	377	1.3 (1.1, 1.5)	4.1 (3.8, 4.5)	5.4 (5.0, 5.9)
LCS Duofix	MBT Duofix*	445	3605	323	27	7	88	1.6 (1.2, 2.1)	10.2 (9.2, 11.2)	13.1 (12.0, 14.3)
LCS Duofix	MBT*	126	1170	88	10	2	26	1.1 (0.6, 1.9)	7.9 (6.5, 9.7)	12.2 (10.2, 14.5)
MBK (Zimmer)	Nexgen*	30	448	16	1	1	12	0.9 (0.3, 2.4)	4.1 (2.6, 6.5)	5.9 (4.0, 8.6)
Maxim	Maxim*	172	2447	53	15	12	92	1.1 (0.7, 1.6)	4.0 (3.3, 4.8)	6.0 (5.1, 7.1)
Natural Knee II	Natural Knee II*	357	6443	144	8	58	147	0.9 (0.7, 1.2)	2.8 (2.4, 3.2)	5.3 (4.7, 6.0)
Nexgen CR	Nexgen	332	10977	103	14	31	184	0.5 (0.4, 0.7)	2.1 (1.8, 2.3)	3.1 (2.7, 3.4)
Nexgen CR	Nexgen TM CR	43	793	14	3	8	18	1.3 (0.7, 2.4)	5.4 (3.9, 7.3)	6.1 (4.5, 8.2)
Nexgen CR Flex	Nexgen	795	42126	159	59	89	488	0.8 (0.7, 0.9)	2.3 (2.1, 2.4)	3.1 (2.8, 3.3)

					Type of I	Revisior	۱			
Femoral Component	Tibial Component	N Revised	N Total	TKR	Femoral	Tibial	Other	1 Yr	5 Yrs	10 Yrs
Nexgen CR Flex	Nexgen TM CR	211	9571	60	18	22	111	0.5 (0.4, 0.7)	2.3 (2.0, 2.7)	3.3 (2.8, 3.9)
Nexgen LPS	Nexgen	289	6591	69	19	32	169	1.0 (0.8, 1.2)	3.2 (2.8, 3.7)	5.1 (4.5, 5.7)
Nexgen LPS	Nexgen TM LPS	26	1116	6	2	5	13	0.8 (0.4, 1.6)	2.7 (1.8, 4.0)	3.3 (2.1, 4.9)
Nexgen LPS Flex	Nexgen	979	30278	239	51	166	523	0.9 (0.8, 1.1)	3.2 (3.0, 3.5)	5.1 (4.8, 5.5)
Nexgen LPS Flex	Nexgen TM LPS	41	1432	21	•	4	16	1.0 (0.6, 1.7)	3.0 (2.2, 4.1)	3.6 (2.6, 4.9)
Optetrak-CR	Optetrak	41	966	10	6	4	21	1.5 (0.8, 2.6)	5.4 (3.8, 7.7)	8.2 (5.9, 11.3)
Optetrak-PS	Optetrak	191	2729	67	4	26	94	1.4 (1.0, 1.9)	6.3 (5.4, 7.4)	9.9 (8.5, 11.5)
Optetrak-PS	Optetrak-RBK	68	939	16	2	3	47	2.0 (1.2, 3.1)	6.8 (5.2, 8.8)	10.9 (8.3, 14.4)
PFC Sigma CR	AMK Duofix*	53	1890	17		1	35	0.7 (0.4, 1.2)	2.3 (1.7, 3.1)	3.0 (2.2, 4.0)
PFC Sigma CR	MBT	257	5742	38	30	42	147	1.4 (1.1, 1.7)	4.1 (3.6, 4.7)	5.2 (4.6, 5.9)
PFC Sigma CR	MBT Duofix	115	2544	14	16	3	82	1.2 (0.9, 1.7)	4.3 (3.5, 5.2)	5.7 (4.6, 7.1)
PFC Sigma CR	PFC Sigma	599	22644	124	45	53	377	0.7 (0.6, 0.9)	2.4 (2.2, 2.6)	3.5 (3.2, 3.8)
PFC Sigma PS	MBT	241	6161	70	12	19	140	0.9 (0.7, 1.2)	3.6 (3.1, 4.1)	4.9 (4.2, 5.6)
PFC Sigma PS	MBT Duofix	131	1886	19	4	4	104	1.8 (1.2, 2.5)	6.9 (5.8, 8.3)	8.9 (7.5, 10.5)
PFC Sigma PS	PFC Sigma	263	7317	82	8	22	151	1.2 (0.9, 1.5)	3.2 (2.8, 3.7)	4.7 (4.1, 5.4)
Profix	Profix Mobile*	102	986	32	6	5	59	2.3 (1.6, 3.5)	8.2 (6.6, 10.1)	9.8 (8.0, 11.9)
Profix	Profix*	259	5370	55	13	18	173	1.0 (0.8, 1.4)	3.7 (3.2, 4.3)	5.1 (4.6, 5.8)
Profix Oxinium (ctd)	Profix*	92	1049	20	4	14	54	2.1 (1.4, 3.2)	7.0 (5.6, 8.7)	8.5 (7.0, 10.5)
RBK	RBK	410	9783	152	11	35	212	1.3 (1.1, 1.5)	4.0 (3.6, 4.4)	5.6 (5.0, 6.2)
Rocc	Rocc*	37	575	12	1	2	22	1.7 (0.9, 3.2)	5.2 (3.6, 7.3)	6.9 (5.0, 9.4)
Rotaglide Plus	Rotaglide Plus*	70	616	30	1	5	34	0.8 (0.3, 2.0)	5.8 (4.1, 8.0)	11.0 (8.7, 14.0)
Scorpio CR	Scorpio+*	162	2448	36	10	24	92	0.9 (0.6, 1.4)	4.2 (3.5, 5.1)	6.7 (5.7, 7.8)
Scorpio CR	Series 7000	502	11261	121	26	42	313	0.9 (0.7, 1.1)	3.4 (3.0, 3.8)	5.2 (4.8, 5.8)
Scorpio PS	Scorpio	31	524	8		9	14	1.2 (0.5, 2.6)	4.5 (3.0, 6.7)	6.2 (4.3, 8.7)
Scorpio PS	Scorpio+*	133	2036	34	12	9	78	1.4 (1.0, 2.1)	5.0 (4.1, 6.0)	6.5 (5.5, 7.7)
Scorpio PS	Series 7000	304	4679	102	8	60	134	1.3 (1.0, 1.7)	4.7 (4.1, 5.4)	6.9 (6.1, 7.8)
Triathlon CR	Triathlon	1174	59826	181	55	67	871	0.8 (0.8, 0.9)	2.5 (2.3, 2.6)	3.7 (3.3, 4.0)
Triathlon PS	Triathlon	323	9547	51	20	39	213	1.5 (1.3, 1.8)	4.0 (3.6, 4.5)	5.0 (4.3, 5.8)
Vanguard CR	Maxim	394	15727	81	18	34	261	0.8 (0.7, 1.0)	3.3 (3.0, 3.7)	4.8 (4.2, 5.7)
Vanguard PS	Maxim	210	4251	48	7	44	111	1.8 (1.4, 2.2)	5.5 (4.8, 6.4)	7.3 (6.0, 8.8)
TOTAL		17160	453197	4506	849	1704	10101			

Note: Only combinations with over 350 procedures have been listed

* denotes prosthesis combinations with no reported use in primary total knee procedures in 2016

FIFTEEN YEAR OUTCOMES

This year, the Registry is reporting 15 year outcomes for 36 hip prosthesis and 24 knee prosthesis combinations. A combination is included if more than 350 procedures have been reported to the Registry and the follow up period is 15 or more years.

HIP REPLACEMENT

The listed prosthesis combinations were used in 35.8% of all primary total conventional hip replacement procedures for osteoarthritis. Of the 36 combinations, 17 had no reported use in 2016.

The 15 year cumulative percent revision ranges from 3.2% to 17.0%. There are 13 combinations which have a cumulative percent revision of less than 6.5% and six with less than 5%. These are indicated in bold text in Table FY1.

KNEE REPLACEMENT

The listed prosthesis combinations were used in 39.2% of all primary total knee replacement procedures for osteoarthritis. Of the 24 combinations, nine had no reported use in 2016.

The 15 year cumulative percent revision ranges from 4.4% to 11.5%. Eight of the combinations have a cumulative percent revision of less than 6.5% and one with less than 5% at 15 years. These are indicated in bold text in Table FY2.

Table FY1 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Combinations with 15 Year Data (Primary Diagnosis OA)

	Type of Revision									
Femoral Stem	Acetabular Component	N Revised	N Total	THR	Femoral	Acetabular C	Other	5 Yrs	10 Yrs	15 Yrs
ABGII	ABGII	237	2755	31	116	60	30	4.1 (3.4, 4.9)	6.9 (6.0, 8.0)	11.6 (10.1, 13.2)
Alloclassic	Allofit	215	4914	24	83	43	65	2.8 (2.3, 3.3)	4.9 (4.2, 5.6)	8.3 (6.7, 10.2)
Alloclassic	Fitmore	118	1709	12	60	12	34	5.8 (4.7, 7.0)	7.7 (6.4, 9.2)	10.1 (7.3, 13.9)
C-Stem	Duraloc*	70	894	9	17	11	33	3.8 (2.7, 5.3)	7.0 (5.4, 9.0)	12.4 (9.3, 16.3)
CLS	Fitmore	46	712	5	21	7	13	4.8 (3.4, 6.8)	6.2 (4.5, 8.5)	10.2 (7.4, 14.1)
СРТ	Trilogy	246	6962	22	74	33	117	3.2 (2.8, 3.7)	4.8 (4.1, 5.5)	5.9 (5.0, 6.9)
CPT	ZCA	29	780	10	5	8	6	2.4 (1.4, 3.8)	4.7 (3.1, 7.2)	7.3 (4.6, 11.3)
Charnley	Charnley Ogee*	54	630	31	7	4	12	4.9 (3.5, 7.0)	8.1 (6.1, 10.8)	13.4 (9.8, 18.2)
Charnley	Charnley*	39	563	30	6	3		2.2 (1.3, 3.9)	6.5 (4.5, 9.4)	11.6 (8.3, 16.2)
Charnley	Vitalock*	35	370	5	17	2	11	4.4 (2.7, 7.1)	7.9 (5.5, 11.4)	11.7 (8.4, 16.1)
Citation	Trident (Shell)*	42	1035	3	9	11	19	3.2 (2.3, 4.5)	3.9 (2.9, 5.3)	4.9 (3.5, 6.8)
Citation	Vitalock*	34	508	2	5	11	16	2.0 (1.1, 3.7)	5.0 (3.3, 7.4)	10.0 (7.0, 14.2)
Elite Plus	Duraloc*	97	953	14	57	6	20	5.1 (3.9, 6.8)	8.8 (7.0, 10.9)	14.8 (11.9, 18.3)
Exeter	Contemporary*	35	427	8	6	13	8	4.2 (2.6, 6.6)	6.0 (4.0, 8.9)	12.1 (8.6, 16.8)
Exeter	Vitalock*	58	1076	7	10	23	18	2.3 (1.5, 3.4)	4.6 (3.4, 6.1)	6.6 (5.1, 8.5)
Exeter V40	ABGII	34	973	8	12	8	6	1.6 (1.0, 2.7)	3.4 (2.3, 4.8)	4.7 (3.3, 6.6)
Exeter V40	Contemporary	215	4398	48	38	98	31	3.3 (2.8, 3.9)	5.8 (5.0, 6.7)	8.4 (7.1, 9.9)
Exeter V40	Exeter*	73	1526	12	14	30	17	2.9 (2.1, 3.9)	4.5 (3.5, 5.8)	8.1 (6.1, 10.7)
Exeter V40	Trident (Shell)	1083	45826	143	319	161	460	2.3 (2.1, 2.4)	3.7 (3.5, 4.0)	5.0 (4.4, 5.6)
Exeter V40	Vitalock*	66	1795	14	19	19	14	2.3 (1.7, 3.1)	3.2 (2.5, 4.2)	4.6 (3.6, 5.9)
F2L	SPH-Blind*	53	571	6	19	15	13	6.1 (4.4, 8.4)	7.6 (5.7, 10.2)	11.7 (8.7, 15.7)
MS 30	Fitmore	19	572	1	4	7	7	1.5 (0.7, 3.2)	2.8 (1.5, 5.1)	6.5 (3.9, 10.9)
MS 30	Low Profile Cup	14	594	5	2	6	1	1.0 (0.4, 2.3)	2.4 (1.3, 4.4)	3.2 (1.8, 5.8)
Mallory-Head	Mallory-Head	156	2863	13	13	50	80	3.0 (2.4, 3.7)	4.9 (4.1, 5.9)	10.3 (8.5, 12.5)
Meridian	Vitalock*	29	354	2	2	12	13	3.5 (2.0, 6.1)	6.4 (4.2, 9.6)	9.9 (6.9, 14.1)
Natural Hip	Fitmore*	35	882	2	5	11	17	2.0 (1.3, 3.2)	4.1 (2.9, 5.9)	4.9 (3.5, 6.9)

					Туре	of Revision				
Femoral Stem	Acetabular Component	N Revised	N Total	THR	Femora	l Acetabular	Other	5 Yrs	10 Yrs	15 Yrs
Omnifit	Secur-Fit*	77	716	7	21	17	32	6.2 (4.6, 8.2)	9.9 (7.9, 12.5)	13.2 (10.6, 16.5)
Omnifit	Trident (Shell)	134	3613	12	31	22	69	3.1 (2.5, 3.7)	3.9 (3.3, 4.7)	5.8 (4.7, 7.3)
S-Rom	Duraloc Option*	25	523	4	9	5	7	3.3 (2.1, 5.2)	4.6 (3.1, 6.8)	5.2 (3.5, 7.8)
Secur-Fit	Trident (Shell)	303	8524	22	128	56	97	3.3 (2.9, 3.7)	4.4 (3.9, 5.0)	5.5 (4.6, 6.6)
Secur-Fit Plus	Trident (Shell)	155	5333	12	40	35	68	2.2 (1.8, 2.6)	3.1 (2.6, 3.7)	4.4 (3.5, 5.4)
Spectron EF	Reflection (Cup)	104	1398	36	10	49	9	2.8 (2.1, 3.9)	7.2 (5.7, 9.0)	17.0 (13.4, 21.5)
Spectron EF	Reflection (Shell)	243	4584	52	79	37	75	2.7 (2.2, 3.2)	5.5 (4.7, 6.3)	10.7 (9.1, 12.7)
Stability	Duraloc*	44	374	1	9	13	21	2.2 (1.1, 4.3)	8.9 (6.3, 12.5)	14.6 (10.9, 19.6)
Synergy	Reflection (Shell)	299	7314	26	61	99	113	2.6 (2.3, 3.0)	3.9 (3.4, 4.4)	6.4 (5.4, 7.5)
VerSys	Trilogy	203	4363	13	71	36	83	3.7 (3.2, 4.4)	4.9 (4.2, 5.6)	5.4 (4.7, 6.2)
TOTAL		4719	121384	652	1399	1033	1635			

Note: Only combinations with over 350 procedures have been listed

* denotes prosthesis combinations with no reported use in primary total conventional hip procedures in 2016

Table FY2 Cumulative Percent Revision of Primary Total Knee Replacement Combinations with 15 Year Data (Primary Diagnosis OA)

					Type of Re	evisior	ı			
Femoral Component	Tibial Component	N Revised	N Total	TKR	Femoral [·]	Fibial	Other	5 Yrs	10 Yrs	15 Yrs
AGC	AGC	245	5026	90	5	25	125	3.1 (2.7, 3.7)	4.9 (4.3, 5.7)	7.4 (6.4, 8.6)
Advance	Advance II	96	1596	32	2	13	49	4.9 (3.9, 6.1)	6.9 (5.7, 8.5)	7.8 (6.2, 9.7)
Advantim	Advantim*	61	1454	28	3	3	27	3.1 (2.3, 4.1)	4.7 (3.6, 6.2)	6.4 (4.7, 8.8)
Duracon	Duracon*	1044	19830	251	29	67	697	3.4 (3.2, 3.7)	5.0 (4.7, 5.3)	7.1 (6.6, 7.6)
Genesis II CR	Genesis II	760	20944	144	49	49	518	3.4 (3.2, 3.7)	4.7 (4.3, 5.0)	5.8 (5.2, 6.4)
Genesis II CR	Profix Mobile*	100	1209	38	9	7	46	5.4 (4.2, 6.9)	7.9 (6.4, 9.7)	11.2 (9.1, 13.8)
Genesis II Oxinium CR (ct	Genesis II	354	7468	60	23	22	249	3.7 (3.3, 4.2)	6.2 (5.6, 7.0)	11.0 (8.5, 14.3)
Genesis II PS	Genesis II	631	16463	96	26	45	464	3.8 (3.5, 4.1)	5.3 (4.8, 5.8)	6.6 (5.7, 7.7)
Kinemax Plus	Kinemax Plus*	112	1815	64	3	5	40	3.2 (2.4, 4.1)	4.7 (3.8, 5.8)	8.5 (7.0, 10.4)
LCS CR	LCS	554	8301	221	23	84	226	4.4 (4.0, 4.9)	6.2 (5.7, 6.8)	7.8 (7.2, 8.5)
LCS CR	MBT	879	25962	282	41	118	438	3.5 (3.3, 3.8)	5.0 (4.6, 5.3)	6.1 (5.4, 6.8)
LCS CR	MBT Duofix	605	13412	164	26	38	377	4.1 (3.8, 4.5)	5.4 (5.0, 5.9)	7.2 (6.3, 8.2)
MBK (Zimmer)	Nexgen*	30	448	16	1	1	12	4.1 (2.6, 6.5)	5.9 (4.0, 8.6)	8.0 (5.5, 11.5)
Maxim	Maxim*	172	2447	53	15	12	92	4.0 (3.3, 4.8)	6.0 (5.1, 7.1)	11.1 (8.9, 13.9)
Natural Knee II	Natural Knee II*	357	6443	144	8	58	147	2.8 (2.4, 3.2)	5.3 (4.7, 6.0)	10.6 (9.1, 12.2)
Nexgen CR	Nexgen	332	10977	103	14	31	184	2.1 (1.8, 2.3)	3.1 (2.7, 3.4)	4.4 (3.9, 5.0)
Nexgen LPS	Nexgen	289	6591	69	19	32	169	3.2 (2.8, 3.7)	5.1 (4.5, 5.7)	6.3 (5.5, 7.3)
PFC Sigma CR	MBT	257	5742	38	30	42	147	4.1 (3.6, 4.7)	5.2 (4.6, 5.9)	6.1 (5.2, 7.2)
PFC Sigma CR	PFC Sigma	599	22644	124	45	53	377	2.4 (2.2, 2.6)	3.5 (3.2, 3.8)	5.1 (4.5, 5.9)
PFC Sigma PS	PFC Sigma	263	7317	82	8	22	151	3.2 (2.8, 3.7)	4.7 (4.1, 5.4)	7.3 (5.9, 8.9)
Profix	Profix*	259	5370	55	13	18	173	3.7 (3.2, 4.3)	5.1 (4.6, 5.8)	5.5 (4.8, 6.2)
Scorpio CR	Series 7000	502	11261	121	26	42	313	3.4 (3.0, 3.8)	5.2 (4.8, 5.8)	6.7 (6.1, 7.4)
Scorpio PS	Scorpio+*	133	2036	34	12	9	78	5.0 (4.1, 6.0)	6.5 (5.5, 7.7)	8.5 (6.9, 10.5)
Scorpio PS	Series 7000	304	4679	102	8	60	134	4.7 (4.1, 5.4)	6.9 (6.1, 7.8)	11.5 (9.4, 14.1)
TOTAL		8938	209435	2411	438	856	5233			

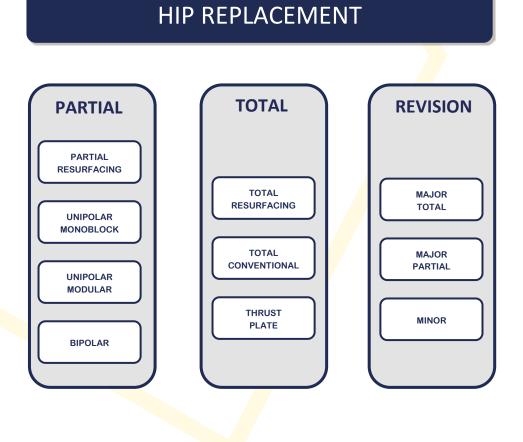
Note: Only combinations with over 350 procedures have been listed

* denotes prosthesis combinations with no reported use in primary total knee procedures in 2016

Hip Replacement

Hip Replacement

CATEGORIES OF HIP REPLACEMENT


The Registry groups hip replacement into three broad categories: primary partial, primary total and revision hip replacement.

A primary replacement is an initial replacement procedure undertaken on a joint and involves replacing either part (partial) or all (total) of the articular surface.

Primary partial and primary total hip replacement are further sub-categorised into classes depending on the type of prostheses used. Partial hip classes are: partial resurfacing, unipolar monoblock, unipolar modular, and bipolar. Total hip classes are: resurfacing, conventional, and thrust plate. Definitions for each of these are detailed in the subsequent sections.

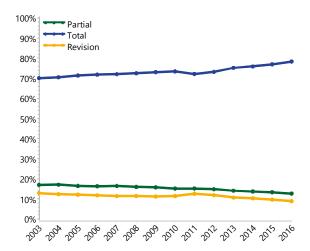
Revision hip replacements are re-operations of previous hip replacements where one or more of the prosthetic components are replaced, removed, or one or more components are added. Revisions include re-operations of primary partial, primary total, or previous revision procedures. Hip revisions are subcategorised into three classes: major total, major partial, or minor revisions.

Detailed information on demographics of each category of hip replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website https://aoanjrr.sahmri.com/annual-reports-2017

Data Period 1 September 1999 – 31 December 2016

USE OF HIP REPLACEMENT

This report analyses 545,831 hip replacements reported to the Registry with a procedure date up to and including 31 December 2016. This is an additional 47,171 hip procedures compared to the number reported last year. When considering all hip procedures currently recorded by the Registry, primary partial hip accounts for 15.3%, primary total hip 73.3% and revision hip replacement 11.4% (Table H1).


Table H1 Number of Hip Replacements

Hip Category	Number	Percent
Partial	83389	15.3
Total	400331	73.3
Revision	62111	11.4
TOTAL	545831	100.0

The number of hip replacement procedures undertaken in 2016 is 73.7% higher than the number undertaken in 2003. The corresponding increase in primary total hip replacement is 94.4%, primary partial 30.1%, and revision hip replacement 19.4%. The number of hip replacements undertaken in 2016 increased by 1,639 (3.7%) compared to 2015. During this time, the use of primary total hip replacement increased by 5.6% accounting for 78.4% of all hip replacement procedures in 2016. Primary partial hip replacement decreased by 1.5% accounting for 12.7% of hip procedures in 2016.

The proportion of revision hip procedures has declined from a peak of 12.9% in 2003 to 8.9% in 2016. This equates to 1,871 fewer revision procedures in 2016 than would have been expected if the proportion of revision procedures had remained at 12.9% (Figure H1).

Figure H1 Proportion of Hip Replacement

ASA SCORE AND BMI IN HIP REPLACEMENT

Data is reported on hip replacement procedures for both the American Society of Anaesthesiologists - Physical Status Classification (ASA score) and Body Mass Index (BMI). The Registry commenced collecting ASA score in 2012 and BMI in 2015.

There is ASA score data on 158,657 hip replacement procedures and BMI data on 72,892 hip replacement procedures.

In 2016, the ASA score is reported in 99.4% of hip replacement procedures and BMI in 84.2% of hip replacement procedures.

There is no variation in reporting of ASA based on procedure type. However, there is some variation in the reporting of BMI. The Registry has BMI recorded for 47.5% of primary partial hip, 90.6% of primary total hip, and 80.6% of revision hip replacement procedures.

ASA score and BMI are both known to impact the outcome of hip replacement surgery. In the future, this data will be used to risk adjust in a range of analyses.

ASA SCORE

There are five ASA score classifications (https://www.asahq.org/resources/clinicalinformation/asa-physical-status-classificationsystem):

- 1. A normal healthy patient
- 2. A patient with mild systemic disease
- 3. A patient with severe systemic disease
- 4. A patient with severe systemic disease that is a constant threat to life
- 5. A moribund patient who is not expected to survive without the operation

Overall, in 85.7% of procedures, patients have an ASA score of 2 or 3, 8.7% have a score of 1, and 5.6% have a score of 4. Very few procedures were recorded where patients have a score of 5.

There is a difference in ASA score depending on the class of hip replacement. Partial hip replacement procedures have a higher proportion of patients with ASA scores 3 and 4 (85.8%), compared to those undergoing primary total hip replacement (35.1%). Revision hip replacement procedures also have patients with higher ASA scores compared to those having a primary total hip replacement, but not as high as those having a partial hip replacement (57.4% have an ASA score of 3 or 4) (Table H2).

BMI

BMI for adults is classified by the World Health Organisation into six main categories (http://apps.who.int/bmi/index.jsp?introPage=i ntro_3.html):

1.	Underweight	<18.50
2.	Normal	18.50 - 24.99
3.	Pre-obese	25.00 - 29.99
4.	Obese Class 1	30.00 - 34.99
5.	Obese Class 2	35.00 - 39.99
6.	Obese Class 3	≥40.00

For all hip replacement, the majority of procedures are undertaken in patients who are normal or pre-obese (60.8%). There is a similar proportion of primary total and revision hip replacement procedures where the patients are normal or pre-obese in 59.5% of primary total hip procedures and in 60.4% of revision hip replacement procedures.

In partial hip replacement procedures, patients generally have a lower BMI, with most being normal or underweight (59.6%) (Table H3).

There is a gender difference with a higher proportion of males in the normal and preobese categories, which is most apparent in primary total and revision hip replacement procedures (Figure H2).

Table H2 ASA Score by Hip Category

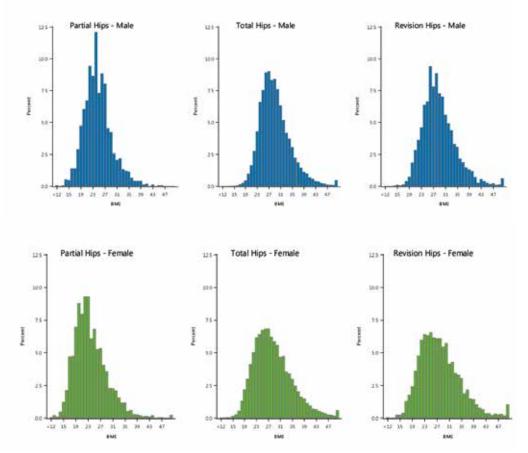

	Pa	rtial	Тс	otal	Revi	sion	TO	TAL
ASA Score	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%
1	90	0.4	12957	10.6	774	5.0	13821	8.7
2	2829	13.5	66304	54.3	5850	37.6	74983	47.3
3	12754	60.8	40471	33.1	7715	49.7	60940	38.4
4	5219	24.9	2399	2.0	1190	7.7	8808	5.6
5	84	0.4	12	0.0	9	0.1	105	0.1
TOTAL	20976	100.0	122143	100.0	15538	100.0	158657	100.0

Table H3 BMI Category for Hip Replacement by Hip Category

	Par	tial	Тс	otal	Revi	sion	TO	TAL
BMI Category	N	Col%	N	Col%	N	Col%	Ν	Col%
Underweight	501	9.6	659	1.1	118	1.8	1278	1.8
Normal	2619	50.0	13728	22.5	1669	25.5	18016	24.7
Pre-obese	1434	27.4	22609	37.0	2280	34.9	26323	36.1
Obese Class 1	488	9.3	14849	24.3	1496	22.9	16833	23.1
Obese Class 2	148	2.8	6189	10.1	647	9.9	6984	9.6
Obese Class 3	45	0.9	3089	5.1	324	5.0	3458	4.7
TOTAL	5235	100.0	61123	100.0	6534	100.0	72892	100.0

Note: BMI has not been presented for patients aged 19 and under

Figure H2 BMI Distribution by Gender and Hip Category

Note: BMI has not been presented for patients aged 19 and under

Primary Partial Hip Replacement

CLASSES OF PARTIAL HIP REPLACEMENT

The Registry identifies four classes of primary partial hip replacement. These are defined by the type of prostheses used.

Partial resurfacing involves the use of one or more button prostheses to replace part of the natural articulating surface on one or both sides of the hip joint.

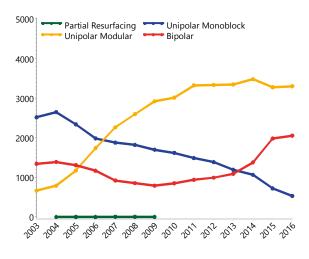
Unipolar monoblock involves the use of a femoral stem prosthesis with a fixed large head that replaces the natural femoral head. Unipolar modular involves the use of a femoral stem and exchangeable large head prosthesis that replaces the natural femoral head. Bipolar involves the use of a femoral stem and standard head prosthesis that articulates with a non-fixed component replacing the natural femoral head.

There is a fifth class of partial hip replacement that has been reported to the Registry. It involves the use of a prosthesis referred to by the manufacturer as an 'acetabular buffer'. This is a polycarbonate urethane insert. Five procedures using this device have been reported to the Registry, four of which have been revised.

USE OF PARTIAL HIP REPLACEMENT

The most common class of primary partial hip replacement is unipolar modular. This accounts for 43.3% of all partial hip procedures, followed by unipolar monoblock (33.7%) and bipolar (23.0%) (Table HP1).

Table HP1 Primary Partial Hip Replacement by Class


Partial Hip Class	Number	Percent
Unipolar Monoblock	28122	33.7
Unipolar Modular	36090	43.3
Bipolar	19163	23.0
TOTAL	83375	100.0

Note: Excludes 14 partial resurfacing procedures.

There is a slight increase in the use of bipolar and unipolar modular partial hip replacements in 2016. The use of unipolar monoblock continues to decline (Figure HP1).

Detailed demographic information on primary partial hip replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website https://aoanjrr.sahmri.com/annual-reports-2017.

Figure HP1 Primary Partial Hip Replacement by Class

Detailed information on Partial Resurfacing Hip Replacement is available in the supplementary report 'Outcomes of Classes No Longer Used Hip and Knee Arthroplasty' on the AOANJRR website https://aoanjrr.sahmri.com/annual-reports-2017.

Fractured neck of femur is the principal diagnosis for the three main classes of primary partial hip replacement: unipolar monoblock (97.6%), unipolar modular (95.0%) and bipolar (91.3%). A comparative analysis of partial hip replacement with total conventional hip replacement was undertaken for fractured neck of femur and is presented in the primary total hip replacement chapter.

At 10 years, bipolar hip replacement has the lowest cumulative percent revision, followed by unipolar modular and unipolar monoblock.


The outcome of primary partial hip replacement varies depending on the class. Outcomes are restricted to 10 years because of the high mortality in this group. The prosthesis class variation in mortality is almost certainly due to patient selection (Table HP2). At 10 years, bipolar has the lowest cumulative percent revision, followed by unipolar modular and unipolar monoblock (Table HP3 and Figure HP2). The difference in outcome between classes is most apparent in patients aged less than 75 years (Table HP4 and Figure HP3).

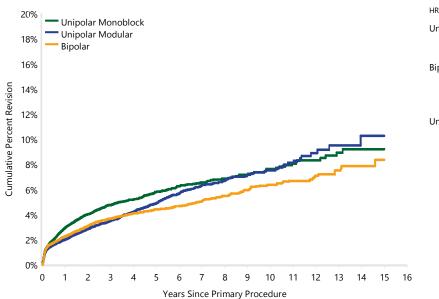

Hip Class	N Deceased	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	22668	26769	36.5 (36.0, 37.1)	49.6 (48.9, 50.2)	60.3 (59.7, 60.9)	76.2 (75.6, 76.7)	85.4 (84.9, 85.9)	92.8 (92.4, 93.2)
Unipolar Modular	19082	33253	23.9 (23.4, 24.3)	34.2 (33.7, 34.8)	43.6 (43.1, 44.2)	59.4 (58.8, 60.1)	70.8 (70.2, 71.5)	81.4 (80.7, 82.1)
Bipolar	10011	17060	21.0 (20.4, 21.7)	30.6 (29.9, 31.4)	38.9 (38.1, 39.7)	53.4 (52.5, 54.2)	64.9 (64.0, 65.8)	77.0 (76.1, 77.8)
TOTAL	51761	77082						

Table HP2 Cumulative Percent Mortality of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)

Table HP3 Cumulative Percent Revision of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)

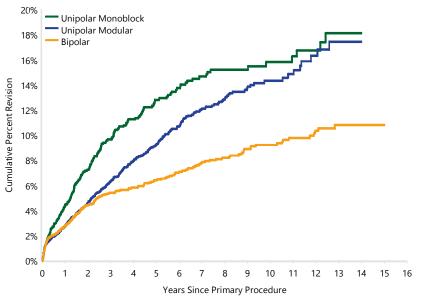
Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	1034	27453	2.9 (2.7, 3.2)	4.0 (3.7, 4.3)	4.8 (4.4, 5.1)	5.8 (5.4, 6.2)	6.5 (6.1, 7.0)	7.6 (7.0, 8.3)
Unipolar Modular	1149	34286	2.0 (1.8, 2.2)	2.8 (2.6, 3.0)	3.5 (3.3, 3.7)	4.9 (4.6, 5.2)	6.3 (5.9, 6.8)	7.5 (6.9, 8.2)
Bipolar	606	17486	2.3 (2.0, 2.5)	3.1 (2.8, 3.4)	3.7 (3.4, 4.0)	4.4 (4.0, 4.8)	5.0 (4.6, 5.5)	6.4 (5.7, 7.0)
TOTAL	2789	79225						

HR - adjusted for age and gender Unipolar Monoblock vs Unipolar Modular

Entire Period: HR=1.38 (1.27, 1.50),p<0.001

Bipolar vs Unipolar Modular 0 - 3Mth: HR=1.12 (0.96, 1.30),p=0.136 3Mth+: HR=0.79 (0.70, 0.89),p<0.001

Unipolar Monoblock vs Bipolar 0 - 2Wk: HR=1.80 (1.34, 2.41),p<0.001 2Wk - 3Mth: HR=1.09 (0.91, 1.30),p=0.367


3Mth+: HR=1.73 (1.52, 1.97),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	27453	16627	12742	9621	5235	2828	1045
Unipolar Modular	34286	23221	17936	13572	7314	3598	1015
Bipolar	17486	12050	9300	7415	4866	3191	1598

Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	218	2377	4.4 (3.6, 5.4)	7.2 (6.1, 8.5)	9.6 (8.3, 11.2)	12.8 (11.2, 14.7)	14.7 (12.8, 16.8)	15.8 (13.7, 18.2)
Unipolar Modular	428	5629	2.7 (2.3, 3.2)	4.6 (4.0, 5.2)	6.3 (5.6, 7.1)	9.2 (8.3, 10.3)	12.1 (10.9, 13.4)	14.3 (12.9, 16.0)
Bipolar	213	3528	2.8 (2.3, 3.4)	4.4 (3.7, 5.2)	5.4 (4.6, 6.3)	6.4 (5.5, 7.4)	7.8 (6.7, 9.0)	9.2 (8.0, 10.6)
TOTAL	859	11534						

Table HP4 Cumulative Percent Revision of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF)</th>

Figure HP3 Cumulative Percent Revision of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF)

HR - adjusted for age and gender

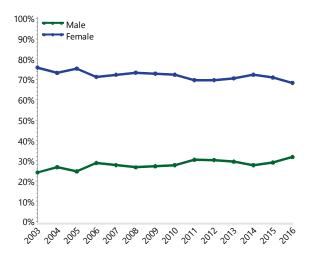
Unipolar Monoblock vs Bipolar Entire Period: HR=1.86 (1.54, 2.26),p<0.001

Unipolar Modular vs Bipolar 0 - 2.5Yr: HR=1.11 (0.91, 1.35),p=0.298 2.5Yr+: HR=2.21 (1.73, 2.81),p<0.001

Unipolar Monoblock vs Unipolar Modular Entire Period: HR=1.32 (1.12, 1.56),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	2377	1613	1315	1071	723	497	237
Unipolar Modular	5629	4274	3525	2882	1918	1153	434
Bipolar	3528	2701	2211	1919	1479	1150	719

UNIPOLAR MONOBLOCK


DEMOGRAPHICS

The Registry has recorded 28,122 unipolar monoblock procedures. This is an additional 590 procedures compared to the previous report.

The use of monoblock hip replacement in Australia continues to decline. The number of procedures reported in 2016 has declined by 26.4% compared to 2015 and by 79.0% compared to 2003.

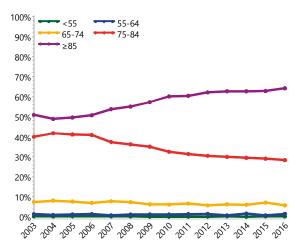

Fractured neck of femur is the principal diagnosis for primary unipolar monoblock hip replacement (97.6%).

Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender

The majority of patients are female (73.1%) and aged 75 years or older (91.3%). The proportion of patients aged 85 years or older has increased from 51.0% in 2003 to 64.3% in 2016. The mean age of patients is 84.5 years (Table HP5, Figures HP4 and HP5).

Figure HP5	Primary Unipolar Monoblock Hip Replacement
	by Age

The three types of unipolar monoblock prostheses are: the Austin-Moore Type, Thompson Type, and Exeter Trauma Stem (ETS). In 2016, the use of the Austin-Moore Type decreased by 42.5% compared to 2015, and by 91.1% compared to 2003. The Thompson Type decreased by 48.2% compared to 2015, and by 80.8% compared to 2003. In 2016, the use of the ETS increased by 16.2% compared to 2015, and accounted for 47.4% of all monoblock prostheses (Table HP6).

Table HP5	Age and Gender of Primary	Unipolar Monoblock Hip Replacement
-----------	---------------------------	------------------------------------

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	7558	26.9%	32	107	84	83.4	7.8
Female	20564	73.1%	16	108	86	84.9	7.1
TOTAL	28122	100.0%	16	108	85	84.5	7.3

Table HP6	Most Used Monoblock Prostheses in Primary	y Unipolar Monoblock Hip Replacement
-----------	---	--------------------------------------

2003	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
1988 Austin-Moore Type	616 Austin-Moore Type	512 Austin-Moore Type	308 Austin-Moore Type	251 ETS	
526 Thompson Type	322 Thompson Type	283 ETS	216 ETS	177 Austin-Moore Type	
	252 ETS	268 Thompson Type	195 Thompson Type	101 Thompson Type	
Most Used					
2514 (2) 100.0%	1190 (3) 100.0%	1063 (3) 100.0%	719 (3) 100.0%	529 (3) 100.0%	

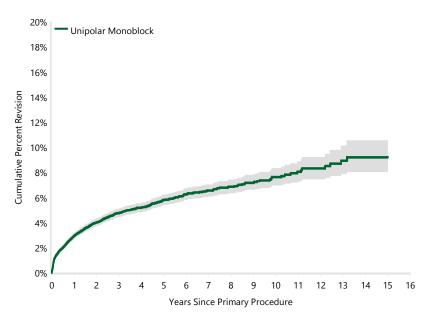
OUTCOME FOR FRACTURED NECK OF FEMUR

The cumulative percent revision at 10 years for unipolar monoblock replacement undertaken for fractured neck of femur is 7.6% (Table HP7 and Figure HP6).

The main reason for revision is loosening (43.5%), followed by fracture (19.7%), and prosthesis dislocation (11.3%) (Table HP8). The majority of unipolar monoblock hip replacements are revised to a total hip replacement (60.3%). Revision to another unipolar hip replacement (femoral component only) has occurred in 18.4% of revisions (Table HP9).

Age and femoral stem fixation are risk factors for revision. The rate of revision decreases with increasing age (Table HP10 and Figure HP7). There is no difference in the outcome between males and females (Table HP11 and Figure HP8).

In the first 1.5 years, cementless fixation has a higher rate of revision compared to cemented fixation, with no difference after this time (Table HP12 and Figure HP9).


The Thompson Type prosthesis, though designed to be cemented, has been inserted without cement in 574 procedures. This has the highest rate of revision.

The Thompson Type cemented and Austin Moore Type cementless have a higher rate of revision compared to the ETS, but there is no difference for the Austin Moore Type when it is used with cement (Figure HP10).

Table HP7 Cumula	ive Percent Revision o	f Primary Unipolar Mo	noblock Hip Replacemen	t (Primary Diagnosis Fractured NOF)
------------------	------------------------	-----------------------	------------------------	-------------------------------------

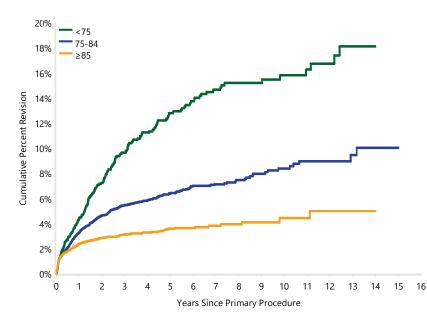
Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	1034	27453	2.9 (2.7, 3.2)	4.0 (3.7, 4.3)	4.8 (4.4, 5.1)	5.8 (5.4, 6.2)	6.5 (6.1, 7.0)	7.6 (7.0, 8.3)
TOTAL	1034	27453						

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	27453	16627	12742	9621	5235	2828	1045

 Table HP8
 Primary Unipolar Monoblock Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)

Reason for Revision	Number	Percent
Loosening	450	43.5
Fracture	204	19.7
Prosthesis Dislocation	117	11.3
Infection	109	10.5
Pain	76	7.4
Chondrolysis/Acetab. Erosion	44	4.3
Malposition	12	1.2
Lysis	9	0.9
Other	13	1.3
TOTAL	1034	100.0

Table HP9 Primary Unipolar Monoblock Hip Replacement by Type of Revision (Primary Diagnosis Fractured NOF)


Type of Revision	Number	Percent
THR (Femoral/Acetabular)	623	60.3
Femoral Component	190	18.4
Bipolar Head and Femoral	98	9.5
Removal of Prostheses	54	5.2
Cement Spacer	43	4.2
Minor Components	17	1.6
Reinsertion of Components	6	0.6
Incomplete	1	0.1
Bipolar Only	1	0.1
Insert Only	1	0.1
TOTAL	1034	100.0

Note: Femoral heads are usually replaced when the acetabular component and/or femoral stem is revised.

Table HP10 Cumulative Percent Revision of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF)

Age	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<75	218	2377	4.4 (3.6, 5.4)	7.2 (6.1, 8.5)	9.6 (8.3, 11.2)	12.8 (11.2, 14.7)	14.7 (12.8, 16.8)	15.8 (13.7, 18.2)
75-84	467	10291	3.3 (2.9, 3.7)	4.6 (4.2, 5.1)	5.5 (5.0, 6.0)	6.4 (5.8, 7.1)	7.1 (6.5, 7.9)	8.4 (7.4, 9.5)
≥85	349	14785	2.4 (2.1, 2.7)	2.9 (2.6, 3.2)	3.1 (2.8, 3.5)	3.6 (3.2, 4.1)	3.8 (3.3, 4.3)	4.4 (3.6, 5.4)
TOTAL	1034	27453						

Figure HP7 Cumulative Percent Revision of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF)

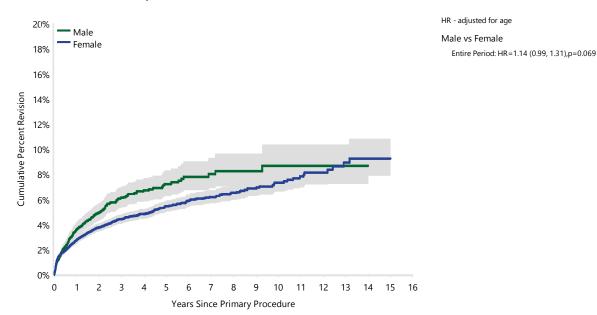
HR - adjusted for gender

0 - 3Mth: HR=1.20 (0.85, 1.69),p=0.307 3Mth - 1Yr: HR=3.08 (2.19, 4.31),p<0.001 1Yr - 2Yr: HR=5.34 (3.71, 7.70),p<0.001 2Yr+: HR=6.84 (5.05, 9.26),p<0.001

75-84 vs ≥85

0 - 3Mth: HR=1.01 (0.81, 1.25),p=0.957 3Mth+: HR=2.34 (1.93, 2.82),p<0.001

<75 vs 75-84

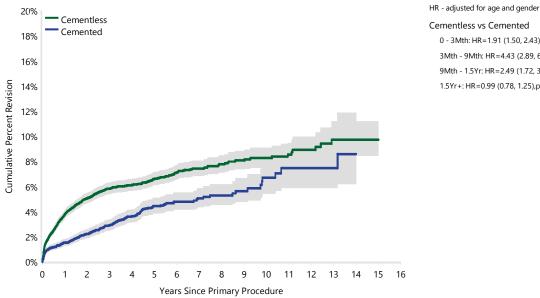

0 - 1Yr: HR=1.26 (0.99, 1.60),p=0.059 1Yr - 1.5Yr: HR=2.63 (1.69, 4.08),p<0.001 1.5Yr+: HR=2.66 (2.08, 3.41),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<75	2377	1613	1315	1071	723	497	237
75-84	10291	6682	5306	4162	2497	1417	542
≥85	14785	8332	6121	4388	2015	914	266

Gender	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Male	268	7378	3.6 (3.1, 4.2)	4.9 (4.3, 5.7)	6.1 (5.4, 7.0)	7.2 (6.3, 8.3)	8.0 (6.9, 9.3)	8.7 (7.3, 10.3)
Female	766	20075	2.7 (2.5, 3.0)	3.8 (3.5, 4.1)	4.4 (4.1, 4.8)	5.4 (5.0, 5.9)	6.2 (5.7, 6.7)	7.3 (6.6, 8.1)
TOTAL	1034	27453						

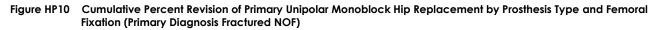
Table HP11 Cumulative Percent Revision of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF)

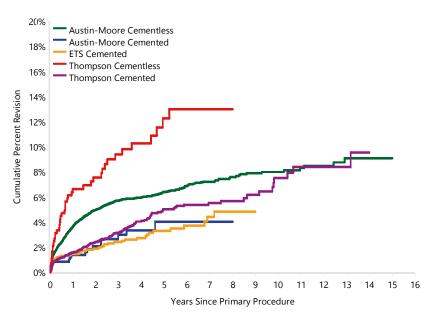
Figure HP8 Cumulative Percent Revision of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF)



Number at Risk 0 Yr 1 Yr 2 Yrs 3 Yrs 5 Yrs 7 Yrs 10 Yrs 7378 3482 1651 795 415 Male 2372 155 Female 20075 13145 10370 7970 4440 2413 890

Table HP12 Cumulative Percent Revision of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation and Prosthesis Type (Primary Diagnosis Fractured NOF)


Femoral Fixation	Unipolar Monoblock	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cementless		776	17454	3.8 (3.5, 4.1)	5.1 (4.7, 5.5)	5.8 (5.4, 6.3)	6.6 (6.1, 7.1)	7.4 (6.8, 8.0)	8.3 (7.5, 9.1)
	Austin-Moore	728	16880	3.7 (3.4, 4.0)	5.0 (4.6, 5.4)	5.7 (5.3, 6.2)	6.4 (5.9, 6.9)	7.2 (6.6, 7.8)	8.0 (7.3, 8.8)
	Thompson	48	574	6.6 (4.7, 9.3)	7.5 (5.4, 10.5)	9.4 (6.9, 12.8)	12.3 (9.0, 16.6)	13.0 (9.5, 17.6)	
Cemented		258	9999	1.5 (1.3, 1.8)	2.2 (1.9, 2.6)	2.9 (2.5, 3.4)	4.4 (3.9, 5.1)	5.1 (4.4, 5.9)	6.7 (5.4, 8.2)
	Austin-Moore	18	935	1.4 (0.7, 2.6)	2.1 (1.2, 3.6)	3.0 (1.8, 5.0)	4.0 (2.4, 6.8)	4.0 (2.4, 6.8)	
	ETS	62	2960	1.4 (1.0, 2.0)	1.9 (1.4, 2.5)	2.4 (1.8, 3.2)	3.3 (2.5, 4.4)	4.4 (3.2, 6.2)	
	Thompson	178	6104	1.6 (1.3, 2.0)	2.4 (2.0, 2.9)	3.1 (2.6, 3.7)	5.0 (4.2, 5.9)	5.5 (4.6, 6.5)	7.5 (5.9, 9.5)
TOTAL		1034	27453						


Cumulative Percent Revision of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Figure HP9 **Diagnosis Fractured NOF)**

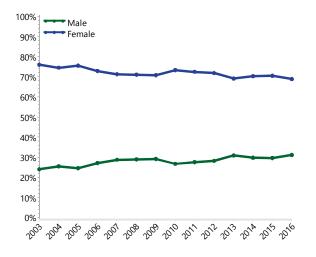
0 - 3Mth: HR=1.91 (1.50, 2.43),p<0.001 3Mth - 9Mth: HR=4.43 (2.89, 6.79),p<0.001 9Mth - 1.5Yr: HR=2.49 (1.72, 3.60),p<0.001 1.5Yr+: HR=0.99 (0.78, 1.25),p=0.904

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cementless	17454	10317	7863	5991	3312	1847	743
Cemented	9999	6310	4879	3630	1923	981	302

- HR adjusted for age and gender Austin-Moore Cementless vs ETS Cemented
- Entire Period: HR=2.21 (1.70, 2.87),p<0.001
- Austin-Moore Cemented vs ETS Cemented Entire Period: HR=1.13 (0.67, 1.90),p=0.656
- Thompson Cementless vs ETS Cemented Entire Period: HR=3.87 (2.65, 5.64),p<0.001
- Thompson Cemented vs ETS Cemented Entire Period: HR=1.38 (1.03, 1.84),p=0.028

Numb	er at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Austin-Moore	Cementless	16880	9957	7581	5772	3192	1772	716
	Cemented	935	505	382	282	126	58	16
ETS	Cemented	2960	1837	1407	1043	541	257	38
Thompson	Cementless	574	360	282	219	120	75	27
	Cemented	6104	3968	3090	2305	1256	666	248

UNIPOLAR MODULAR


DEMOGRAPHICS

There have been 36,090 unipolar modular procedures reported to the Registry. This is an additional 3,399 procedures compared to the previous report.

In 2016, the number of unipolar modular procedures increased by 0.8% compared to 2015, and increased by 395.7% since 2003.

Fractured neck of femur is the principal diagnosis for primary unipolar modular hip replacement (95.0%).

Figure HP11 Primary Unipolar Modular Hip Replacement by Gender

The majority of patients are female (71.4%) and aged 75 years or older (83.1%). The proportion of patients aged 85 years or older has increased from 32.0% in 2003 to 53.6% in 2016. The mean age of patients is 82.0 years (Table HP13, Figures HP11 and HP12).

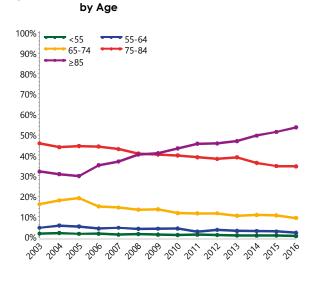


Figure HP12 Primary Unipolar Modular Hip Replacement

Overall, there have been 219 unipolar modular head and stem combinations. The 10 most frequently used unipolar modular head prostheses and femoral stems are listed in Tables HP14 and HP15.

In 2016, 19 different unipolar modular head prostheses were used. The Unitrax head is the most frequently used (61.8%). The 10 most used unipolar modular head prostheses account for 99.1% of all primary unipolar modular hip procedures.

There were 37 different stem prostheses used in 2016, eight less than in 2015. The most frequently used stem in 2016 is the Exeter V40 (61.0%). The 10 most used femoral stems account for 94.6% of all primary unipolar modular hip procedures.

The cumulative percent revision of unipolar modular head/steam prosthesis combinations with more than 100 procedures is detailed in Table HP16.

Table HP13 Age and Gender of Primary Unipolar Modular Hip Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	10332	28.6%	19	106	83	80.9	9.5
Female	25758	71.4%	18	108	84	82.5	8.5
TOTAL	36090	100.0%	18	108	83	82.0	8.9

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
193 Unitrax	1476 Unitrax	1612 Unitrax	1871 Unitrax	2041 Unitrax
142 Unipolar Head (Zimmer)	959 Unipolar Head (S&N)	958 Unipolar Head (S&N)	831 Unipolar Head (S&N)	645 Unipolar Head (S&N)
127 Unipolar Head (S&N)	551 VerSys	523 VerSys	201 Cathcart	246 Cathcart
75 VerSys	127 Cathcart	162 Cathcart	167 VerSys	164 VerSys
64 Unipolar Head (Mathys)	71 Unipolar Head (Corin)	58 Pharo	61 Unipolar Head (Corin)	63 Unipolar Head (Corin)
46 Elite	52 Metasul	Unipolar Head 52 (Corin)	39 Unipolar Head (Lima)	49 (Signature)
16 Ultima	28 Unipolar Head (Zimmer)	38 Unipolar Head (JRI)	21 Unipolar Head (JRI)	25 Endo II
1 Metasul	27 Pharo	25 Unipolar Head (Lima)	19 FMP	16 Endo Head
1 Optimom	17 Unipolar Head (Lima)	15 Unipolar Head (Zimmer)	18 Pharo	12 BioBall
Unipolar Head 1 (Sulzer)	8 FMP	14 FMP	14 Unipolar Head (Mathys)	9 Unipolar Head (Lima)
10 Most Used				
666 (10) 100.0%	3316 (10) 99.2%	3457 (10) 99.5%	3242 (10) 99.0%	3270 (10) 99.1%
Remainder				
0 (0) 0%	27 (7) 0.8%	18 (7) 0.5%	32 (11) 1.0%	31 (9) 0.9%
TOTAL				
666 (10) 100.0%	3343 (17) 100.0%	3475 (17) 100.0%	3274 (21) 100.0%	3301 (19) 100.0%

Table HP14 10 Most Used Unipolar Head Prostheses in Primary Unipolar Modular Hip Replacement

Table HP15 10 Most Used Femoral Stem Prostheses in Primary Unipolar Modular Hip Replacement

2003	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
180 Exeter V40	1438 Exeter V40	1558 Exeter V40	1831 Exeter V40	2013 Exeter V40	
111 Alloclassic	572 CPT	566 CPCS	528 CPCS	504 CPCS	
91 CPT	518 CPCS	485 CPT	192 Spectron EF	137 C-Stem AMT	
70 Spectron EF	181 SL-Plus	189 Spectron EF	149 CPT	133 CPT	
49 Fullfix	178 Spectron EF	122 SL-Plus	107 C-Stem AMT	111 Corail	
38 SL-Plus	83 Corail	88 C-Stem AMT	96 Corail	90 Spectron EF	
33 Elite Plus	69 Metafix	74 Corail	67 SL-Plus	53 Metafix	
18 Basis	55 Basis	57 Pharo	59 Metafix	30 Short Exeter V40	
15 CCA	45 C-Stem AMT	52 Metafix	35 H-Max	26 E2	
15 Thompson Modular Stem	42 Alloclassic	44 Omnifit	24 Absolut	25 Sirius	
10 Most Used					
620 (10) 93.1%	3181 (10) 95.2%	3235 (10) 93.1%	3088 (10) 94.3%	3122 (10) 94.6%	
Remainder					
46 (13) 6.9%	162 (26) 4.8%	240 (35) 6.9%	186 (35) 5.7%	179 (27) 5.4%	
TOTAL					
666 (23) 100.0%	3343 (36) 100.0%	3475 (45) 100.0%	3274 (45) 100.0%	3301 (37) 100.0%	

Unipolar Head	Femoral Component	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cathcart	C-Stem AMT	6	426	1.5 (0.6, 3.5)	1.5 (0.6, 3.5)	1.5 (0.6, 3.5)			
Cathcart	Corail	78	1360	3.4 (2.5, 4.7)	4.8 (3.6, 6.2)	6.1 (4.7, 7.9)	7.9 (6.1, 10.0)	10.7 (8.3, 13.8)	
Endo II	Taperloc*	7	102	5.1 (2.2, 11.9)	5.1 (2.2, 11.9)	5.1 (2.2, 11.9)			
Metasul	Alloclassic*	16	345	2.5 (1.3, 4.9)	2.9 (1.5, 5.5)	3.7 (2.1, 6.7)	4.3 (2.4, 7.6)	8.8 (5.0, 15.2)	
Metasul	CPT*	4	215	1.6 (0.5, 4.9)	1.6 (0.5, 4.9)	2.4 (0.9, 6.6)			
Pharo	Pharo	6	141	3.1 (1.2, 8.1)	5.5 (2.4, 11.9)				
U2	E2*	3	232	0.0 (0.0, 0.0)	0.7 (0.1, 4.9)	1.5 (0.4, 5.9)	2.6 (0.8, 8.2)		
Ultima	Thompson Modular Stem*	1	133	0.8 (0.1, 5.5)	0.8 (0.1, 5.5)	0.8 (0.1, 5.5)	0.8 (0.1, 5.5)	0.8 (0.1, 5.5)	
Unipolar Head (Corin)	Metafix	14	459	2.1 (1.1, 4.2)	3.0 (1.6, 5.7)	3.0 (1.6, 5.7)	7.8 (4.1, 14.6)		
Unipolar Head (Corin)	Taper Fit	18	316	2.2 (1.0, 4.8)	3.5 (1.8, 6.7)	5.6 (3.3, 9.6)	7.1 (4.3, 11.7)	8.0 (4.9, 13.1)	
Unipolar Head (Corin)	Tri-Fit*	8	288	1.5 (0.6, 4.0)	2.1 (0.9, 5.0)	2.7 (1.2, 5.9)	2.7 (1.2, 5.9)	4.8 (2.2, 10.0)	
Unipolar Head (JRI)	Furlong LOL	10	131	6.4 (3.1, 13.0)	9.9 (5.4, 17.7)	9.9 (5.4, 17.7)			
Unipolar Head (Mathys)	CCA*	10	357	1.0 (0.3, 3.0)	2.1 (1.0, 4.7)	2.6 (1.2, 5.3)	2.6 (1.2, 5.3)	3.5 (1.7, 7.4)	3.5 (1.7, 7.4)
Unipolar Head (Mathys)	Fullfix*	8	226	1.5 (0.5, 4.7)	2.7 (1.1, 6.5)	2.7 (1.1, 6.5)	2.7 (1.1, 6.5)	6.1 (2.9, 12.4)	6.1 (2.9, 12.4)
Unipolar Head (Plus)	SL-Plus*	8	193	2.2 (0.8, 5.8)	2.9 (1.2, 6.9)	3.6 (1.6, 8.0)	4.6 (2.2, 9.7)	5.9 (2.9, 11.9)	
Unipolar Head (S&N)	Basis	26	578	2.0 (1.1, 3.7)	2.0 (1.1, 3.7)	3.1 (1.8, 5.3)	6.8 (4.5, 10.4)	7.9 (5.3, 11.9)	7.9 (5.3, 11.9)
Unipolar Head (S&N)	CPCS	113	4626	1.7 (1.4, 2.2)	2.2 (1.8, 2.7)	2.8 (2.2, 3.4)	3.8 (3.1, 4.7)	4.9 (3.8, 6.3)	6.6 (3.8, 11.4)
Unipolar Head (S&N)	Platform*	6	110	4.1 (1.5, 10.5)	4.1 (1.5, 10.5)	4.1 (1.5, 10.5)	6.0 (2.4, 14.5)		
Unipolar Head (S&N)	SL-Plus	44	1039	2.3 (1.5, 3.5)	3.3 (2.3, 4.8)	4.4 (3.1, 6.1)	5.1 (3.6, 7.1)	6.6 (4.6, 9.6)	
Unipolar Head (S&N)	Spectron EF	96	2851	1.6 (1.1, 2.1)	2.5 (1.9, 3.2)	2.9 (2.2, 3.7)	4.1 (3.3, 5.2)	5.9 (4.6, 7.4)	7.6 (5.8, 9.9)
Unipolar Head (Zimmer)	Alloclassic*	60	1084	3.2 (2.3, 4.5)	4.1 (3.0, 5.6)	4.4 (3.2, 5.9)	6.0 (4.5, 7.8)	8.1 (6.2, 10.7)	8.1 (6.2, 10.7)
Unipolar Head (Zimmer)	CPT*	11	173	1.9 (0.6, 5.8)	3.3 (1.4, 7.7)	4.1 (1.8, 8.8)	5.9 (3.0, 11.7)	7.2 (3.7, 13.8)	9.1 (4.7, 17.0)
Unitrax	Accolade I*	8	130	0.8 (0.1, 5.6)	5.0 (2.1, 11.6)	6.2 (2.8, 13.3)	6.2 (2.8, 13.3)		
Unitrax	Exeter V40	440	14097	1.9 (1.6, 2.1)	2.7 (2.4, 3.0)	3.4 (3.1, 3.8)	5.1 (4.6, 5.7)	6.4 (5.7, 7.2)	8.2 (7.0, 9.5)
Unitrax	Omnifit*	7	253	2.7 (1.2, 5.9)	3.2 (1.5, 6.7)	3.2 (1.5, 6.7)	3.2 (1.5, 6.7)		
VerSys	CPT	142	4254	1.9 (1.5, 2.4)	3.0 (2.4, 3.6)	3.5 (2.9, 4.3)	4.7 (3.9, 5.6)	5.9 (4.8, 7.2)	6.5 (5.2, 8.1)
VerSys	VerSys	5	168	3.2 (1.2, 8.5)	3.2 (1.2, 8.5)	3.2 (1.2, 8.5)			
Other (192)		89	1803	3.5 (2.6, 4.5)	4.7 (3.7, 6.0)	5.4 (4.2, 6.8)	7.2 (5.7, 9.1)	9.2 (7.2, 11.7)	9.9 (7.6, 12.7)
TOTAL		1244	36090						

Table HP16 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement by Prosthesis Combination

Note: Only combinations with over 100 procedures have been listed

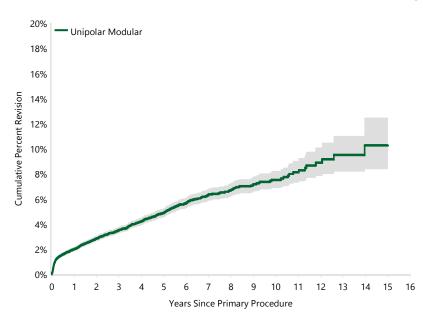
*denotes prosthesis combination with no recorded use in primary unipolar modular hip replacement in 2016

OUTCOME FOR FRACTURED NECK OF FEMUR

The cumulative percent revision at 10 years for unipolar modular hip replacement, when undertaken for fractured neck of femur, is 7.5% (Table HP17 and Figure HP13).

The Registry has recorded 1,149 revisions of primary unipolar modular hip replacement for a diagnosis of fractured neck of femur.

The main reasons for revision are: prosthesis dislocation (19.9%), infection (19.1%), fracture (16.5%), chondrolysis/acetabular erosion (14.3%), loosening (12.6%), and pain (12.4%) (Table HP18).


Most revisions are acetabular only (45.0%), followed by total hip replacement (femoral/acetabular) (17.8%) (Table HP19). Age, gender and femoral stem fixation are risk factors for revision. The rate of revision decreases with increasing age (Table HP20 and Figure HP14). Males have a higher rate of revision in the first 1.5 years (Table HP21 and Figure HP15).

Cementless fixation has a higher rate of revision compared to cemented fixation (Table HP22 and Figure HP16). The cumulative incidence for loosening and fracture is higher for cementless compared to cemented fixation (Figure HP17).

The cumulative incidence for loosening and fracture is higher for cementless compared to cemented fixation.

Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Modular	1149	34286	2.0 (1.8, 2.2)	2.8 (2.6, 3.0)	3.5 (3.3, 3.7)	4.9 (4.6, 5.2)	6.3 (5.9, 6.8)	7.5 (6.9, 8.2)
TOTAL	1149	34286						

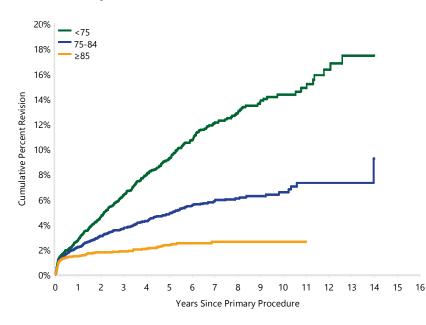
Figure HP13 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Modular	34286	23221	17936	13572	7314	3598	1015

Table HP18 Primary Unipolar Modular Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)

Reason for Revision	Number	Percent
Prosthesis Dislocation	229	19.9
Infection	220	19.1
Fracture	190	16.5
Chondrolysis/Acetab. Erosion	164	14.3
Loosening	145	12.6
Pain	142	12.4
Lysis	15	1.3
Malposition	3	0.3
Other	41	3.6
TOTAL	1149	100.0

Table HP19 Primary Unipolar Modular Hip Replacement by Type of Revision (Primary Diagnosis Fractured NOF)


Type of Revision	Number	Percent
Acetabular Component	517	45.0
THR (Femoral/Acetabular)	205	17.8
Head Only	136	11.8
Femoral Component	126	11.0
Cement Spacer	48	4.2
Minor Components	39	3.4
Bipolar Head and Femoral	37	3.2
Removal of Prostheses	28	2.4
Bipolar Only	8	0.7
Reinsertion of Components	4	0.3
Cement Only	1	0.1
TOTAL	1149	100.0

Note: Femoral heads are usually replaced when the acetabular component and/or femoral stem is revised

Table HP20 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF)

Age	N Revised		1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<75	428	5629	2.7 (2.3, 3.2)	4.6 (4.0, 5.2)	6.3 (5.6, 7.1)	9.2 (8.3, 10.3)	12.1 (10.9, 13.4)	14.3 (12.9, 16.0)
75-84	482	13492	2.2 (1.9, 2.5)	3.1 (2.8, 3.4)	3.6 (3.3, 4.0)	4.8 (4.4, 5.3)	5.9 (5.3, 6.5)	6.6 (5.8, 7.4)
≥85	239	15165	1.5 (1.3, 1.7)	1.8 (1.5, 2.0)	1.9 (1.6, 2.1)	2.3 (2.0, 2.7)	2.6 (2.2, 3.1)	2.6 (2.2, 3.1)
TOTAL	1149	34286						

Figure HP14 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF)

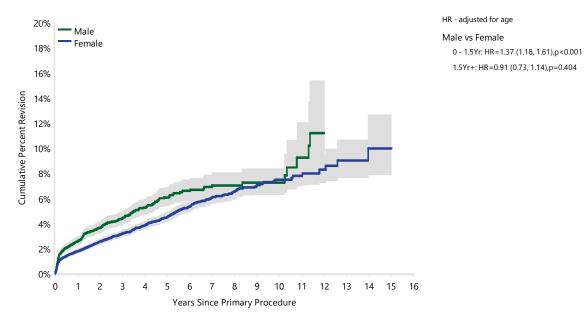
HR - adjusted for gender

<75 vs ≥85 0 - 3Mth: HR=1.26 (0.96, 1.64),p=0.096 3Mth - 9Mth: HR=3.58 (2.35, 5.47),p<0.001 9Mth - 1.5Yr: HR=6.72 (4.62, 9.78),p<0.001 1.5Yr - 2Yr: HR=6.58 (4.01, 10.80),p<0.001 2Yr+: HR=9.21 (6.88, 12.33),p<0.001

75-84 vs ≥85

0 - 3Mth: HR=1.09 (0.87, 1.35),p=0.461 3Mth+: HR=3.25 (2.54, 4.16),p<0.001

<75 vs 75-84

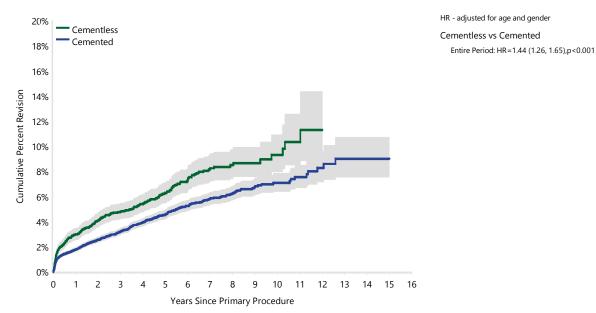

0 - 3Mth: HR=1.16 (0.89, 1.51),p=0.285 3Mth - 9Mth: HR=1.10 (0.75, 1.61),p=0.615 9Mth - 1.5Yr: HR=2.07 (1.49, 2.87),p<0.001 1.5Yr - 2Yr: HR=2.03 (1.28, 3.20),p=0.002 2Yr - 2.5Yr: HR=2.98 (1.80, 4.94),p<0.001 2.5Yr+: HR=2.81 (2.24, 3.52),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<75	5629	4274	3525	2882	1918	1153	434
75-84	13492	9754	7834	6160	3459	1743	476
≥85	15165	9193	6577	4530	1937	702	105

Gender	N Revised	N I Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Male	347	9801	2.6 (2.2, 2.9)	3.6 (3.2, 4.1)	4.4 (3.9, 4.9)	6.1 (5.4, 6.8)	7.0 (6.1, 8.0)	7.2 (6.3, 8.3)
Female	802	24485	1.8 (1.6, 2.0)	2.5 (2.3, 2.8)	3.2 (2.9, 3.4)	4.5 (4.2, 4.9)	6.1 (5.6, 6.6)	7.5 (6.7, 8.3)
TOTAL	1149	34286						

Table HP21 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF)

Figure HP15 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF)



Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Male	9801	5725	4147	2964	1431	712	181
Female	24485	17496	13789	10608	5883	2886	834

Femoral Fixation	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cementless	296	6022	3.0 (2.5, 3.5)	4.1 (3.6, 4.7)	4.8 (4.2, 5.5)	6.3 (5.5, 7.1)	8.3 (7.2, 9.4)	9.3 (7.9, 10.9)
Cemented	853	28264	1.8 (1.6, 1.9)	2.6 (2.4, 2.8)	3.2 (2.9, 3.4)	4.6 (4.2, 4.9)	5.8 (5.4, 6.3)	7.1 (6.4, 7.8)
TOTAL	1149	34286						

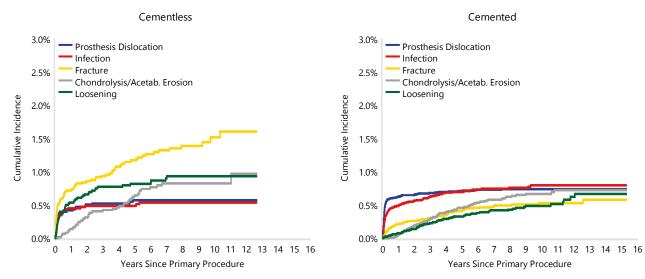

Table HP22 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)

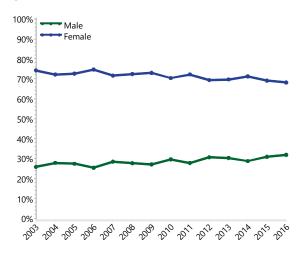
Figure HP16 Cumulative Percent Revision of Primary Unipolar Modular Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cementless	6022	4345	3528	2756	1651	887	217
Cemented	28264	18876	14408	10816	5663	2711	798

Figure HP17 Cumulative Incidence Revision Diagnosis of Primary Unipolar Modular Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)

BIPOLAR

DEMOGRAPHICS


There have been 19,163 bipolar hip replacement procedures reported to the Registry. This is an additional 2,120 procedures compared to the previous report.

Since 2010, there has been an increase in the number of bipolar procedures undertaken each year, with 3.8% more procedures in 2016 compared to 2015. The total number of bipolar procedures has increased by 53.1% since 2003.

Fractured neck of femur is the principal diagnosis for bipolar hip replacement (91.3%).

The majority of patients are female (71.5%) and aged 75 years or older (78.0%). The proportion of patients aged 85 years or older has increased from 26.0% in 2003 to 47.9% in 2016. The mean age of patients is 80.4 years (Table HP23, Figures HP18 and HP19).

Figure HP18 Primary Bipolar Hip Replacement by Gender

100% < 55 - 55-64 65-74 75-84 90% >85 80% 70% 60% 50% 40% 30% 20% 10% 0%

2003

Figure HP19 Primary Bipolar Hip Replacement by Age

Overall, there have been 261 bipolar head and stem combinations. In 2016, there were nine different bipolar head and 40 different stem prostheses used.

2015

2014

In 2016, the UHR remains the most frequently used bipolar head (43.5%) and the Exeter V40 the most frequently used femoral stem (41.2%). The 10 most used femoral stems account for 91.4% of all bipolar hip procedures (Tables HP24 and HP25).

The cumulative percent revision of bipolar head/stem prosthesis combinations with more than 100 procedures is detailed in Table HP26.

Table HP23	Age and Gender of Primary Bipolar Hip Replacement
------------	---

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	5462	28.5%	17	101	82	79.6	10.9
Female	13701	71.5%	14	107	82	80.8	9.6
TOTAL	19163	100.0%	14	107	82	80.4	10.0

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
760 UHR	596 UHR	779 UHR	815 UHR	894 UHR
140 Hastings	155 Tandem	207 Multipolar Bipolar	759 Multipolar Bipolar	661 Multipolar Bipolar
115 Convene	130 Multipolar Bipolar	115 Tandem	179 Self-Centering	212 Self-Centering
91 Bipolar Head (Zimmer)	46 Bipolar Head (Lima)	91 Self-Centering	113 Tandem	154 Tandem
87 Self-Centering	38 Hastings	63 Bipolar Head (Medacta)	69 Bipolar Head (Medacta)	88 Bipolar Head (Medacta)
59 Multipolar Bipolar	35 Self-Centering	35 Hastings	18 Ringloc	23 Bipolar Head (Lima)
39 Bipolar Head (Mathys)	34 Bipolar Head (Medacta)	30 Bipolar Head (Lima)	16 Bipolar Head (Lima)	12 Ringloc
19 Bipolar Head (Lima)	22 Ringloc	28 Ringloc	3 Bipolar Head (Mathys)	5 Bipolar Head (Implantcast)
19 Ringloc	8 Moonstone	15 AcuMatch L-Series	2 Bipolar Head (Implantcast)	4 Bipolar Head (Mathys)
5 UHL	8 Pharo	5 Gladiator	2 Hastings	
10 Most Used				
1334 (10) 99.5%	1072 (10) 98.2%	1368 (10) 99.3%	1976 (10) 99.9%	2053 (9) 100.0%
Remainder				
7 (2) 0.5%	20 (7) 1.8%	9 (4) 0.7%	1 (1) 0.1%	0 (0) 0%
TOTAL				
1341 (12) 100.0%	1092 (17) 100.0%	1377 (14) 100.0%	1977 (11) 100.0%	2053 (9) 100.0%

Table HP24 10 Most Used Bipolar Head Prostheses in Primary Bipolar Hip Replacement

Table HP25 10 Most Used Femoral Stem Prostheses in Primary Bipolar Hip Replacement

2003	2013	2014	2015	2016
N Model				
630 Exeter V40	577 Exeter V40	734 Exeter V40	777 Exeter V40	845 Exeter V40
94 Elite Plus	116 CPCS	170 CPT	662 CPT	600 CPT
75 Alloclassic	106 CPT	91 Corail	124 Corail	127 Corail
65 CPCS	55 Corail	84 CPCS	78 CPCS	125 CPCS
61 C-Stem	28 Quadra-C	39 Accolade I	35 Quadra-C	60 Quadra-C
59 Omnifit	26 C2	27 Quadra-C	26 C-Stem AMT	40 C-Stem AMT
33 VerSys	24 Basis	25 X-Acta	26 X-Acta	22 H-Max
26 ABGII	19 H-Max	20 H-Max	23 Alloclassic	21 Summit
25 CCA	15 Accolade I	16 Alloclassic	22 Accolade I	19 X-Acta
25 Spectron EF	14 Alloclassic	13 C-Stem AMT	22 Summit	18 Accolade II
10 Most Used				
1093 (10) 81.5%	980 (10) 89.7%	1219 (10) 88.5%	1795 (10) 90.8%	1877 (10) 91.4%
Remainder				
248 (46) 18.5%	112 (33) 10.3%	158 (39) 11.5%	182 (35) 9.2%	176 (30) 8.6%
TOTAL				
1341 (56) 100.0%	1092 (43) 100.0%	1377 (49) 100.0%	1977 (45) 100.0%	2053 (40) 100.0%

Table HP26 Cumulative Percent Revision of Primary Bipolar Hip Replacement by Prosthesis Combination

Bipolar Head	Femoral Component	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Bipolar Head (Medacta)	Quadra-C	6	206	3.7 (1.7, 8.2)	3.7 (1.7, 8.2)	3.7 (1.7, 8.2)			
Bipolar Head (Zimmer)	Alloclassic*	17	358	0.9 (0.3, 2.8)	2.0 (0.9, 4.3)	2.3 (1.1, 4.9)	2.8 (1.4, 5.4)	3.4 (1.7, 6.6)	6.8 (3.8, 12.1)
Centrax	Exeter*	7	200	2.1 (0.8, 5.5)	2.8 (1.2, 6.5)	2.8 (1.2, 6.5)	2.8 (1.2, 6.5)	2.8 (1.2, 6.5)	3.9 (1.7, 9.0)
Convene	CPCS*	16	347	2.2 (1.1, 4.6)	3.3 (1.8, 6.1)	3.3 (1.8, 6.1)	5.2 (3.1, 8.8)	5.9 (3.5, 9.8)	6.7 (4.0, 11.0)
Convene	Spectron EF*	8	123	2.6 (0.9, 8.0)	2.6 (0.9, 8.0)	3.8 (1.4, 10.1)	6.6 (2.9, 14.4)	6.6 (2.9, 14.4)	
Hastings	C-Stem*	10	208	2.5 (1.1, 5.9)	5.0 (2.6, 9.4)	5.7 (3.1, 10.3)	5.7 (3.1, 10.3)	5.7 (3.1, 10.3)	
Hastings	Charnley*	6	118	0.0 (0.0, 0.0)	3.6 (1.2, 10.8)	3.6 (1.2, 10.8)	6.6 (2.8, 15.3)		
Hastings	Corail*	17	361	3.3 (1.8, 5.8)	3.6 (2.1, 6.3)	4.0 (2.3, 6.8)	4.7 (2.7, 8.0)	4.7 (2.7, 8.0)	
Hastings	Elite Plus*	15	298	1.9 (0.8, 4.6)	3.3 (1.6, 6.5)	4.3 (2.3, 7.9)	5.4 (3.1, 9.5)	6.8 (4.0, 11.4)	6.8 (4.0, 11.4)
Hastings	Summit*	3	102	2.5 (0.6, 9.6)	2.5 (0.6, 9.6)	2.5 (0.6, 9.6)			
Multipolar Bipolar	Alloclassic	8	190	4.1 (2.0, 8.4)	4.1 (2.0, 8.4)	4.1 (2.0, 8.4)	5.3 (2.6, 10.9)		
Multipolar Bipolar	СРТ	60	1958	2.8 (2.1, 3.7)	3.8 (2.9, 5.1)	4.4 (3.2, 5.9)	5.3 (3.7, 7.6)	6.5 (4.1, 10.2)	
Multipolar Bipolar	VerSys	3	237	0.0 (0.0, 0.0)	1.7 (0.4, 6.6)	1.7 (0.4, 6.6)	1.7 (0.4, 6.6)	1.7 (0.4, 6.6)	
Multipolar Bipolar	VerSys Heritage*	11	275	1.7 (0.6, 4.5)	3.2 (1.5, 6.7)	3.2 (1.5, 6.7)	4.0 (2.0, 7.9)	4.0 (2.0, 7.9)	
Ringloc	Mallory-Head	4	113	2.2 (0.6, 8.5)	2.2 (0.6, 8.5)	2.2 (0.6, 8.5)			
Self-Centering	C-Stem*	3	111	0.0 (0.0, 0.0)	1.2 (0.2, 8.2)	1.2 (0.2, 8.2)	1.2 (0.2, 8.2)		
Self-Centering	Corail	21	540	3.6 (2.3, 5.8)	4.9 (3.1, 7.7)	4.9 (3.1, 7.7)	4.9 (3.1, 7.7)	6.7 (3.6, 12.3)	
Self-Centering	Elite Plus*	3	238	0.0 (0.0, 0.0)	0.6 (0.1, 3.9)	0.6 (0.1, 3.9)	1.3 (0.3, 5.2)	2.5 (0.8, 7.8)	2.5 (0.8, 7.8)
Tandem	Basis*	13	114	2.0 (0.5, 7.7)	7.5 (3.7, 15.2)	12.5 (7.1, 21.5)			
Tandem	CPCS	31	1245	1.8 (1.1, 2.8)	2.4 (1.6, 3.6)	2.9 (2.0, 4.3)	3.1 (2.1, 4.6)	4.3 (2.8, 6.4)	4.9 (3.2, 7.5)
Tandem	Spectron EF	7	163	2.7 (1.0, 7.1)	3.7 (1.5, 8.6)	4.6 (2.1, 10.0)	5.8 (2.8, 12.1)		
UHR	ABGII*	20	177	4.4 (2.1, 8.9)	4.4 (2.1, 8.9)	5.1 (2.6, 10.1)	10.9 (6.5, 18.0)	13.5 (8.3, 21.6)	
UHR	Accolade I	16	313	2.8 (1.4, 5.5)	4.2 (2.3, 7.4)	4.7 (2.7, 8.2)	5.4 (3.1, 9.4)	6.7 (3.8, 11.9)	
UHR	Exeter V40	223	7946	1.9 (1.6, 2.3)	2.5 (2.2, 3.0)	3.1 (2.7, 3.6)	3.7 (3.2, 4.2)	4.3 (3.7, 5.0)	5.0 (4.2, 5.9)
UHR	Exeter*	10	205	1.6 (0.5, 4.9)	2.2 (0.8, 5.8)	3.5 (1.6, 7.7)	4.9 (2.5, 9.7)	4.9 (2.5, 9.7)	4.9 (2.5, 9.7)
UHR	GMRS	10	117	3.7 (1.4, 9.6)	5.2 (2.2, 12.4)	5.2 (2.2, 12.4)			
UHR	Omnifit	22	372	4.9 (3.1, 7.8)	5.3 (3.4, 8.3)	5.7 (3.6, 8.7)	6.1 (4.0, 9.3)	7.3 (4.8, 11.1)	7.3 (4.8, 11.1)
Other (234)		116	2528	3.2 (2.5, 4.0)	4.0 (3.3, 5.0)	4.9 (4.0, 5.9)	5.6 (4.6, 6.8)	6.2 (5.1, 7.6)	8.2 (6.6, 10.3)
TOTAL		686	19163						

Note: Only combinations with over 100 procedures have been listed *denotes prosthesis combination with no recorded use in primary bipolar hip replacement in 2016

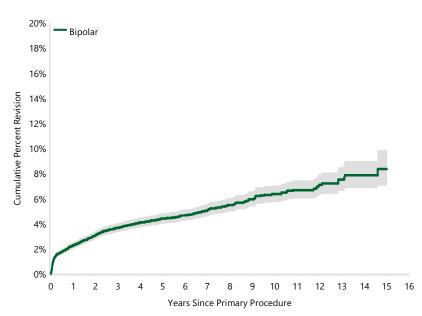
OUTCOME FOR FRACTURED NECK OF FEMUR

The cumulative percent revision at 10 years for bipolar hip replacement undertaken for fractured neck of femur is 6.4% (Table HP27 and Figure HP20).

The Registry has recorded 606 revisions of primary bipolar hip replacement procedures with a primary diagnosis of fractured neck of femur.

The main reasons for revision are fracture (24.9%), infection (21.0%), prosthesis dislocation (18.3%), and loosening (16.7%) (Table HP28). The most frequent type of revision is acetabular only (34.7%), followed by total hip replacement (femoral/acetabular) (22.8%), and bipolar head and femoral (12.9%) (Table HP29).

Age and femoral stem fixation are risk factors for revision. Patients aged less than 75 years have a higher rate of revision compared to the two older age groups (Table HP30 and Figure HP21). There is no difference in outcome between males and females (Table HP31 and Figure HP22).


Cementless fixation has a higher rate of revision compared to cemented fixation (Table HP32 and Figure HP23). The cumulative incidence of fracture for cementless fixation is higher than for cemented fixation (Figure HP24).

Cementless fixation has a higher rate of revision compared to cemented fixation.

Table HP27 Cumulative Percent Revision of Primary Bipolar Hip Replacement (Primary Diagnosis Fractured NOF)

Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Bipolar	606	17486	2.3 (2.0, 2.5)	3.1 (2.8, 3.4)	3.7 (3.4, 4.0)	4.4 (4.0, 4.8)	5.0 (4.6, 5.5)	6.4 (5.7, 7.0)
TOTAL	606	17486						

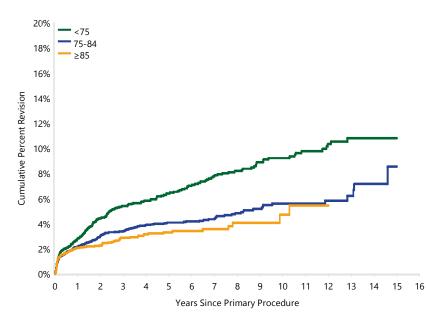
Figure HP20 Cumulative Percent Revision of Primary Bipolar Hip Replacement (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Bipolar	17486	12050	9300	7415	4866	3191	1598

Table HP28 Primary Bipolar Hip Replacement by Reason for Revision

Reason for Revision	Number	Percent
Fracture	151	24.9
Infection	127	21.0
Prosthesis Dislocation	111	18.3
Loosening	101	16.7
Chondrolysis/Acetab. Erosion	48	7.9
Pain	45	7.4
Malposition	3	0.5
Lysis	2	0.3
Other	18	3.0
TOTAL	606	100.0

Table HP29 Primary Bipolar Hip Replacement by Type of Revision


Type of Revision	Number	Percent
Acetabular Component	210	34.7
THR (Femoral/Acetabular)	138	22.8
Bipolar Head and Femoral	78	12.9
Bipolar Only	72	11.9
Femoral Component	35	5.8
Cement Spacer	32	5.3
Removal of Prostheses	15	2.5
Head Only	14	2.3
Minor Components	12	2.0
TOTAL	606	100.0

Note: Femoral heads are usually replaced when the acetabular component and/or femoral stem is revised

Table HP30 Cumulative Percent Revision of Primary Bipolar Hip Replacement by Age (Primary Diagnosis Fractured NOF)

Age	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<75	213	3528	2.8 (2.3, 3.4)	4.4 (3.7, 5.2)	5.4 (4.6, 6.3)	6.4 (5.5, 7.4)	7.8 (6.7, 9.0)	9.2 (8.0, 10.6)
75-84	236	6987	2.2 (1.8, 2.5)	3.0 (2.6, 3.5)	3.4 (2.9, 3.9)	4.1 (3.6, 4.7)	4.3 (3.8, 5.0)	5.6 (4.8, 6.5)
≥85	157	6971	2.1 (1.7, 2.5)	2.2 (1.9, 2.7)	2.9 (2.4, 3.4)	3.3 (2.8, 3.9)	3.6 (2.9, 4.3)	4.7 (3.4, 6.5)
TOTAL	606	17486						

Figure HP21 Cumulative Percent Revision of Primary Bipolar Hip Replacement by Age (Primary Diagnosis Fractured NOF)

HR - adjusted for gender

<75 vs ≥85 0 - 1Yr: HR=1.43 (1.10, 1.87),p=0.008

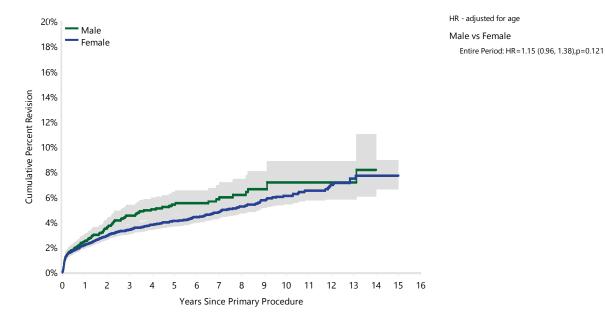
1Yr - 1.5Yr: HR=3.73 (2.07, 6.73),p<0.001

1.5Yr+: HR=2.28 (1.68, 3.11),p<0.001

75-84 vs ≥85

Entire Period: HR=1.19 (0.97, 1.46),p=0.096

<75 vs 75-84

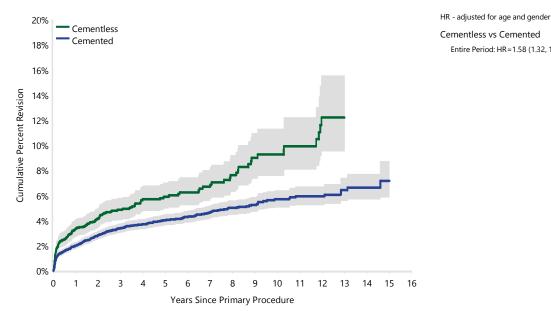

Entire Period: HR=1.57 (1.31, 1.90),p<0.001

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<75	3528	2701	2211	1919	1479	1150	719
75-84	6987	5102	4078	3380	2324	1539	733
≥85	6971	4247	3011	2116	1063	502	146

Gender	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Male	168	4905	2.5 (2.1, 3.0)	3.6 (3.0, 4.2)	4.5 (3.8, 5.4)	5.4 (4.6, 6.4)	5.8 (4.9, 6.9)	7.2 (5.8, 8.8)
Female	438	12581	2.2 (1.9, 2.5)	2.9 (2.6, 3.3)	3.4 (3.1, 3.8)	4.1 (3.7, 4.5)	4.8 (4.3, 5.3)	6.1 (5.4, 6.8)
TOTAL	606	17486						

Table HP31 Cumulative Percent Revision of Primary Bipolar Hip Replacement by Gender (Primary Diagnosis Fractured NOF)

Figure HP22 Cumulative Percent Revision of Primary Bipolar Hip Replacement by Gender (Primary Diagnosis Fractured NOF)


Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Male	4905	2950	2111	1569	913	565	276
Female	12581	9100	7189	5846	3953	2626	1322

Entire Period: HR=1.58 (1.32, 1.89),p<0.001

Femoral Fixation	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cementless	162	3192	3.3 (2.7, 4.1)	4.2 (3.5, 5.0)	4.9 (4.1, 5.8)	5.9 (5.0, 7.0)	6.7 (5.6, 8.0)	9.3 (7.6, 11.3)
Cemented	444	14294	2.0 (1.8, 2.3)	2.8 (2.5, 3.1)	3.4 (3.1, 3.8)	4.0 (3.6, 4.5)	4.6 (4.2, 5.2)	5.7 (5.1, 6.4)
TOTAL	606	17486						

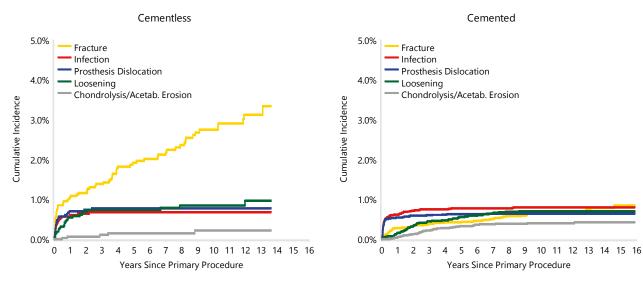

Table HP32 Cumulative Percent Revision of Primary Bipolar Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)

Figure HP23 Cumulative Percent Revision of Primary Bipolar Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cementless	3192	2273	1794	1428	889	563	281
Cemented	14294	9777	7506	5987	3977	2628	1317

Figure HP24 Cumulative Incidence Revision Diagnosis of Primary Bipolar Hip Replacement by Femoral Fixation (Primary **Diagnosis Fractured NOF)**

Primary Total Hip Replacement

CLASSES OF TOTAL HIP REPLACEMENT

The Registry sub-categorises primary total hip replacement into three classes. These are defined by the type of femoral prosthesis used. A total hip procedure replaces both the femoral and acetabular articular surfaces.

Total conventional involves acetabular replacement combined with resection of the femoral head and replacement with a stemmed femoral prosthesis and femoral head prosthesis.

Total resurfacing involves acetabular replacement and the use of a femoral prosthesis that replaces the femoral articular surface without resecting the head.

Thrust plate involves acetabular replacement combined with resection of the femoral head and replacement with a femoral component that has a lateral fixation plate and femoral head prosthesis.

USE OF TOTAL HIP REPLACEMENT

The Registry has recorded 400,331 primary total hip replacement procedures. Of these, total conventional is the most common class (95.8%) followed by total resurfacing (4.2%) (Table HT1). Previously, the Registry has included the thrust plate in primary total hip replacement, but as there has been no use for four years and the use of the thrust plate is less than 0.1% of all primary total hip replacements, it has been excluded from further analysis.

Table HT1 Primary Total Hip Replacement by Class

Total Hip Class	Number	Percent
Total Conventional	383123	95.8
Total Resurfacing	16950	4.2
TOTAL	400073	100.0

Note: Excludes 258 thrust plate procedures

Detailed information on Thrust Plate is available in the supplementary report 'Outcome of Classes No Longer Used - Hip and Knee Arthroplasty' on the AOANJRR website:

https://aoanjrr.sahmri.com/annual-reports-2017.

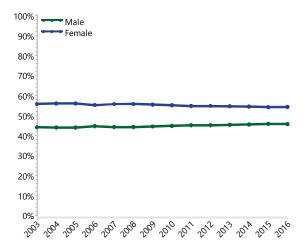
Osteoarthritis is the principal diagnosis for primary total hip replacement (88.8%).

Total conventional hip replacement (all bearing surfaces included) has a lower cumulative percent revision compared to total resurfacing at 16 years (Table HT2).

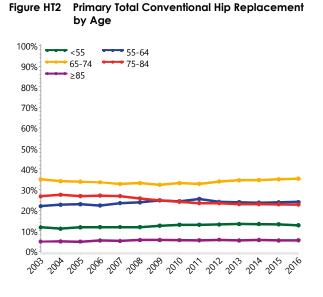
Detailed demographic information on primary total hip replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2017.

Total Hip Class	N Revised		1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Total Conventional	17003	383123	1.7 (1.6, 1.7) 2.8 (2.7, 2.8)	3.8 (3.7, 3.9)	6.6 (6.5, 6.8)	9.8 (9.5, 10.0)	10.4 (10.0, 10.7)
Total Resurfacing	1565	16950	1.7 (1.5, 1.9) 3.3 (3.0, 3.6)	5.1 (4.8, 5.4)	9.8 (9.3, 10.3)	13.5 (12.7, 14.3)	14.2 (13.0, 15.5)
TOTAL	18568	400073						

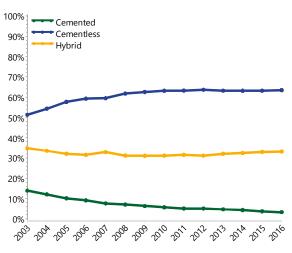
PRIMARY TOTAL CONVENTIONAL HIP REPLACEMENT


DEMOGRAPHICS

There have been 383,123 total conventional hip replacement procedures reported to the Registry. This is an additional 36,341 procedures compared to the previous report.


Primary total conventional hip replacement continues to increase. In 2016, there were 5.5% more procedures than in 2015 and 109.7% more than in 2003.

Total conventional hip replacement is more common in females (55.0%). This proportion has remained stable since 2003 (Figure HT1).



The mean age of patients is 67.7 years. There has been minimal change in the proportion of patients aged 55 to 64 years (21.9% in 2003 to 24.0% in 2016) and younger than 55 years (11.7% in 2003 to 12.6% in 2016) (Table HT3 and Figure HT2).

The use of cementless fixation has increased from 51.3% in 2003 to 63.4% in 2016. Cemented fixation has declined from 13.9% to 3.4% and hybrid fixation from 34.8% to 33.2% over the same period (Figure HT3).

Figure HT3 Primary Total Conventional Hip Replacement by Fixation

Table HT3 Age and Gender of Primary Total Conventional Hip Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	172435	45.0%	13	102	67	66.3	11.5
Female	210688	55.0%	11	101	70	68.9	11.4
TOTAL	383123	100.0%	11	102	69	67.7	11.5

The Exeter V40, Corail, Quadra-H, and Polarstem are the most used femoral stems for total conventional hip replacement (Table HT4). In 2016, 66.0% of total conventional hip replacements used stems in the 10 most used femoral component list. Seven of these are cementless. The 10 most used cemented and cementless stems are listed in Tables HT5 and HT6, respectively. In 2016, the 10 most used cemented stems accounted for 92.8% of cemented stems accounted for 70.5% of cementless stems accounted for 70.5% of cementless stem procedures. The Trident (Shell), Pinnacle, and R3 remain the most frequently used acetabular prostheses for total conventional hip replacement. In 2016, 78.5% of total conventional hip procedures used acetabular components from the 10 most used list (Table HT7). All of the acetabular components in this list are cementless prostheses. The 10 most used cemented and cementless acetabular prostheses are listed separately in Tables HT8 and HT9.

Table HT4	10 Most Used Femoral	Components in Primary	Total Conventional Hip Replacement
-----------	----------------------	------------------------------	------------------------------------

2003	2013	2014	2015	2016	
N Model					
3901 Exeter V40	6932 Exeter V40	7406 Exeter V40	7455 Exeter V40	7419 Exeter V40	
1029 ABGII	4668 Corail	5036 Corail	5411 Corail	5815 Corail	
1000 Synergy	2259 Quadra-H	2916 Quadra-H	2828 Quadra-H	2736 Quadra-H	
819 Alloclassic	1462 CPT	1565 CPT	1517 Polarstem	1813 Polarstem	
809 VerSys	1048 Polarstem	1201 Polarstem	1295 CPT	1315 Accolade II	
780 Spectron EF	813 Secur-Fit	841 Anthology	905 Accolade II	1216 CPT	
713 Secur-Fit Plus	785 CPCS	726 CPCS	842 Taperloc	982 Taperloc	
618 Omnifit	765 Accolade I	716 Secur-Fit	811 CPCS	790 CPCS	
565 C-Stem	731 Synergy	715 Taperloc	778 Anthology	780 Tri-Fit TS	
485 S-Rom	643 Anthology	574 Synergy	579 Tri-Fit TS	779 AMIStem H	
10 Most Used					
10719 (10) 62.8%	20106 (10) 68.0%	21696 (10) 67.3%	22421 (10) 66.1%	23645 (10) 66.0%	
Remainder					
6354 (73) 37.2%	9463 (109) 32.0%	10539 (109) 32.7%	11521 (98) 33.9%	12160 (91) 34.0%	
TOTAL					
17073 (83) 100.0%	29569 (119) 100.0%	32235 (119) 100.0%	33942 (108) 100.0%	35805 (101) 100.0%	

Table HT5 10 Most Used Cemented Femoral Components in Primary Total Conventional Hip Replacement

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
3901 Exeter V40	6932 Exeter V40	7406 Exeter V40	7455 Exeter V40	7419 Exeter V40
780 Spectron EF	1462 CPT	1565 CPT	1295 CPT	1216 CPT
565 C-Stem	785 CPCS	726 CPCS	811 CPCS	790 CPCS
477 CPT	327 C-Stem AMT	381 C-Stem AMT	412 C-Stem AMT	612 C-Stem AMT
445 Elite Plus	317 Spectron EF	276 Spectron EF	332 MS 30	506 Short Exeter V40
358 MS 30	246 Omnifit	237 MS 30	286 Quadra-C	409 Quadra-C
338 Omnifit	165 MS 30	189 Quadra-C	271 Evolve	363 Evolve
321 Charnley	118 Quadra-C	185 Omnifit	263 Short Exeter V40	352 MS 30
245 CPCS	106 C-Stem	157 Evolve	241 Spectron EF	224 Taper Fit
123 Exeter	74 Absolut	123 Absolut	161 Taper Fit	180 Spectron EF
10 Most Used				
7553 (10) 91.7%	10532 (10) 97.2%	11245 (10) 95.3%	11527 (10) 92.9%	12071 (10) 92.8%
Remainder				
680 (26) 8.3%	305 (29) 2.8%	558 (28) 4.7%	885 (24) 7.1%	931 (17) 7.2%
TOTAL				
8233 (36) 100.0%	10837 (39) 100.0%	11803 (38) 100.0%	12412 (34) 100.0%	13002 (27) 100.0%

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
1029 ABGII	4668 Corail	5036 Corail	5411 Corail	5815 Corail
980 Synergy	2259 Quadra-H	2916 Quadra-H	2828 Quadra-H	2736 Quadra-H
819 Alloclassic	1048 Polarstem	1201 Polarstem	1517 Polarstem	1813 Polarstem
739 VerSys	813 Secur-Fit	841 Anthology	905 Accolade II	1315 Accolade II
713 Secur-Fit Plus	765 Accolade I	716 Secur-Fit	842 Taperloc	982 Taperloc
485 S-Rom	731 Synergy	715 Taperloc	778 Anthology	780 Tri-Fit TS
482 Secur-Fit	643 Anthology	574 Synergy	579 Tri-Fit TS	779 AMIStem H
376 Corail	609 Taperloc	530 M/L Taper	565 Avenir	687 Anthology
334 Accolade I	448 Alloclassic	523 Accolade II	551 Secur-Fit	638 Metafix
334 Mallory-Head	433 Summit	477 Summit	474 Metafix	537 Paragon
10 Most Used				
6291 (10) 71.2%	12417 (10) 66.3%	13529 (10) 66.2%	14450 (10) 67.1%	16082 (10) 70.5%
Remainder				
2549 (47) 28.8%	6315 (82) 33.7%	6903 (81) 33.8%	7080 (74) 32.9%	6721 (72) 29.5%
TOTAL				
8840 (57) 100.0%	18732 (92) 100.0%	20432 (91) 100.0%	21530 (84) 100.0%	22803 (82) 100.0%

Table HT6 10 Most Used Cementless Femoral Components in Primary Total Conventional Hip Replacement

Table HT7 10 Most Used Acetabular Components in Primary Total Conventional Hip Replacement

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
3986 Trident (Shell)	7020 Trident (Shell)	7346 Trident (Shell)	7463 Trident (Shell)	7762 Trident (Shell)
1748 Reflection (Shell)	5653 Pinnacle	6157 Pinnacle	6606 Pinnacle	6882 Pinnacle
1524 Trilogy	3340 R3	3448 R3	3632 R3	3717 R3
955 Vitalock	2133 Versafitcup CC	2820 Versafitcup CC	3014 Versafitcup CC	2731 Versafitcup CC
907 Duraloc	1502 Continuum	1492 Continuum	1573 Trinity	1969 Trinity
827 ABGII	1022 Trilogy	1322 Trinity	1359 Continuum	1297 Continuum
793 Allofit	778 Trinity	1092 Trilogy	884 Trilogy	1123 Mpact
729 Mallory-Head	644 Allofit	652 Exeter X3 Rimfit	768 Trident/Tritanium (Shell)	1093 Trident/Tritanium (Shell)
539 Contemporary	630 Trident/Tritanium (Shell)	648 Trident/Tritanium (Shell)	633 Acetabular Shell (Global)	786 Logical G
537 Pinnacle	563 Delta-TT	611 Allofit	608 Exeter X3 Rimfit	746 Acetabular Shell (Global)
10 Most Used				
12545 (10) 73.5%	23285 (10) 78.7%	25588 (10) 79.4%	26540 (10) 78.2%	28106 (10) 78.5%
Remainder				
4528 (69) 26.5%	6284 (69) 21.3%	6647 (77) 20.6%	7402 (67) 21.8%	7699 (68) 21.5%
TOTAL				
17073 (79) 100.0%	29569 (79) 100.0%	32235 (87) 100.0%	33942 (77) 100.0%	35805 (78) 100.0%

2003	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
539 Contemporary	544 Exeter X3 Rimfit	652 Exeter X3 Rimfit	608 Exeter X3 Rimfit	535 Exeter X3 Rimfit	
256 Exeter	222 Contemporary	234 Contemporary	181 Contemporary	138 Contemporary	
251 Reflection (Cup)	130 Marathon	135 Marathon	130 Marathon	116 Marathon	
227 Exeter Contemporary	111 Brunswick	103 ZCA	104 ZCA	104 Exeter Contemporary	
199 Charnley Ogee	108 Exeter Contemporary	75 Reflection (Cup)	81 Reflection (Cup)	76 ZCA	
149 Elite Plus LPW	97 ZCA	58 Exeter Contemporary	52 Exeter Contemporary	65 Reflection (Cup)	
130 Low Profile Cup	82 Reflection (Cup)	37 Brunswick	21 CCB	36 Muller	
110 Elite Plus Ogee	28 Low Profile Cup	19 CCB	20 Low Profile Cup	24 Avantage	
102 Charnley	19 CCB	19 Low Profile Cup	17 Muller	17 Low Profile Cup	
90 ZCA	12 Durasul	12 Polarcup	12 Polarcup	15 Polarcup	
10 Most Used					
2053 (10) 85.4%	1353 (10) 97.3%	1344 (10) 94.7%	1226 (10) 96.2%	1126 (10) 92.8%	
Remainder					
351 (16) 14.6%	37 (11) 2.7%	75 (17) 5.3%	49 (14) 3.8%	87 (14) 7.2%	
TOTAL					
2404 (26) 100.0%	1390 (21) 100.0%	1419 (27) 100.0%	1275 (24) 100.0%	1213 (24) 100.0%	

Table HT8 10 Most Used Cemented Acetabular Components in Primary Total Conventional Hip Replacement

Table HT9 10 Most Used Cementless Acetabular Components in Primary Total Conventional Hip Replacement

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
3986 Trident (Shell)	7020 Trident (Shell)	7346 Trident (Shell)	7462 Trident (Shell)	7760 Trident (Shell)
1748 Reflection (Shell)	5653 Pinnacle	6157 Pinnacle	6606 Pinnacle	6882 Pinnacle
1524 Trilogy	3340 R3	3448 R3	3632 R3	3717 R3
955 Vitalock	2133 Versafitcup CC	2820 Versafitcup CC	3013 Versafitcup CC	2731 Versafitcup CC
907 Duraloc	1502 Continuum	1492 Continuum	1573 Trinity	1969 Trinity
827 ABGII	1022 Trilogy	1322 Trinity	1359 Continuum	1297 Continuum
793 Allofit	778 Trinity	1092 Trilogy	884 Trilogy	1123 Mpact
729 Mallory-Head	644 Allofit	648 Trident/Tritanium (Shell)	768 Trident/Tritanium (Shell)	1093 Trident/Tritanium (Shell)
537 Pinnacle	629 Trident/Tritanium (Shell)	611 Allofit	633 Acetabular Shell (Global)	786 Logical G
521 Fitmore	563 Delta-TT	454 Acetabular Shell (Global)	538 G7	746 Acetabular Shell (Global)
10 Most Used				
12527 (10) 85.4%	23284 (10) 82.6%	25390 (10) 82.4%	26468 (10) 81.0%	28104 (10) 81.2%
Remainder				
2142 (43) 14.6%	4895 (54) 17.4%	5426 (55) 17.6%	6199 (52) 19.0%	6488 (52) 18.8%
TOTAL				
14669 (53) 100.0%	28179 (64) 100.0%	30816 (65) 100.0%	32667 (62) 100.0%	34592 (62) 100.0%

OUTCOME FOR ALL DIAGNOSES

Since 2014, the Registry has excluded large head metal/metal bearings from many analyses of primary total conventional hip replacement outcomes. It is a bearing that is no longer used; it accounts for an increasingly small proportion of procedures (currently 4.3%) and it has a much higher revision rate than any other bearing used (30.0% at 15 years). In addition, it was also preferentially used in younger patients with cementless fixation and with particular femoral stem and acetabular prosthesis combinations.

Consequently, in specific analyses it has the potential to be a major confounding factor. It is almost always excluded from general analyses. In prosthesis specific analyses, prostheses with large head metal/metal bearings are identified separately. The Registry clearly identifies whether large head metal/metal bearings are excluded in any analyses. Osteoarthritis is the principal diagnosis (88.5%), followed by fractured neck of femur (4.3%), osteonecrosis (3.3%), developmental dysplasia (1.2%) and rheumatoid arthritis (1.0%) (Table HT10).

Osteoarthritis has a lower rate of revision compared to fractured neck of femur, osteonecrosis and rheumatoid arthritis. It also has a lower rate of revision compared to developmental dysplasia. However, this difference is only evident in the first month (Figure HT4).

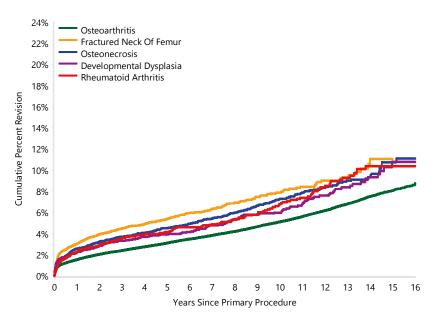

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Osteoarthritis	11610	324627	1.5 (1.5, 1.6)	2.4 (2.4, 2.5)	3.1 (3.0, 3.2)	5.1 (5.0, 5.2)	8.1 (7.8, 8.3)	8.8 (8.4, 9.1)
Fractured Neck Of Femur	763	15865	3.0 (2.8, 3.3)	4.5 (4.1, 4.8)	5.4 (5.0, 5.8)	7.9 (7.2, 8.6)	11.1 (9.3, 13.2)	
Osteonecrosis	623	12051	2.6 (2.3, 2.9)	3.7 (3.4, 4.1)	4.5 (4.1, 4.9)	7.3 (6.6, 8.0)	10.8 (9.5, 12.2)	11.1 (9.7, 12.7)
Developmental Dysplasia	228	4556	2.2 (1.8, 2.7)	3.3 (2.8, 3.9)	3.9 (3.4, 4.6)	6.0 (5.2, 6.9)	10.8 (8.9, 13.1)	10.8 (8.9, 13.1)
Rheumatoid Arthritis	205	3733	2.2 (1.8, 2.8)	3.5 (3.0, 4.2)	4.2 (3.5, 4.9)	6.8 (5.8, 7.9)	10.4 (8.7, 12.3)	10.4 (8.7, 12.3)
Tumour	103	2077	4.0 (3.2, 5.1)	6.6 (5.2, 8.3)	8.3 (6.5, 10.5) 1	3.4 (9.7, 18.4)		
Other (5)	232	3915	3.4 (2.9, 4.0)	4.8 (4.2, 5.6)	5.9 (5.1, 6.7)	8.4 (7.2, 9.7)	11.0 (9.1, 13.3)	
TOTAL	13764	366824						

Table HT10 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Primary Diagnosis

Note: Only primary diagnoses with over 2,000 procedures have been listed

All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT4 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Primary Diagnosis

HR - adjusted for age and gender

Fractured Neck Of Femur vs Osteoarthritis 0 - 2Wk: HR=1.58 (1.22, 2.04),p<0.001 2Wk - 3Mth: HR=2.44 (2.15, 2.77),p<0.001 3Mth - 1.5Yr: HR=1.87 (1.61, 2.16),p<0.001 1.5Yr+: HR=1.42 (1.25, 1.62),p<0.001

Osteonecrosis vs Osteoarthritis 0 - 6Mth: HR=1.50 (1.31, 1.72),p<0.001 6Mth - 9Mth: HR=2.66 (2.00, 3.54),p<0.001

9Mth - 1.5Yr: HR=1.29 (0.99, 1.68),p=0.059 1.5Yr+: HR=1.25 (1.11, 1.40),p<0.001

Developmental Dysplasia vs Osteoarthritis 0 - 2Wk: HR=2.29 (1.57, 3.34),p<0.001 2Wk - 1Mth: HR=1.62 (1.10, 2.37),p=0.014 1Mth+: HR=1.11 (0.96, 1.30),p=0.170

Rheumatoid Arthritis vs Osteoarthritis Entire Period: HR=1.34 (1.16, 1.53),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Osteoarthritis	324627	285535	219001	162111	61303	6575	1649
Fractured Neck Of Femur	15865	12450	8199	5149	1120	91	17
Osteonecrosis	12051	10463	8045	6051	2435	322	87
Developmental Dysplasia	4556	3994	3138	2459	1212	181	45
Rheumatoid Arthritis	3733	3367	2769	2201	1039	156	57

PROSTHESIS TYPES

There are 2,844 different stem and acetabular combinations for primary total conventional hip replacement recorded by the Registry. This is an additional 157 prosthesis combinations since the previous report. Metal/metal prostheses with head size larger than 32mm are included in these combinations.

The cumulative percent revision of the 115 prosthesis combinations with more than 500 procedures is listed in Tables HT11 to HT13. Although the listed combinations are a small proportion of the possible combinations, they represent 81.5% of all primary total conventional hip replacement procedures.

The 'Other' group consists of all prosthesis combinations with less than 500 procedures. This group accounts for 18.5% of all primary total conventional hip replacement procedures. There are 10 total conventional stem and acetabular combinations with more than 500 procedures using cemented fixation. The MS 30/Low Profile Cup has the lowest 15 year cumulative percent revision of 5.3% (Table HT11).

There are 74 cementless total conventional stem and acetabular combinations listed. The Secur-Fit Plus/Trident (Shell) has the lowest 16 year cumulative percent revision of 4.6% (Table HT12).

There are 31 combinations of total conventional hip replacement prostheses with hybrid fixation. The Exeter/Vitalock has the lowest cumulative percent revision at 16 years (7.3%) (Table HT13).

Femoral Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
CPCS	Reflection (Cup)	60	918	1.2 (0.7, 2.2)	2.3 (1.5, 3.7)	3.2 (2.1, 4.7)	8.7 (6.4, 11.8)		
CPT	ZCA	37	915	0.8 (0.4, 1.6)	2.2 (1.4, 3.5)	3.0 (2.0, 4.4)	5.1 (3.5, 7.4)	8.5 (5.5, 12.9)	
Charnley	Charnley Ogee*	59	709	1.0 (0.5, 2.1)	3.0 (1.9, 4.5)	4.8 (3.4, 6.7)	8.1 (6.1, 10.6)	13.0 (9.7, 17.4)	
Charnley	Charnley*	39	591	0.5 (0.2, 1.6)	1.0 (0.5, 2.3)	2.2 (1.2, 3.8)	6.3 (4.4, 9.0)	11.1 (7.9, 15.5)	
Exeter V40	Contemporary	272	5428	1.7 (1.4, 2.1)	2.9 (2.5, 3.4)	3.6 (3.1, 4.1)	6.3 (5.5, 7.2)	9.2 (7.8, 10.8)	
Exeter V40	Exeter Contemporary	136	3289	1.4 (1.0, 1.9)	2.3 (1.8, 2.9)	3.0 (2.4, 3.7)	4.7 (3.9, 5.7)		
Exeter V40	Exeter X3 Rimfit	64	3027	1.4 (1.0, 1.9)	2.4 (1.9, 3.1)	2.7 (2.1, 3.5)			
Exeter V40	Exeter*	88	1712	0.8 (0.5, 1.4)	1.9 (1.3, 2.7)	3.1 (2.4, 4.1)	4.9 (3.9, 6.2)	8.5 (6.6, 10.9)	
MS 30	Low Profile Cup	20	715	0.6 (0.2, 1.5)	0.7 (0.3, 1.8)	1.1 (0.5, 2.3)	2.6 (1.5, 4.6)	5.3 (3.0, 9.2)	
Spectron EF	Reflection (Cup)	113	1654	1.0 (0.7, 1.7)	1.6 (1.1, 2.4)	2.7 (2.0, 3.6)	7.1 (5.7, 8.8)	16.5 (13.1, 20.6)	
Other (458)		518	9603	1.7 (1.4, 2.0)	2.7 (2.4, 3.1)	3.9 (3.5, 4.3)	6.7 (6.0, 7.4)	10.9 (9.9, 12.1)	11.8 (10.4, 13.3)
TOTAL		1406	28561						

Table HT11 Cumulative Percent Revision of Primary Total Conventional Hip Replacement with Cemented Fixation

Note: In the 'Other' group, there are some cementless components that have been inserted with cement

Only combinations with over 500 procedures have been listed

Procedures using metal/metal prostheses with head size larger than 32mm have been included

* denotes prosthesis combinations with no reported use in primary total conventional hip replacement in 2016

Femoral Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
ABGII	ABGII	253	2968	1.8 (1.4, 2.4)	3.1 (2.5, 3.8)	4.2 (3.5, 5.0)	6.8 (5.9, 7.9)	11.4 (10.1, 13.0)	12.2 (10.5, 14.2)
ABGII	ABGII (Shell/Insert)	62	894	1.5 (0.9, 2.5)	2.3 (1.5, 3.5)	2.9 (2.0, 4.2)	6.8 (5.1, 8.9)		
ABGII	Trident (Shell)	201	2514	2.8 (2.2, 3.5)	4.3 (3.6, 5.2)	5.3 (4.4, 6.2)	8.9 (7.7, 10.3)		
AMIStem H	Versafitcup CC	17	1164	1.0 (0.6, 2.0)	2.4 (1.1, 5.3)	3.5 (1.5, 7.8)			
Accolade I	Trident (Shell)	451	9248	1.7 (1.5, 2.0)	3.0 (2.7, 3.4)	3.8 (3.4, 4.2)	5.8 (5.3, 6.4)		
Accolade I	Trident/ Tritanium (Shell)*	26	756	1.3 (0.7, 2.4)	2.4 (1.5, 3.8)	3.7 (2.4, 5.5)			
Accolade II	Trident (Shell)	36	2408	1.4 (0.9, 2.0)	2.1 (1.5, 3.0)				
Alloclassic	Allofit	268	5700	1.4 (1.2, 1.8)	2.3 (1.9, 2.7)	3.0 (2.6, 3.5)	5.3 (4.7, 6.0)	8.8 (7.3, 10.5)	
Alloclassic	Durom ^{MoM} *	86	621	1.3 (0.7, 2.6)	5.0 (3.5, 7.0)	7.1 (5.3, 9.4)	15.4 (12.5, 19.0)		
Alloclassic	Fitmore	131	1883	3.3 (2.6, 4.2)	4.7 (3.8, 5.8)	5.7 (4.7, 6.9)	7.6 (6.4, 9.1)	10.1 (7.6, 13.3)	
Alloclassic	Trabecular Metal (Shell)	41	1064	2.4 (1.6, 3.5)	3.0 (2.1, 4.2)	3.8 (2.8, 5.2)	4.3 (3.1, 5.8)		
Alloclassic	Trilogy	17	943	0.6 (0.3, 1.4)	0.9 (0.4, 1.8)	1.2 (0.6, 2.1)	3.0 (1.8, 5.2)		
Anthology	R3	118	5441	1.7 (1.4, 2.1)	2.0 (1.7, 2.5)	2.3 (1.9, 2.8)			
Anthology	Reflection (Shell)	35	990	1.8 (1.2, 2.9)	2.2 (1.4, 3.3)	3.0 (2.1, 4.4)	4.4 (3.1, 6.1)		
Apex	Fin II*	43	1008	1.9 (1.2, 2.9)	2.5 (1.7, 3.7)	3.8 (2.8, 5.3)	5.6 (4.1, 7.6)		
Avenir	Continuum	23	1114	2.0 (1.3, 3.0)	2.1 (1.4, 3.2)	2.1 (1.4, 3.2)			
Avenir	Trilogy	6	601	0.8 (0.3, 2.0)	1.0 (0.5, 2.3)	1.0 (0.5, 2.3)			
C2	Delta-TT	12		1.1 (0.5, 2.3)	2.0 (1.1, 3.7)	3.0 (1.6, 5.5)			
CLS	Allofit	53	860	1.5 (0.9, 2.6)	3.4 (2.4, 4.9)	3.8 (2.7, 5.4)	6.5 (4.9, 8.6)		
CLS	Fitmore	49	775	2.1 (1.3, 3.4)	4.2 (3.0, 6.0)	4.7 (3.4, 6.6)	6.0 (4.4, 8.2)	9.9 (7.3, 13.4)	
Citation	Trident (Shell)*	48	1147	1.7 (1.1, 2.7)	2.5 (1.7, 3.5)	3.2 (2.3, 4.4)	4.0 (3.0, 5.3)	5.1 (3.7, 7.0)	
Citation	Vitalock*	46	555	0.5 (0.2, 1.7)	2.2 (1.2, 3.8)	2.8 (1.7, 4.5)	6.7 (4.8, 9.3)	11.6 (8.5, 15.6)	
Corail	ASR ^{MoM} *	1205	2901	2.2 (1.7, 2.8) 1	11.1 (10.0, 12.4) 2		45.6 (43.6, 47.7)		
Corail	DeltaMotion	21	1046	1.1 (0.6, 2.0)	1.8 (1.1, 2.9)	2.8 (1.7, 4.7)			
Corail	Duraloc*	78	1433	1.4 (0.9, 2.2)	2.3 (1.6, 3.2)	3.0 (2.2, 4.0)	6.2 (4.8, 7.9)		
Corail	Pinnacle	1082	37501	1.8 (1.6, 1.9)	2.7 (2.5, 2.8)	3.3 (3.1, 3.5)	5.3 (4.8, 5.9)		
Corail	Pinnacle ^{MoM} *	102	966	2.2 (1.4, 3.3)	3.7 (2.6, 5.1)	5.9 (4.6, 7.6)	12.9 (10.5, 15.9)		
Epoch	Trilogy*	43	1021	2.5 (1.7, 3.6)	3.4 (2.4, 4.7)	3.7 (2.7, 5.0)	4.2 (3.2, 5.7)		
F2L	SPH-Blind*	56	615	3.1 (2.0, 4.8)	4.9 (3.5, 7.0)	6.1 (4.5, 8.3)	7.6 (5.7, 10.0)	11.3 (8.5, 15.1)	
H-Max	Delta-TT	27	1039	1.6 (1.0, 2.6)	3.0 (2.0, 4.3)	3.3 (2.2, 5.0)			
M/L Taper	Allofit	17	684	1.9 (1.1, 3.3)	2.3 (1.3, 3.8)	2.5 (1.5, 4.2)			
M/L Taper	Continuum	33	1141	2.2 (1.5, 3.2)	3.0 (2.1, 4.3)	3.4 (2.4, 4.9)			
M/L Taper	Trilogy	24	769	1.4 (0.8, 2.6)	1.8 (1.0, 3.0)	3.2 (2.1, 5.0)	4.4 (2.9, 6.7)		
M/L Taper Kinectiv	Continuum	60	2046	1.9 (1.4, 2.6)	2.9 (2.3, 3.8)	3.3 (2.6, 4.3)			
Mallory- Head	Mallory- Head	169	2970	1.8 (1.4, 2.4)	2.3 (1.8, 2.9)	3.1 (2.5, 3.8)	5.1 (4.3, 6.1)	10.6 (8.8, 12.7)	11.0 (9.1, 13.2)
Metafix	Trinity	43	2147	1.9 (1.4, 2.6)	2.4 (1.8, 3.2)	2.4 (1.8, 3.2)			
MiniHip	Trinity	17	683	2.3 (1.4, 3.8)	2.7 (1.7, 4.3)				
Nanos	R3	7	657	0.8 (0.3, 1.8)	1.1 (0.5, 2.3)	1.1 (0.5, 2.3)			
Natural Hip	Fitmore*	40		1.0 (0.5, 1.9)	1.6 (0.9, 2.7)	2.4 (1.6, 3.7)	4.7 (3.4, 6.4)	5.4 (3.9, 7.4)	
Omnifit	Secur-Fit*	62	508	3.2 (1.9, 5.1)	5.0 (3.4, 7.3)	6.6 (4.7, 9.2)	10.8 (8.3, 14.0)	14.8 (11.5, 18.9)	
Omnifit	Trident (Shell)	76		1.9 (1.3, 2.8)	3.2 (2.3, 4.3)	4.0 (3.1, 5.3)	5.5 (4.3, 7.0)		
Origin	Logical G	7		1.3 (0.6, 2.8)					
-	-								

Table HT12 Cumulative Percent Revision of Primary Total Conventional Hip Replacement with Cementless Fixation

Paragon S Polarstem E Polarstem R Profemur L D Quadra-H M Quadra-H V S-Rom D S-Rom P SL-Plus E SL-Plus R Secur-Fit D Secur-Fit T Plus T	Acetabular Shell (Global) EP-Fit Plus R3	7	744	0.7 (0.3, 1.6)					
PolarstemRProfemur LDQuadra-HTQuadra-HVQuadra-HVS-RomDS-RomPSL-PlusRSecur-FitDSecur-FitTSecur-FitPPlusA	२३	~		0.7 (0.5, 1.0)					
Profemur LDQuadra-HMQuadra-HMQuadra-HMS-RomDS-RomMS-RomMS-RomMS-RomMS-RomMS-RomMS-RomMS-RomMS-RomMS-RomMSecur-FitMPlusMSummitA		3	1029	0.3 (0.1, 0.9)	0.3 (0.1, 0.9)				
Quadra-HMQuadra-HTQuadra-HVS-RomDS-RomPSL-PlusESL-PlusRSecur-FitDSecur-FitTPlusTSummitA		129	5821	1.8 (1.5, 2.2)	2.5 (2.1, 3.0)	2.9 (2.4, 3.5)			
Quadra-HTQuadra-HVQuadra-HVS-RomDS-RomPSL-PlusESL-PlusRSecur-FitDSecur-FitTSecur-FitPPlusSSummitA	Dynasty	22	770	3.1 (2.0, 4.7)					
Quadra-HVS-RomDS-RomPSL-PlusESL-PlusRSecur-FitDSecur-FitTSecur-FitPlusSummitA	Mpact	27	1476	1.6 (1.0, 2.5)	2.6 (1.6, 4.0)	3.4 (2.1, 5.6)			
S-Rom C S-Rom P SL-Plus E SL-Plus R Secur-Fit D Secur-Fit T Secur-Fit T Plus T	Trident (Shell)	11	564	1.3 (0.6, 2.7)	2.3 (1.2, 4.5)	2.8 (1.5, 5.3)			
S-Rom C S-Rom P SL-Plus E SL-Plus R Secur-Fit D Secur-Fit T Secur-Fit T Plus T Summit A	Versafitcup CC	325	12882	1.8 (1.6, 2.0)	2.6 (2.3, 2.9)	3.0 (2.7, 3.4)			
SL-Plus E SL-Plus R Secur-Fit D Secur-Fit T Secur-Fit Plus T Summit A	Duraloc Option*	33	666	1.5 (0.8, 2.8)	2.4 (1.5, 3.9)	3.4 (2.2, 5.0)	4.7 (3.3, 6.6)	5.3 (3.8, 7.5)	
SL-Plus R Secur-Fit D Secur-Fit T Secur-Fit Plus T Summit A	Pinnacle	146	3181	2.3 (1.9, 2.9)	3.6 (3.0, 4.4)	4.2 (3.5, 5.0)	6.0 (5.0, 7.1)		
Secur-Fit D Secur-Fit T Secur-Fit Plus T Summit A	EP-Fit Plus	110	2288	1.7 (1.2, 2.3)	2.7 (2.1, 3.5)	3.5 (2.8, 4.3)	5.5 (4.5, 6.6)		
Secur-Fit T Secur-Fit Plus T Summit A	रउ	61	1565	2.1 (1.5, 2.9)	3.6 (2.7, 4.7)	3.9 (3.0, 5.1)			
Secur-Fit Plus Summit A	DeltaMotion	21	761	0.7 (0.3, 1.6)	2.1 (1.3, 3.4)	2.5 (1.6, 4.0)			
Plus I Summit A	Trident (Shell)	333	9228	1.7 (1.4, 2.0)	2.7 (2.4, 3.1)	3.3 (3.0, 3.7)	4.4 (3.9, 5.0)	5.6 (4.8, 6.6)	
	Trident (Shell)	181	5778	1.2 (1.0, 1.5)	1.9 (1.6, 2.3)	2.3 (2.0, 2.8)	3.4 (2.9, 4.0)	4.6 (3.8, 5.6)	4.6 (3.8, 5.6)
Summit P	ASR ^{MoM} ∗	456	1118	1.2 (0.7, 2.0)	6.5 (5.2, 8.1)	19.7 (17.5, 22.2)	43.9 (40.7, 47.1)		
	Pinnacle	97	4377	1.2 (0.9, 1.6)	1.9 (1.5, 2.3)	2.1 (1.7, 2.6)	3.1 (2.4, 4.0)		
Summit P	Pinnacle ^{MoM} *	62	784	1.5 (0.9, 2.7)	2.2 (1.4, 3.5)	3.4 (2.3, 4.9)	8.8 (6.8, 11.2)		
Synergy B	BHR ^{MoM} *	85	819	1.6 (0.9, 2.7)	3.1 (2.1, 4.5)	4.8 (3.6, 6.6)	12.4 (10.0, 15.3)		
Synergy R	२३	104	4266	1.6 (1.3, 2.1)	2.3 (1.8, 2.8)	2.7 (2.2, 3.2)			
Syneray	Reflection (Shell)	336	7922	1.6 (1.3, 1.9)	2.4 (2.1, 2.8)	2.7 (2.4, 3.1)	4.0 (3.6, 4.5)	6.6 (5.7, 7.6)	6.6 (5.7, 7.6)
Taperloc E	Exceed	55	2203	1.5 (1.0, 2.1)	2.4 (1.8, 3.1)	2.6 (2.0, 3.4)			
Taperloc G	G7	20	911	2.4 (1.5, 3.7)					
Taperloc N	M2a ^{MoM} *	58	512	1.8 (0.9, 3.4)	4.4 (2.9, 6.5)	7.4 (5.4, 10.1)	12.2 (9.5, 15.6)		
Taperloc N	Mallory-Head	71	1779	1.9 (1.3, 2.7)	2.6 (2.0, 3.5)	3.1 (2.3, 4.1)	5.2 (4.0, 6.8)		
Taperloc R	Recap ^{MoM} *	47	500	2.4 (1.4, 4.2)	4.3 (2.8, 6.5)	6.2 (4.4, 8.8)	10.9 (8.2, 14.4)		
Taperloc R	Regenerex	13	571	1.6 (0.8, 3.1)	2.3 (1.3, 4.0)	2.7 (1.5, 4.7)			
Trabecular Metal	Continuum	42	680	5.0 (3.6, 7.0)	6.1 (4.5, 8.2)	6.3 (4.6, 8.4)			
Tri-Fit TS T	Trinity	22	2059	1.1 (0.7, 1.7)	1.2 (0.8, 1.8)				
Tri-Lock D	DeltaMotion	8	801	0.6 (0.3, 1.5)	0.8 (0.3, 1.7)	1.2 (0.6, 2.4)			
Tri-Lock P	Pinnacle	14	675	1.5 (0.8, 2.8)	2.4 (1.4, 4.0)	2.4 (1.4, 4.0)			
VerSys T	Trilogy	212	4423	2.5 (2.1, 3.0)	3.3 (2.8, 3.9)	3.8 (3.3, 4.4)	4.9 (4.3, 5.6)	6.0 (5.1, 7.1)	
twinSys R	RM Cup	27	884	2.6 (1.7, 3.9)	3.3 (2.2, 4.9)				
Other (1356)		2876	43320	2.3 (2.2, 2.4)	3.9 (3.7, 4.1)	5.4 (5.2, 5.6)	9.4 (9.0, 9.7)	13.1 (12.4, 13.8)	14.0 (12.9, 15.1)
TOTAL									

Note: Only combinations with over 500 procedures have been listed

Procedures using metal/metal prostheses with head size larger than 32mm have been included ^{MoM} denotes metal/metal prostheses with head size larger than 32mm

* denotes prosthesis combinations with no reported use in primary total conventional hip replacement in 2016

Femoral Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
C-Stem	Duraloc*	78	981	2.4 (1.6, 3.5)	3.1 (2.2, 4.4)	4.0 (2.9, 5.5)	7.3 (5.7, 9.4)	12.3 (9.4, 15.9)	
C-Stem	Pinnacle	27	840	1.7 (1.0, 2.9)	2.3 (1.4, 3.6)	2.8 (1.8, 4.3)	4.3 (2.8, 6.4)		
C-Stem AMT	Pinnacle	44	2267	1.0 (0.7, 1.5)	2.1 (1.5, 3.0)	2.7 (2.0, 3.8)			
CPCS	R3	112	3905	2.1 (1.7, 2.6)	2.9 (2.4, 3.6)	3.4 (2.8, 4.2)			
CPCS	Reflection (Shell)	86	2985	0.9 (0.6, 1.3)	1.3 (0.9, 1.7)	1.7 (1.3, 2.2)	4.0 (3.1, 5.0)		
CPT	Allofit	27	1138	1.2 (0.7, 2.0)	1.7 (1.1, 2.7)	3.0 (2.0, 4.4)	3.4 (2.2, 5.2)		
CPT	Continuum	97	2521	2.9 (2.3, 3.7)	3.9 (3.2, 4.8)	4.5 (3.7, 5.6)			
СРТ	Trabecular Metal (Shell)	76	1612	2.5 (1.8, 3.4)	3.8 (2.9, 5.0)	5.0 (3.9, 6.4)	7.3 (5.6, 9.5)		
CPT	Trilogy	295	7786	1.8 (1.5, 2.1)	2.7 (2.3, 3.1)	3.5 (3.0, 3.9)	5.1 (4.5, 5.8)	6.4 (5.4, 7.4)	
E2	C2	11	521	1.4 (0.7, 2.9)	1.9 (1.0, 3.7)	3.3 (1.6, 6.6)			
Elite Plus	Duraloc*	116	1078	2.0 (1.3, 3.0)	3.6 (2.7, 5.0)	5.4 (4.2, 7.0)	9.7 (7.9, 11.8)	15.8 (13.0, 19.2)	
Evolve	Logical G	4	653	0.7 (0.3, 1.8)					
Exeter	Vitalock*	69	1218	1.6 (1.0, 2.5)	2.3 (1.6, 3.4)	2.5 (1.8, 3.6)	4.8 (3.6, 6.2)	6.9 (5.5, 8.8)	7.3 (5.7, 9.4)
Exeter V40	ABGII	42	1093	1.1 (0.6, 1.9)	1.4 (0.8, 2.3)	2.0 (1.3, 3.1)	3.6 (2.6, 5.0)	5.2 (3.8, 7.1)	
Exeter V40	Fixa	13	590	1.9 (1.0, 3.4)	2.4 (1.4, 4.1)				
Exeter V40	Hemispherical	27	709	2.1 (1.3, 3.5)	3.2 (2.1, 4.8)	3.3 (2.2, 5.0)	5.1 (3.3, 7.7)		
Exeter V40	Mallory-Head	36	1413	0.6 (0.3, 1.2)	1.0 (0.6, 1.7)	1.1 (0.7, 1.9)	3.0 (2.1, 4.4)		
Exeter V40	Pinnacle	43	1625	1.6 (1.1, 2.4)	2.3 (1.7, 3.2)	2.7 (2.0, 3.8)	6.0 (3.3, 10.9)		
Exeter V40	R3	47	1765	1.4 (0.9, 2.1)	2.5 (1.8, 3.4)	3.4 (2.5, 4.6)			
Exeter V40	Trident (Shell)	1344	52552	1.2 (1.1, 1.3)	1.9 (1.8, 2.0)	2.5 (2.3, 2.6)	4.1 (3.8, 4.4)	5.7 (5.0, 6.5)	
Exeter V40	Trident/ Tritanium (Shell)	67	3314	1.5 (1.1, 1.9)	2.1 (1.6, 2.7)	2.7 (2.1, 3.6)			
Exeter V40	Trilogy*	20	605	1.7 (0.9, 3.1)	2.4 (1.4, 4.0)	2.6 (1.6, 4.2)	4.0 (2.5, 6.5)		
Exeter V40	Vitalock*	76	1959	0.9 (0.6, 1.5)	1.7 (1.2, 2.3)	2.3 (1.7, 3.1)	3.4 (2.7, 4.4)	4.9 (3.9, 6.2)	
MS 30	Allofit	53	1568	1.2 (0.7, 1.8)	1.7 (1.2, 2.5)	2.2 (1.6, 3.2)	3.9 (2.8, 5.2)		
MS 30	Fitmore	21	662	0.5 (0.1, 1.4)	1.0 (0.5, 2.3)	1.5 (0.7, 3.0)	3.0 (1.7, 5.2)	6.4 (3.9, 10.4)	
Omnifit	Trident (Shell)	90	2764	1.8 (1.4, 2.4)	2.8 (2.2, 3.5)	3.1 (2.5, 3.8)	3.6 (2.9, 4.5)	4.7 (3.5, 6.3)	
Quadra-C	Versafitcup CC	22	924	2.2 (1.4, 3.4)	2.4 (1.5, 3.7)	3.2 (1.8, 5.6)			
Spectron EF	BHR ^{MoM*}	58	532	0.8 (0.3, 2.0)	2.9 (1.8, 4.8)	6.3 (4.5, 8.8) 1	4.3 (11.0, 18.6)		
Spectron EF	R3	46	1676	1.5 (1.0, 2.2)	2.4 (1.8, 3.4)	3.0 (2.2, 4.1)			
Spectron EF	Reflection (Shell)	278	5149	1.1 (0.8, 1.4)	1.9 (1.6, 2.4)	2.7 (2.3, 3.2)	5.7 (5.0, 6.5)	10.9 (9.4, 12.8)	13.3 (10.7, 16.5)
Taper Fit	Trinity	10	577	1.6 (0.8, 3.1)	1.9 (1.0, 3.7)				
Other (915)		1057	18086	1.8 (1.6, 2.0)	3.1 (2.9, 3.4)	4.4 (4.1, 4.8)	7.9 (7.4, 8.5)	11.3 (10.5, 12.2)	11.6 (10.7, 12.6)
TOTAL		4392	125068						

Table HT13 Cumulative Percent Revision of Primary Total Conventional Hip Replacement with Hybrid Fixation

Note: Only combinations with over 500 procedures have been listed

Procedures using metal/metal prostheses with head size larger than 32mm have been included

^{MoM} denotes metal/metal prostheses with head size larger than 32mm

* denotes prosthesis combinations with no reported use in primary total conventional hip replacement in 2016

OUTCOME FOR OSTEOARTHRITIS - PATIENT CHARACTERISTICS

The following analyses have been undertaken excluding all procedures using large head metal/metal bearing surface. The 16 year cumulative percent revision of primary total conventional hip replacement undertaken for osteoarthritis is 8.8% (Table HT14 and Figure HT5).

Reason for Revision

The most common reasons for revision of primary total conventional hip replacement are: loosening (25.6%), prosthesis dislocation (21.6%), fracture (19.5%), and infection (17.7%) (Table HT15).

The most common reason for revision varies with time. In the first six years, dislocation is the most frequent reason for revision. After seven years, loosening is the predominant reason for revision (Figure HT6).

The aetiology of loosening changes with time. Loosening reported in the first few years most likely reflects failure to gain fixation. Loosening reported in later years is often due to loss of fixation secondary to bone resorption.

Previously, the Registry has reported loosening/lysis as a single diagnosis. This included the diagnoses of loosening or lysis, as well as loosening and lysis combined. Loosening and lysis are now reported separately. The diagnosis of loosening is used when loosening is reported either alone or in combination with lysis. The diagnosis of lysis is used for procedures that report only this diagnosis.

Type of Revision

The five most common types of revision are: femoral only (32.7%), acetabular only (21.6%), head and insert (19.7%), total hip replacement (femoral/acetabular) (11.9%) and head only (4.9%) (Table HT16).

Age and Gender

There is a difference in the rate of revision with respect to age and this varies with time. After two years, patients aged 75 years or older have a lower rate of revision than all other age groups (Table HT17 and Figure HT7).

Males have a higher rate of revision after 1.5 years. The cumulative percent revision at 16 years is 9.2% for males and 8.4% for females (Table HT18 and Figure HT8). The Registry continues to report a difference in the rate of revision between age groups within gender. Males aged 75 years or older have a higher rate of revision initially, compared to the younger age groups. However, this difference is no longer evident as time progresses (Table HT18 and Figure HT9).

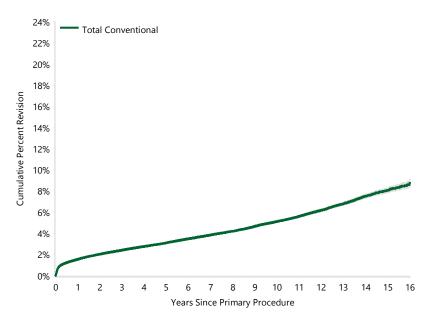

For females, the rate of revision decreases with increasing age. After three months, females aged less than 55 years have almost twice the rate of revision compared to females aged 75 years or older (Table HT18 and Figure HT10).

Table HT14	Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)
------------	--

Hip Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Total Conventional	11610	324627	1.5 (1.5, 1.6)	2.4 (2.4, 2.5)	3.1 (3.0, 3.2)	5.1 (5.0, 5.2)	8.1 (7.8, 8.3)	8.8 (8.4, 9.1)
TOTAL	11610	324627						

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT5 Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Total Conventional	324627	285535	219001	162111	61303	6575	1649

Table HT15 Primary Total Conventional Hip Replacement by Reason for Revision (Primary Diagnosis OA)

Reason for Revision	Number	Percent
Loosening	2975	25.6
Prosthesis Dislocation	2506	21.6
Fracture	2265	19.5
Infection	2055	17.7
Lysis	266	2.3
Pain	219	1.9
Leg Length Discrepancy	169	1.5
Malposition	154	1.3
Instability	125	1.1
Implant Breakage Stem	119	1.0
Metal Related Pathology	118	1.0
Implant Breakage Acetabular Insert	102	0.9
Wear Acetabular Insert	98	0.8
Incorrect Sizing	90	0.8
Implant Breakage Acetabular	76	0.7
Implant Breakage Head	39	0.3
Other	234	2.0
TOTAL	11610	100.0

Note: All procedures using metal/metal prostheses with head size

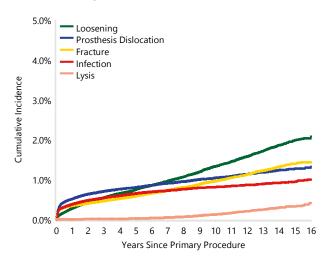
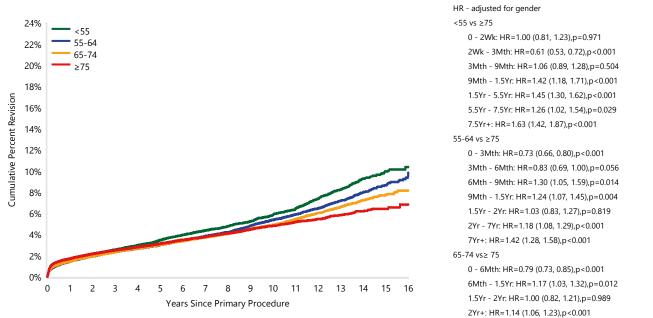

larger than 32mm have been excluded

Table HT16 Primary Total Conventional Hip Replacement by Type of Revision (Primary Diagnosis OA)

Type of Revision	Number	Percent
Femoral Component	3801	32.7
Acetabular Component	2511	21.6
Head/Insert	2284	19.7
THR (Femoral/Acetabular)	1378	11.9
Head Only	565	4.9
Cement Spacer	519	4.5
Minor Components	209	1.8
Insert Only	138	1.2
Removal of Prostheses	69	0.6
Head/Neck/Insert	64	0.6
Head/Neck	49	0.4
Reinsertion of Components	10	0.1
Neck Only	5	0.0
Bipolar Only	3	0.0
Total Femoral	2	0.0
Neck/Insert	1	0.0
Saddle	1	0.0
Bipolar Head and Femoral	1	0.0
TOTAL	11610	100.0

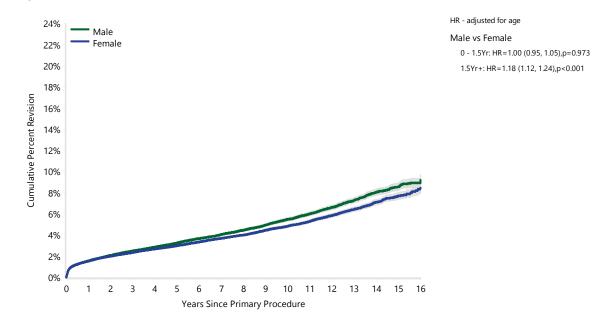
Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded Femoral heads are usually replaced when the acetabular component and/or femoral stem is revised.


Figure HT6 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55	1437	34607	1.5 (1.3, 1.6)	2.6 (2.4, 2.7)	3.5 (3.2, 3.7)	5.8 (5.5, 6.2)	9.9 (9.2, 10.7)	10.4 (9.5, 11.3)
55-64	2912	77367	1.5 (1.4, 1.5)	2.3 (2.2, 2.5)	3.0 (2.9, 3.2)	5.4 (5.2, 5.6)	8.7 (8.2, 9.1)	9.8 (9.0, 10.7)
65-74	4085	115632	1.5 (1.4, 1.5)	2.3 (2.2, 2.4)	3.0 (2.9, 3.1)	4.9 (4.7, 5.1)	7.8 (7.4, 8.2)	8.2 (7.7, 8.7)
≥75	3176	97021	1.7 (1.6, 1.8)	2.5 (2.4, 2.6)	3.1 (3.0, 3.2)	4.8 (4.6, 5.0)	6.4 (6.0, 6.9)	6.8 (6.1, 7.6)
TOTAL	11610	324627						

Table HT17 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded


Figure HT7 Cu	Cumulative Percent Revision of Primary	Iotal Conventional Hip Replacement	by Age (Primary Diagnosis OA)
---------------	--	------------------------------------	-------------------------------

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55	34607	30486	23056	16938	7220	1086	294
55-64	77367	68303	53041	40079	16448	2165	581
65-74	115632	101898	78673	59021	23965	2516	614
≥75	97021	84848	64231	46073	13670	808	160

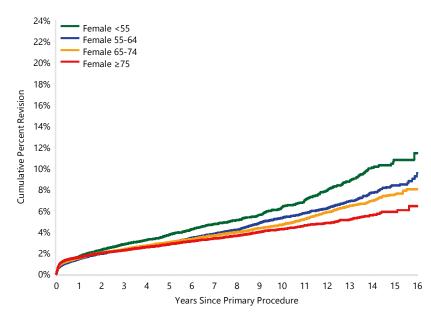
Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male		5500	148490	1.6 (1.5, 1.6)	2.5 (2.4, 2.6)	3.2 (3.1, 3.3)	5.5 (5.3, 5.6)	8.6 (8.2, 8.9)	9.2 (8.6, 9.7)
	<55	721	18942	1.3 (1.2, 1.5)	2.4 (2.1, 2.6)	3.2 (3.0, 3.6)	5.5 (5.0, 6.0)	9.2 (8.3, 10.2)	9.5 (8.5, 10.6)
	55-64	1456	38297	1.5 (1.4, 1.6)	2.4 (2.2, 2.5)	3.1 (2.9, 3.3)	5.5 (5.1, 5.8)	9.0 (8.3, 9.7)	10.1 (9.0, 11.4)
	65-74	1916	53264	1.4 (1.3, 1.5)	2.3 (2.2, 2.5)	3.1 (2.9, 3.2)	5.2 (4.9, 5.5)	8.1 (7.5, 8.7)	8.3 (7.7, 9.1)
	≥75	1407	37987	1.9 (1.8, 2.1)	2.9 (2.7, 3.1)	3.6 (3.4, 3.9)	5.8 (5.5, 6.2)	7.4 (6.8, 8.2)	
Female		6110	176137	1.5 (1.5, 1.6)	2.3 (2.3, 2.4)	3.0 (2.9, 3.1)	4.8 (4.7, 5.0)	7.7 (7.4, 8.0)	8.4 (7.9, 9.0)
	<55	716	15665	1.6 (1.4, 1.8)	2.8 (2.5, 3.1)	3.7 (3.4, 4.0)	6.3 (5.8, 6.8)	10.8 (9.7, 12.0)	11.4 (9.8, 13.2)
	55-64	1456	39070	1.4 (1.3, 1.5)	2.3 (2.2, 2.5)	3.0 (2.8, 3.2)	5.3 (5.0, 5.6)	8.4 (7.7, 9.0)	9.5 (8.4, 10.8)
	65-74	2169	62368	1.5 (1.4, 1.6)	2.3 (2.2, 2.5)	3.0 (2.8, 3.1)	4.6 (4.4, 4.9)	7.5 (7.0, 8.1)	8.0 (7.4, 8.7)
	≥75	1769	59034	1.6 (1.5, 1.7)	2.2 (2.1, 2.4)	2.8 (2.7, 2.9)	4.2 (4.0, 4.5)	5.9 (5.4, 6.4)	6.4 (5.5, 7.4)
TOTAL		11610	324627						

Table HT18 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Gender and Age (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT8 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	148490	129963	98290	71737	26937	3079	760
Female	176137	155572	120711	90374	34366	3496	889


0 - 2Wk: HR=1.00 (0.75, 1.35),p=0.983 2Wk - 1Mth: HR=0.52 (0.38, 0.70),p<0.001 1Mth - 3Mth: HR=0.57 (0.43, 0.77),p<0.001 3Mth - 1.5Yr: HR=0.85 (0.70, 1.03),p=0.105 1.5Yr - 5.5Yr: HR=1.17 (1.00, 1.37),p=0.043 5.5Yr - 7.5Yr: HR=0.82 (0.60, 1.13),p=0.226 7.5Yr+: HR=1.23 (1.01, 1.50),p=0.039 Male 55-64 vs Male ≥75 0 - 2Wk: HR=0.83 (0.65, 1.06),p=0.131 2Wk - 1Mth: HR=0.65 (0.53, 0.81),p<0.001 1Mth - 9Mth: HR=0.77 (0.66, 0.89),p<0.001 9Mth - 2Yr: HR=0.92 (0.78, 1.09),p=0.361 2Yr - 3.5Yr: HR=1.01 (0.84, 1.22),p=0.881 3.5Yr - 7Yr: HR=0.95 (0.81, 1.11),p=0.528 7Yr - 11Yr: HR=1.10 (0.92, 1.31),p=0.317 11Yr+: HR=1.36 (1.07, 1.73),p=0.011 Male 65-74 vs Male ≥75 0 - 3Mth: HR=0.70 (0.62, 0.79),p<0.001 3Mth - 6Mth: HR=0.69 (0.54, 0.89),p=0.004

змтп - 6Mth: HR=0.69 (0.54, 0.89),p=0.004 6Mth - 1.5Yr: HR=0.89 (0.76, 1.04),p=0.153 1.5Yr+: HR=0.98 (0.89, 1.08),p=0.728

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	<55	18942	16614	12366	8892	3821	630	179
	55-64	38297	33589	25777	19233	8003	1116	277
	65-74	53264	47000	36193	26983	10762	1120	267
	≥75	37987	32760	23954	16629	4351	213	37

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Female <55 vs Female ≥75 0 - 2Wk: HR=1.04 (0.77, 1.41),p=0.809 2Wk - 3Mth: HR=0.69 (0.56, 0.86),p=0.001 3Mth+: HR=1.80 (1.63, 1.99),p<0.001

Female 55-64 vs Female ≥75 0 - 3Mth: HR=0.73 (0.64, 0.83),p<0.001 3Mth - 6Mth: HR=1.13 (0.88, 1.45),p=0.332 6Mth+: HR=1.43 (1.31, 1.56),p<0.001

Female 65-74 vs Female ≥75 0 - 3Mth: HR=0.87 (0.78, 0.97),p=0.011 3Mth+: HR=1.23 (1.14, 1.33),p<0.001

Νι	umber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Female	<55	15665	13872	10690	8046	3399	456	115
	55-64	39070	34714	27264	20846	8445	1049	304
	65-74	62368	54898	42480	32038	13203	1396	347
	≥75	59034	52088	40277	29444	9319	595	123

OUTCOME FOR OSTEOARTHRITIS - PROSTHESIS CHARACTERISTICS

These analyses have been undertaken excluding all procedures using large head metal/metal bearing surface.

Fixation

This year the Registry has performed an analysis of the effect of fixation, to reflect the modern use of bearing surfaces. This analysis is restricted to ceramic/ceramic and all femoral head materials used in combination with XLPE. Metal/metal, ceramic/metal, metal/ceramic, and non XLPE have been excluded. Modern bearing surfaces account for 97.3% of all primary total conventional hip procedures performed in 2016.

The outcome with respect to fixation varies with age.

There is no difference in the rate of revision for cemented compared to hybrid fixation. Cementless fixation has a higher rate of revision than hybrid fixation. Cementless fixation has a higher rate of revision than cemented fixation for the first 1.5 years and after this time there is no difference (Table HT19 and Figure HT11).

For patients aged less than 55 years and 55 to 64 years, there is no difference in the rate of revision when comparing fixation methods. The exception is a higher rate of revision in the first month for cementless fixation compared to hybrid fixation in patients aged 55 to 64 years. Cementless fixation has a higher rate of revision compared to hybrid fixation for all patients aged 65 years or older, and when compared to cemented fixation for patients aged 75 years or older (Table HT20 and Figures HT12 to HT15).

Mini Stems

The Registry defines a mini stem as a short cementless femoral stem where fixation is designed to be entirely metaphyseal. These stems may enable femoral neck sparing.

There have been 2,877 procedures using a mini stem prosthesis undertaken for osteoarthritis. This represents less than 1.0% of all total conventional hip procedures. There were 597 procedures recorded in 2016 using a mini stem prosthesis; an increase of 33.9% compared to 2015. The 10 year cumulative percent revision for total conventional hip replacement using a mini stem is 6.2% compared to 5.1% for other femoral stems. There is no difference in the overall rate of revision when a mini stem is used (Table HT21 and Figure HT16). The cumulative incidence of loosening for procedures using a mini stem is over twice that of other femoral stems at 10 years (2.7% compared to 1.3%) (Figure HT17). The types of revision are presented in Table HT22.

The Registry has information on 11 different mini stem prostheses. Rates of revision vary depending on the type of prosthesis (Table HT23).

Femoral Stems with Exchangeable Necks

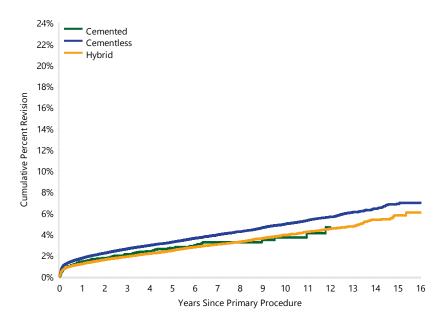
A femoral stem with an exchangeable neck has a separate neck that connects proximally to the stem. Femoral stems with exchangeable necks were introduced to enable surgeons to have increased choice with respect to determining femoral neck version, offset and length during total conventional hip replacement.

The Registry has recorded 10,114 procedures using femoral stems with exchangeable necks undertaken for osteoarthritis. There were 355 procedures reported in 2016, a 23.0% decrease compared to 2015. The proportion of procedures using exchangeable necks peaked in 2010 at 6.6% of all primary total conventional hip procedures. This proportion continues to decrease, with 1.1% of all procedures using a stem with an exchangeable neck in 2016.

Femoral stems with exchangeable necks have almost twice the rate of revision compared to fixed neck stems. The cumulative percent revision at 15 years is 12.0% for stems with exchangeable necks compared to 7.9% for fixed neck stems (Table HT24 and Figure HT18). The increase in the rate of revision is due to a higher cumulative incidence of loosening (2.5% at 15 years compared to 1.9% for fixed femoral neck), dislocation (1.8% compared to 1.1%) and fracture (2.3% compared to 1.3%) (Figure HT19).

Of the revisions of femoral stems with exchangeable necks, 2.9% are for implant breakage of the femoral component compared to 0.9% for fixed neck stems (Table HT25). The higher rate of revision when using stems with exchangeable necks is evident for all bearing surfaces (Figure HT20).

The Registry has previously identified that the stem/neck metal combination has an effect on the rate of revision. There are five different stem/neck metal combinations. Only the two principal combinations are included in comparative analysis. These are titanium stem/titanium neck and titanium stem/cobalt chrome neck. The titanium/cobalt chrome combination has a higher rate of revision compared to the titanium/titanium combination (Table HT26 and Figure HT21). The reason for this difference is a higher cumulative incidence for each of the five main reasons for revision, with the exception of infection. At 10 years, the cumulative incidence of metal related pathology is 3.6% for titanium/cobalt chrome compared to 0.2% for titanium/titanium (Figure HT22).


The Registry has information on 14 different exchangeable femoral neck prostheses that have been used in more than 60 procedures. The outcomes of each of these stems are detailed in Table HT27.

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	121	5130	1.4 (1.1, 1.8)	2.1 (1.7, 2.6)	2.7 (2.2, 3.3)	3.7 (2.9, 4.7)		
Cementless	5955	179366	1.7 (1.7, 1.8)	2.6 (2.5, 2.7)	3.3 (3.2, 3.4)	4.9 (4.8, 5.1)	6.9 (6.5, 7.2)	7.0 (6.6, 7.4)
Hybrid	2383	93309	1.2 (1.1, 1.3)	1.9 (1.8, 2.0)	2.5 (2.4, 2.6)	3.9 (3.7, 4.1)	5.8 (5.2, 6.4)	6.0 (5.3, 6.9)
TOTAL	8459	277805						

Table HT19 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)

Note: Includes procedures using ceramic/ceramic and XLPE prostheses

Figure HT11 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)

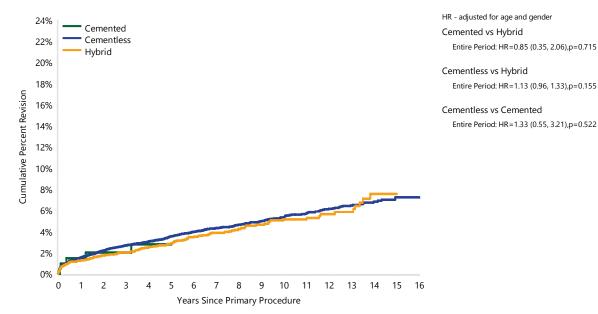
HR - adjusted for age and gender Cemented vs Hybrid Entire Period: HR=1.08 (0.90, 1.29),p=0.427

Cementless vs Hybrid

0 - 2Wk: HR=2.10 (1.75, 2.51),p<0.001 2Wk - 1Mth: HR=1.47 (1.28, 1.69),p<0.001 1Mth - 3Mth: HR=1.28 (1.12, 1.46),p<0.001 3Mth - 1.5Yr: HR=1.35 (1.23, 1.50),p<0.001 1.5Yr+: HR=1.20 (1.12, 1.29),p<0.001

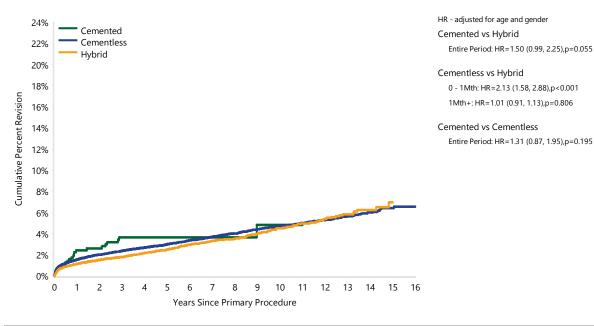
Cementless vs Cemented

0 - 2Wk: HR=1.95 (1.52, 2.50),p<0.001 2Wk - 1.5Yr: HR=1.27 (1.05, 1.53),p=0.013 1.5Yr+: HR=1.12 (0.92, 1.35),p=0.252

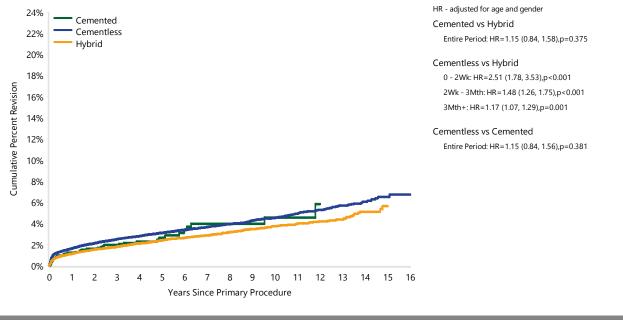

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	5130	4430	2882	1542	343	3	1
Cementless	179366	155056	114408	79927	24810	1605	288
Hybrid	93309	81380	60725	43554	13186	605	68

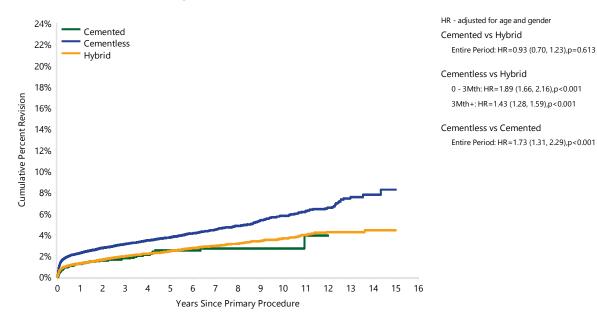
Age	Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55		1087	31201	1.5 (1.4, 1.6)	2.6 (2.4, 2.8)	3.4 (3.2, 3.7)	5.3 (4.9, 5.7)	7.3 (6.6, 8.0)	7.3 (6.6, 8.0)
	Cemented	5	209	1.5 (0.5, 4.4)	2.0 (0.8, 5.2)	2.8 (1.1, 6.6)			
	Cementless	919	25741	1.5 (1.4, 1.7)	2.7 (2.5, 2.9)	3.5 (3.3, 3.8)	5.3 (5.0, 5.8)	7.2 (6.5, 8.1)	7.2 (6.5, 8.1)
	Hybrid	163	5251	1.3 (1.0, 1.6)	2.0 (1.7, 2.5)	2.9 (2.4, 3.5)	5.2 (4.3, 6.2)	7.5 (5.9, 9.7)	
55-64		2135	68842	1.5 (1.4, 1.6)	2.3 (2.1, 2.4)	2.9 (2.7, 3.0)	4.7 (4.5, 4.9)	6.6 (6.1, 7.1)	6.7 (6.1, 7.3)
	Cemented	24	644	2.4 (1.5, 4.0)	3.7 (2.4, 5.6)	3.7 (2.4, 5.6)	4.8 (2.7, 8.5)		
	Cementless	1662	52487	1.5 (1.4, 1.7)	2.4 (2.2, 2.5)	3.0 (2.8, 3.2)	4.7 (4.5, 5.0)	6.4 (5.9, 7.0)	6.6 (6.0, 7.2)
	Hybrid	449	15711	1.1 (1.0, 1.3)	1.8 (1.6, 2.0)	2.5 (2.2, 2.8)	4.5 (4.0, 5.0)	7.0 (5.7, 8.4)	
65-74		2860	98689	1.5 (1.4, 1.5)	2.3 (2.2, 2.4)	2.9 (2.7, 3.0)	4.3 (4.1, 4.4)	6.2 (5.7, 6.7)	6.5 (5.9, 7.3)
	Cemented	41	1672	1.2 (0.8, 1.9)	1.9 (1.4, 2.8)	2.7 (1.9, 3.8)	4.6 (3.0, 6.9)		
	Cementless	1982	63823	1.6 (1.5, 1.7)	2.5 (2.4, 2.6)	3.1 (3.0, 3.3)	4.5 (4.3, 4.8)	6.5 (5.9, 7.1)	6.7 (6.0, 7.5)
	Hybrid	837	33194	1.1 (1.0, 1.2)	1.8 (1.7, 2.0)	2.4 (2.2, 2.6)	3.7 (3.5, 4.0)	5.6 (4.8, 6.6)	
≥75		2377	79073	1.7 (1.7, 1.8)	2.5 (2.4, 2.6)	3.1 (2.9, 3.2)	4.6 (4.4, 4.8)	6.2 (5.5, 6.8)	
	Cemented	51	2605	1.2 (0.9, 1.8)	1.8 (1.3, 2.4)	2.5 (1.9, 3.4)	2.7 (2.0, 3.7)		
	Cementless	1392	37315	2.3 (2.1, 2.4)	3.1 (2.9, 3.3)	3.7 (3.5, 4.0)	5.8 (5.4, 6.2)	8.3 (7.1, 9.7)	
	Hybrid	934	39153	1.3 (1.2, 1.4)	1.9 (1.8, 2.1)	2.4 (2.3, 2.6)	3.6 (3.4, 3.9)	4.4 (3.9, 5.0)	
TOTAL		8459	277805						

 Table HT20
 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age and Fixation (Primary Diagnosis OA)


Note: Includes procedures using ceramic/ceramic and XLPE prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	209	185	139	67	16	2	1
Cementless	25741	22454	16622	11718	4268	408	88
Hybrid	5251	4559	3254	2281	812	79	6

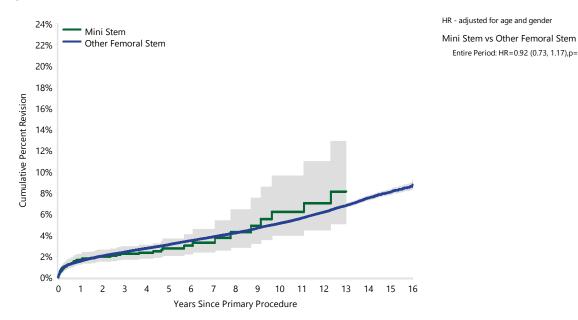



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	644	572	412	236	64	0	0
Cementless	52487	45739	34419	24829	8540	667	123
Hybrid	15711	13784	10526	7760	2641	151	15

Note: Includes procedures using ceramic/ceramic and XLPE prostheses

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	1672	1447	949	508	145	0	0
Cementless	63823	55010	40334	28082	8604	460	73
Hybrid	33194	29173	22161	16347	5605	262	34

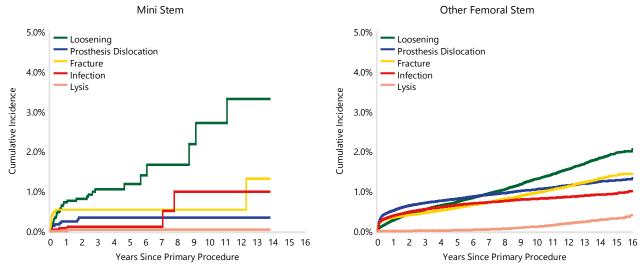
Figure HT15 Cumulative Percent Revision of Primary Total Conventional Hip Replacement in Patients Aged ≥75 Years by Fixation (Primary Diagnosis OA)


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	2605	2226	1382	731	118	1	0
Cementless	37315	31853	23033	15298	3398	70	4
Hybrid	39153	33864	24784	17166	4128	113	13

Stem Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Mini Stem	68	2877	1.6 (1.2, 2.2)	2.2 (1.7, 2.9)	2.7 (2.1, 3.7)	6.2 (4.0, 9.6)		
Other Femoral Stem	11542	321750	1.5 (1.5, 1.6)	2.4 (2.4, 2.5)	3.1 (3.0, 3.2)	5.1 (5.0, 5.2)	8.1 (7.8, 8.3)	8.8 (8.4, 9.1)
TOTAL	11610	324627						

Table HT21 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded


Figure HT16 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Mini Stem	2877	2232	1339	576	137	3	1
Other Femoral Stem	321750	283303	217662	161535	61166	6572	1648
Note: All proceedures using peo	4	بالمحمد المائين محمد		22	ام ماد بام با		

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT17 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Entire Period: HR=0.92 (0.73, 1.17),p=0.512

 Table HT22
 Primary Total Conventional Hip Replacement by Type of Revision and Stem Type (Primary Diagnosis OA)

		Mini Stem		Other Femoral Stem				
Type of Revision	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions		
Femoral Component	36	1.3	52.9	3765	1.2	32.6		
Acetabular Component	14	0.5	20.6	2497	0.8	21.6		
Head/Insert	7	0.2	10.3	2277	0.7	19.7		
THR (Femoral/Acetabular)	3	0.1	4.4	1375	0.4	11.9		
Head Only	5	0.2	7.4	560	0.2	4.9		
Cement Spacer	2	0.1	2.9	517	0.2	4.5		
Minor Components	1	0.0	1.5	208	0.1	1.8		
Insert Only				138	0.0	1.2		
Removal of Prostheses				69	0.0	0.6		
Head/Neck/Insert				64	0.0	0.6		
Head/Neck				49	0.0	0.4		
Reinsertion of Components				10	0.0	0.1		
Neck Only				5	0.0	0.0		
Bipolar Only				3	0.0	0.0		
Total Femoral				2	0.0	0.0		
Bipolar Head and Femoral				1	0.0	0.0		
Neck/Insert				1	0.0	0.0		
Saddle				1	0.0	0.0		
N Revision	68	2.4	100.0	11542	3.6	100.0		
N Primary	2877			321750				

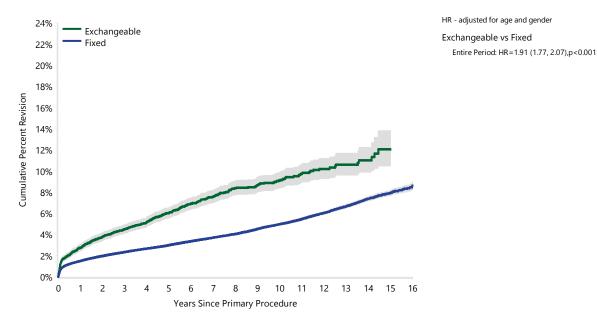
Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Table HT23	Cumulative Percent Revision of Primary Total Conventional Hip Replacement using a Mini Stem by Femoral Stem
	(Primary Diagnosis OA)

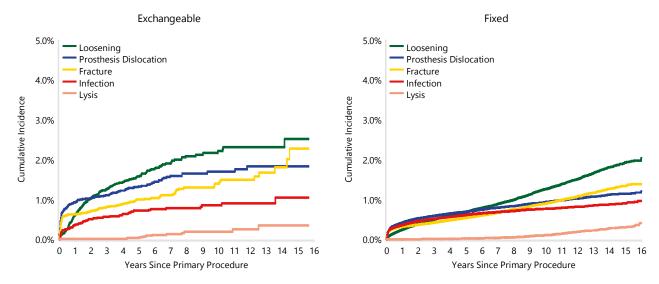
Femoral Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
C.F.P.*	10	124	4.0 (1.7, 9.4)	4.0 (1.7, 9.4)	4.9 (2.2, 10.5)	7.7 (4.1, 14.2)		
Mallory-Head	5	114	2.7 (0.9, 8.1)	5.5 (2.3, 13.1)				
Mayo*	7	96	2.1 (0.5, 8.1)	4.2 (1.6, 10.8)	4.2 (1.6, 10.8)	7.3 (3.3, 16.0)		
Metha	5	106	2.8 (0.9, 8.6)	4.8 (2.0, 11.1)				
MiniHip	19	742	2.1 (1.3, 3.5)	2.5 (1.5, 3.9)	4.7 (2.3, 9.4)			
Nanos	7	664	0.8 (0.3, 1.8)	1.1 (0.5, 2.3)	1.1 (0.5, 2.3)			
Optimys	1	412	0.3 (0.0, 2.0)					
Silent*	3	50	4.0 (1.0, 15.1)	6.0 (2.0, 17.5)	6.0 (2.0, 17.5)			
Taperloc Microplasty	8	552	1.4 (0.7, 3.0)	1.4 (0.7, 3.0)	2.2 (0.9, 4.9)			
Other (2)	3	17	5.9 (0.9, 35.0)	5.9 (0.9, 35.0)	5.9 (0.9, 35.0)	29.4 (10.0, 68.5)		
TOTAL	68	2877						

Note: Only prostheses with over 50 procedures have been listed

All procedures using metal/metal prostheses with head size larger than 32mm have been excluded


* denotes prostheses with no reported use in primary total conventional hip replacement in 2016

Femoral Neck	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Exchangeable	691	10114	2.7 (2.4, 3.1)	4.5 (4.1, 4.9)	6.0 (5.6, 6.5)	9.1 (8.4, 9.9)	12.0 (10.5, 13.8)	
Fixed	10919	314513	1.5 (1.5, 1.5)	2.3 (2.3, 2.4)	3.0 (2.9, 3.1)	5.0 (4.9, 5.1)	7.9 (7.7, 8.2)	8.6 (8.2, 9.0)
TOTAL	11610	324627						


Table HT24 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Type of Femoral Neck (Primary Diagnosis OA)

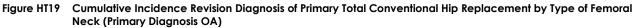
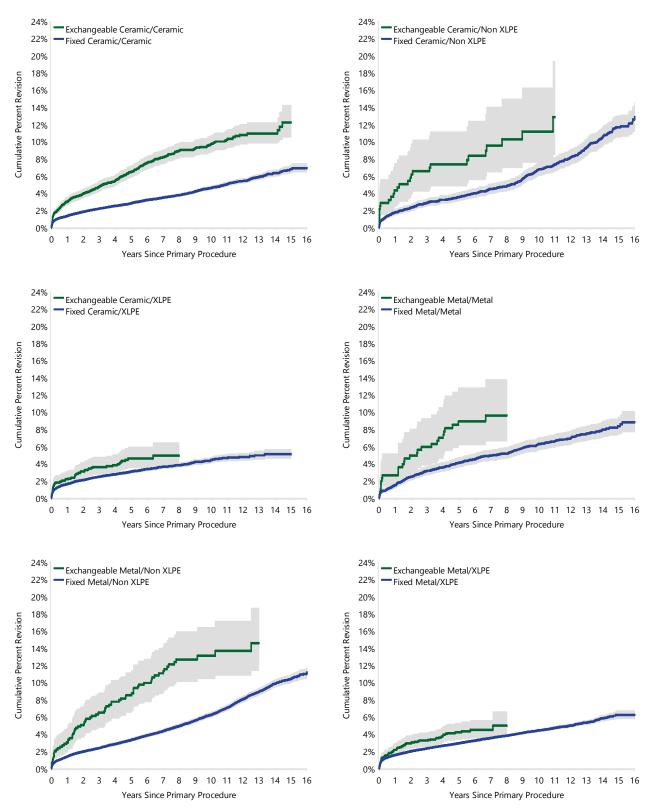

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT18 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Type of Femoral Neck (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Exchangeable	10114	9407	8004	6117	1466	103	23
Fixed	314513	276128	210997	155994	59837	6472	1626



Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Table HT25	Primary Total Conventional Hip Replacement by Reason for Revision and Type of Femoral Neck (Primary Diagnosis
	OA)

		Exchangeable			Fixed	
Reason for Revision	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions
Loosening	179	1.8	25.9	2796	0.9	25.6
Prosthesis Dislocation	147	1.5	21.3	2359	0.8	21.6
Fracture	117	1.2	16.9	2148	0.7	19.7
Infection	75	0.7	10.9	1980	0.6	18.1
Lysis	13	0.1	1.9	253	0.1	2.3
Pain	17	0.2	2.5	202	0.1	1.8
Leg Length Discrepancy	7	0.1	1.0	162	0.1	1.5
Malposition	9	0.1	1.3	145	0.0	1.3
Instability	11	0.1	1.6	114	0.0	1.0
Implant Breakage Stem	20	0.2	2.9	99	0.0	0.9
Wear Acetabular Insert				98	0.0	0.9
Implant Breakage Acetabular Insert	10	0.1	1.4	92	0.0	0.8
Incorrect Sizing	7	0.1	1.0	83	0.0	0.8
Implant Breakage Acetabular	11	0.1	1.6	65	0.0	0.6
Metal Related Pathology	57	0.6	8.2	61	0.0	0.6
Wear Head	2	0.0	0.3	39	0.0	0.4
Implant Breakage Head	3	0.0	0.4	36	0.0	0.3
Heterotopic Bone				18	0.0	0.2
Tumour				14	0.0	0.1
Wear Acetabulum				13	0.0	0.1
Synovitis	1	0.0	0.1	2	0.0	0.0
Other	5	0.0	0.7	140	0.0	1.3
N Revision	691	6.8	100.0	10919	3.5	100.0
N Primary	10114			314513		

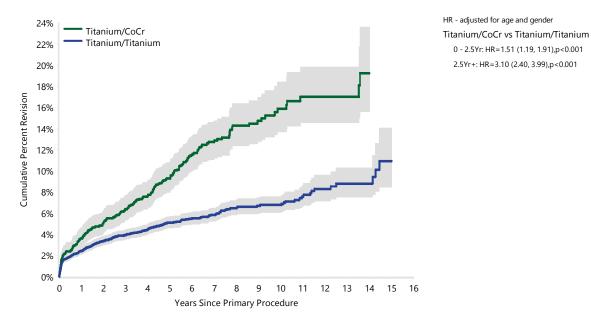
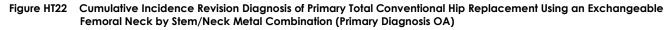


Table HT26 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Stem/Neck Metal Combination (Primary Diagnosis OA)


Stem/Neck Metal Combination	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
CoCr/CoCr	83	763	4.1 (2.9, 5.8)	5.9 (4.4, 7.8)	7.5 (5.8, 9.7)	12.1 (9.8, 14.8)		
CoCr/Titanium	2	111	1.8 (0.5, 7.0)	1.8 (0.5, 7.0)	1.8 (0.5, 7.0)			
Stainless Steel/CoCr	2	46	2.2 (0.3, 14.7)	4.6 (1.2, 17.2)	4.6 (1.2, 17.2)	4.6 (1.2, 17.2)		
Titanium/CoCr	206	1680	3.6 (2.8, 4.6)	6.4 (5.3, 7.7)	9.3 (7.9, 10.8)	15.9 (13.7, 18.4)		
Titanium/Titanium	398	7514	2.4 (2.1, 2.8)	3.9 (3.5, 4.4)	5.1 (4.6, 5.7)	6.8 (6.1, 7.6)	10.9 (8.5, 14.0)	
TOTAL	691	10114						

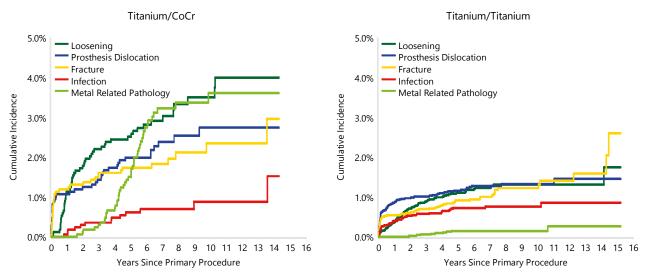

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT21 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Stem/Neck Metal Combination (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Titanium/CoCr	1680	1607	1501	1204	251	16	0
Titanium/Titanium	7514	6935	5716	4224	828	51	10

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Table HT27 Cumulative Percent Revision of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Prosthesis Type (Primary Diagnosis OA)

Femoral Neck	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
ABGII*	66	228	4.0 (2.1, 7.5)	10.2 (6.9, 15.0)	19.5 (14.8, 25.3)			
Adapter*	48	374	3.8 (2.2, 6.3)	7.3 (5.1, 10.5)	10.0 (7.3, 13.6)			
Apex	136	2466	2.8 (2.2, 3.5)	4.1 (3.4, 5.0)	5.3 (4.4, 6.3)	7.3 (6.1, 8.8)		
F2L*	69	687	3.2 (2.1, 4.8)	5.4 (4.0, 7.4)	6.8 (5.1, 9.0)	8.6 (6.7, 11.0)	12.6 (9.7, 16.4)	
Femoral Neck (Amplitude)	17	510	1.0 (0.4, 2.3)	2.2 (1.2, 4.1)	4.4 (2.6, 7.2)			
H-Max*	1	71	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	2.2 (0.3, 14.7)			
M-Cor*	8	110	0.0 (0.0, 0.0)	2.8 (0.9, 8.4)	4.7 (2.0, 11.0)			
M/L Taper Kinectiv	118	2993	2.1 (1.6, 2.6)	3.4 (2.8, 4.1)	4.4 (3.7, 5.3)			
MBA*	54	630	2.1 (1.2, 3.5)	4.0 (2.7, 5.9)	5.8 (4.2, 8.1)	9.9 (7.4, 13.0)		
MSA*	17	174	7.5 (4.4, 12.6)	9.3 (5.8, 14.7)	9.9 (6.3, 15.5)			
Margron*	76	552	5.3 (3.7, 7.5)	7.3 (5.4, 9.9)	9.4 (7.2, 12.2)	14.0 (11.3, 17.3)		
Metha*	11	84	10.7 (5.7, 19.6)	11.9 (6.6, 21.0)	11.9 (6.6, 21.0)			
Profemur*	54	934	3.1 (2.2, 4.5)	4.7 (3.5, 6.2)	5.2 (4.0, 6.9)	6.4 (4.8, 8.5)		
R120*	7	178	1.1 (0.3, 4.4)	2.3 (0.9, 6.1)	2.3 (0.9, 6.1)			
Other (5)	9	123	1.7 (0.4, 6.5)	4.7 (2.0, 10.9)	7.1 (3.4, 14.3)			
TOTAL	691	10114						

Note: Only Femoral Neck Prostheses with over 60 procedures have been listed

All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

* denotes prostheses with no reported use in primary total conventional hip replacement in 2016

Bearing Surface

Bearing surface is a combination of the material used for the femoral head and acetabular insert or cup. For this analysis, the Registry has identified three types of femoral head (metal, ceramic, and ceramicised metal) and four types of acetabular articular surface (XLPE, non XLPE, ceramic, and metal). Metal/metal bearing surface only includes head sizes 32mm or smaller.

XLPE is classified as ultra high molecular weight polyethylene that has been irradiated by high dose (≥50kGy) gamma or electron beam radiation.

Comparison of Bearing Surfaces

This year, the Registry is reporting on nine bearing surfaces, seven of which have been used in more than 5,000 procedures. Comparing the rates of revision for these bearings, ceramicised metal/XLPE has the lowest rate of revision. As in previous years, the Registry urges caution in the interpretation of this result. This bearing is a single company product, used with a small number of femoral stem and acetabular component combinations. This may have a confounding effect on the outcome, making it unclear if the lower rate of revision is an effect of the bearing surface or reflects the limited combination of femoral and acetabular prostheses.

Ceramic/XLPE has a lower rate of revision after three years compared to metal/XLPE (Table HT28 and Figure HT23).

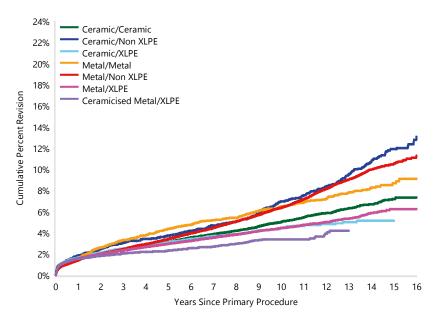
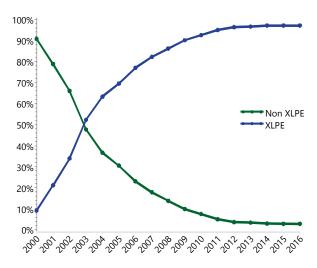

Detailed information on the analysis of metal/metal and metal and ceramic bearing surfaces are available in the supplementary reports 'Metal on Metal Bearing Surface Conventional Hip Arthroplasty' and 'Metal and Ceramic Bearing Surface in Total Conventional Hip Arthroplasty' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2017.

Table HT28	Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Bearing Surface (Primary
	Diagnosis OA)

Bearing Surface	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Ceramic/Ceramic	2758	78674	1.5 (1.4, 1.6)	2.4 (2.3, 2.5)	3.1 (3.0, 3.2)	5.0 (4.8, 5.2)	7.2 (6.8, 7.7)	7.3 (6.9, 7.8)
Ceramic/Non XLPE	429	6288	1.8 (1.5, 2.2)	3.0 (2.6, 3.5)	3.7 (3.3, 4.3)	7.0 (6.2, 7.8)	11.9 (10.7, 13.2)	13.1 (11.6, 14.7)
Ceramic/XLPE	1276	49627	1.6 (1.5, 1.8)	2.5 (2.3, 2.7)	3.1 (2.9, 3.3)	4.5 (4.1, 4.8)	5.1 (4.6, 5.7)	
Ceramic/Metal	18	299	1.7 (0.7, 4.0)	3.7 (2.1, 6.6)	4.4 (2.6, 7.4)			
Metal/Metal	347	5146	1.6 (1.3, 1.9)	3.3 (2.9, 3.9)	4.4 (3.8, 5.0)	6.5 (5.8, 7.2)	8.7 (7.7, 9.7)	9.1 (8.0, 10.4)
Metal/Non XLPE	2310	34593	1.4 (1.3, 1.5)	2.4 (2.3, 2.6)	3.4 (3.2, 3.6)	6.3 (6.1, 6.6)	10.5 (10.1, 11.0)	11.3 (10.7, 11.9)
Metal/XLPE	3999	131327	1.6 (1.5, 1.6)	2.3 (2.2, 2.4)	2.9 (2.8, 3.1)	4.4 (4.3, 4.6)	6.3 (5.8, 6.7)	6.3 (5.8, 6.7)
Ceramicised Metal/Non XLPE	36	290	1.7 (0.7, 4.1)	3.9 (2.2, 6.9)	4.3 (2.4, 7.4)	12.5 (8.9, 17.5)		
Ceramicised Metal/XLPE	426	18177	1.6 (1.4, 1.7)	2.0 (1.8, 2.3)	2.3 (2.1, 2.6)	3.4 (3.0, 3.8)		
TOTAL	11599	324421						

Note: Excludes 197 procedures with unknown bearing surface, one procedure with ceramicised metal/ceramic bearing surface and eight procedures with metal/ceramic bearing surface

HR - adjusted for age and gender


···· ••j•••••	
Ceramic/Ceramic vs Metal/XLPE	Entire Period: HR=1.04 (0.99, 1.09),p=0.165
Ceramic/Non XLPE vs Metal/XLPE	0 - 3Yr: HR=1.30 (1.12, 1.51),p<0.001
	3Yr - 5Yr: HR=1.03 (0.73, 1.47),p=0.853
	5Yr - 9Yr: HR=1.66 (1.33, 2.08),p<0.001
	9Yr+: HR=2.83 (2.34, 3.43),p<0.001
Ceramic/XLPE vs Metal/XLPE	0 - 3Yr: HR=1.07 (1.00, 1.15),p=0.046
	3Yr+: HR=0.83 (0.72, 0.95),p=0.006
Metal/Metal vs Metal/XLPE	Entire Period: HR=1.36 (1.21, 1.52),p<0.001
Metal/Non XLPE vs Metal/XLPE	0 - 1Mth: HR=0.76 (0.64, 0.89),p=0.001
	1Mth - 6Mth: HR=0.98 (0.84, 1.14),p=0.762
	6Mth - 1Yr: HR=1.36 (1.13, 1.64),p=0.001
	1Yr - 5Yr: HR=1.37 (1.26, 1.50),p<0.001
	5Yr - 7Yr: HR=1.67 (1.45, 1.91),p<0.001
	7Yr - 9Yr: HR=1.90 (1.64, 2.21),p<0.001
	9Yr+: HR=2.46 (2.18, 2.77),p<0.001
Ceramicised Metal/XLPE vs Metal/XLPE	0 - 1Yr: HR=1.03 (0.91, 1.17),p=0.627
	1Yr+: HR=0.56 (0.47, 0.66),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Ceramic/Ceramic	78674	70863	55391	40220	14612	1355	254
Ceramic/Non XLPE	6288	5678	4808	4179	2835	779	317
Ceramic/XLPE	49627	38561	23126	14232	3208	137	17
Metal/Metal	5146	5023	4779	4500	2907	478	82
Metal/Non XLPE	34593	33199	30698	27752	17001	3096	891
Metal/XLPE	131327	115680	88000	62862	18396	721	86
Ceramicised Metal/XLPE	18177	15762	11498	7709	2123	0	0

Cross-linked Polyethylene

XLPE has been used in 199,131 procedures reported to the Registry. This includes 7,245 procedures that have XLPE with the addition of an antioxidant. When polyethylene was used as a bearing surface in total conventional hip procedures, the proportion of XLPE was 97.1% in 2016 (Figure HT24).

XLPE has a lower rate of revision compared to non XLPE after six months (Table HT29 and Figure HT25). The difference increases with time and at 16 years the cumulative percent revision is 6.2% and 11.7%, respectively. The cumulative incidence of loosening and prosthesis dislocation at 16 years is 1.1% and 1.3% for XLPE, compared to 3.3% and 1.7% for non XLPE bearings, respectively (Figure HT26).

Rates of revision vary depending on head size. This is most evident for non XLPE where the rate of revision increases with larger head size. For XLPE, 32mm head size has the lowest rate of revision. There is no difference between head sizes less than 32mm and greater than 32mm (Table HT29, Figures HT27 and HT28).

The use of XLPE has been associated with an increased use of larger head sizes when compared to non XLPE. Head sizes of 32mm or greater have been used in 75.9% of XLPE procedures and in only 12.0% of non XLPE procedures. The Registry has previously shown that this increased use of larger head size with

XLPE is the reason for reduced revision for dislocation.

Reduced cumulative incidence of loosening when XLPE is used, is evident for the most common head sizes of 32mm and less than 32mm when compared to non XLPE (Figure HT29).

At 16 years the cumulative percent revision of total conventional hip replacement with XLPE is 6.2%.

XLPE and non XLPE are combined with three different femoral head bearing surfaces: ceramic, metal, and ceramicised metal. Within each bearing surface, XLPE has a lower rate of revision than non XLPE (Figure HT30).

Prosthesis Specific

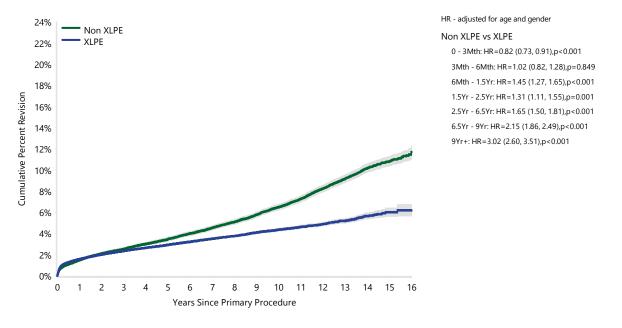
Further analysis has been undertaken for specific acetabular prostheses that have both XLPE and non XLPE bearing options and at least 500 procedures in each group. Six prostheses fulfil these criteria. Five have a reduced rate of revision when XLPE is used and for one prosthesis there is no difference.

The Allofit Shell has a 14 year follow up with an insert using both types of polyethylene. XLPE is used in 90.2% of Allofit Shell total conventional hip procedures. XLPE has a lower rate of revision than non XLPE (Table HT30 and Figure HT31).

The Duraloc Shell has a 14 year follow up with an insert using both types of polyethylene. XLPE is used in 36.4% of Duraloc Shell total conventional hip procedures. XLPE has a lower rate of revision compared to non XLPE (Table HT30 and Figure HT32).

The Mallory-Head Shell has an eight year follow up with an insert using both types of polyethylene. XLPE is used in 41.9% of Mallory-Head Shell total conventional hip procedures. XLPE has a lower rate of revision compared to non XLPE after 1.5 years (Table HT30 and Figure HT33). The Reflection Cup has a 12 year follow up for both types of polyethylene. XLPE has been used in 51.9% of Reflection Cup total conventional hip procedures. After one year, XLPE has a lower rate of revision than non XLPE (Table HT30 and Figure HT34).

The Reflection Shell has a 15 year follow up with an insert using both types of polyethylene. XLPE is used in 83.7% of Reflection Shell total conventional hip procedures. XLPE has a lower rate of revision after one year compared to non XLPE (Table HT30 and Figure HT35). The Vitalock Shell has a 13 year follow up with an insert using both types of polyethylene. XLPE is used in 22.7% of Vitalock Shell total conventional hip procedures. There is no difference in the rate of revision between XLPE and non XLPE (Table HT30 and Figure HT36).


Prosthesis Specific (Antioxidant)

For the first time, the Registry has performed a separate analysis of acetabular components that have both XLPE and XLPE with antioxidant. There were three components that had both types of polyethylene: the G7, Trinity, and Ringloc inserts. There was no difference when comparing the rate of revision between XLPE and XLPE with antioxidant within these prostheses (Table HT31).

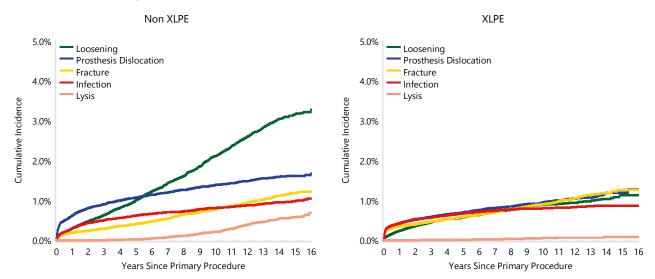

Polyethylene Type	Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Non XLPE		2775	41171	1.5 (1.4, 1.6)	2.5 (2.4, 2.7)	3.5 (3.3, 3.7)	6.5 (6.2, 6.8)	10.8 (10.4, 11.3)	11.7 (11.1, 12.3)
	<32mm	2538	36230	1.4 (1.3, 1.6)	2.5 (2.3, 2.6)	3.4 (3.2, 3.6)	6.4 (6.2, 6.7)	10.8 (10.3, 11.3)	11.6 (11.1, 12.3)
	32mm	213	4642	1.6 (1.3, 2.0)	3.0 (2.5, 3.5)	3.8 (3.2, 4.4)	6.3 (5.4, 7.4)		
	>32mm	24	299	3.7 (2.1, 6.6)	6.0 (3.8, 9.5)	8.6 (5.7, 12.8)			
XLPE		5701	199131	1.6 (1.5, 1.6)	2.3 (2.3, 2.4)	2.9 (2.8, 3.0)	4.4 (4.2, 4.5)	6.0 (5.6, 6.4)	6.2 (5.7, 6.7)
	<32mm	1817	48001	1.5 (1.4, 1.7)	2.4 (2.2, 2.5)	3.0 (2.8, 3.2)	4.4 (4.2, 4.7)	6.0 (5.6, 6.5)	6.2 (5.7, 6.8)
	32mm	2089	84157	1.5 (1.4, 1.6)	2.3 (2.1, 2.4)	2.7 (2.6, 2.8)	4.0 (3.8, 4.3)		
	>32mm	1795	66973	1.7 (1.6, 1.8)	2.4 (2.3, 2.6)	3.1 (3.0, 3.3)	4.7 (4.3, 5.0)		
TOTAL		8476	240302						

Table HT29 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Polyethylene Type and Head Size (Primary Diagnosis OA)

Figure HT25 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Non XLPE	41171	39158	35763	32170	19988	3875	1208
XLPE	199131	170003	122624	84803	23727	858	103

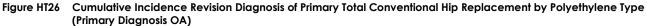
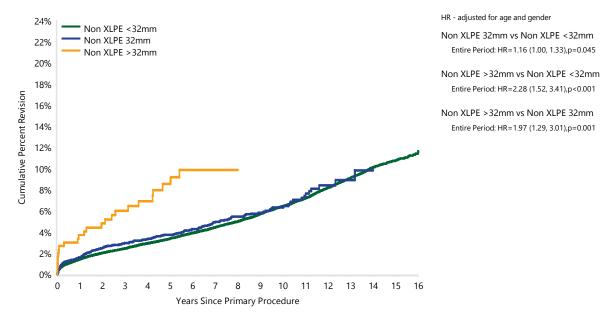
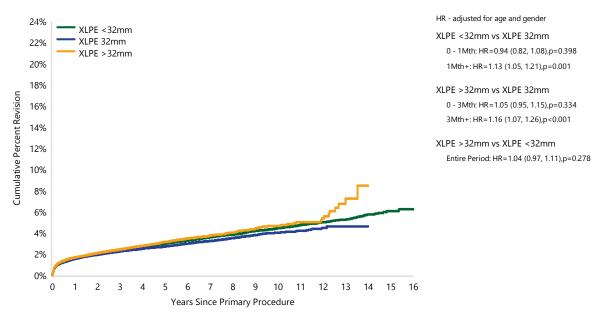
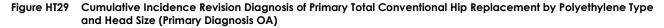
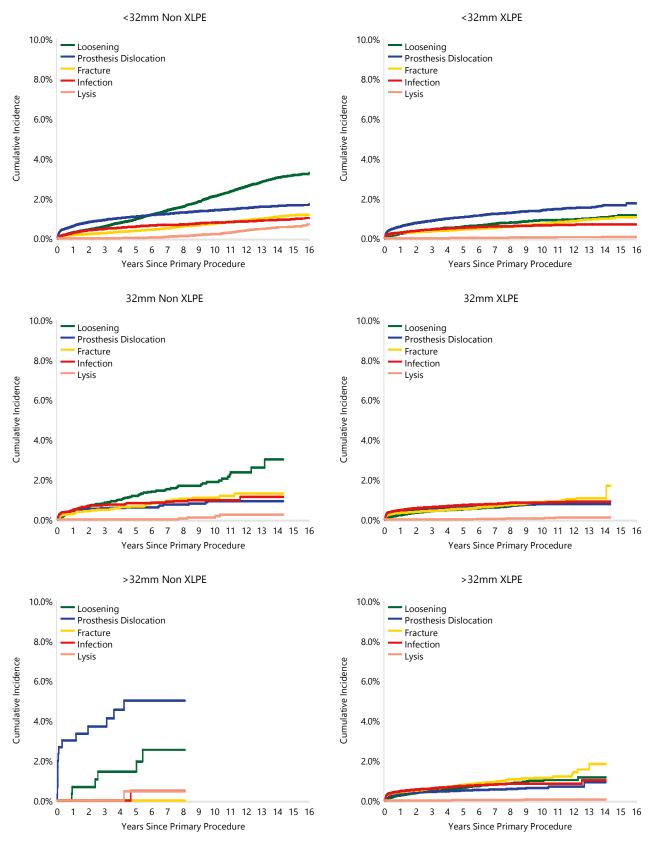
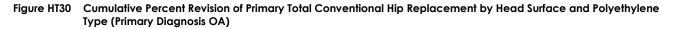
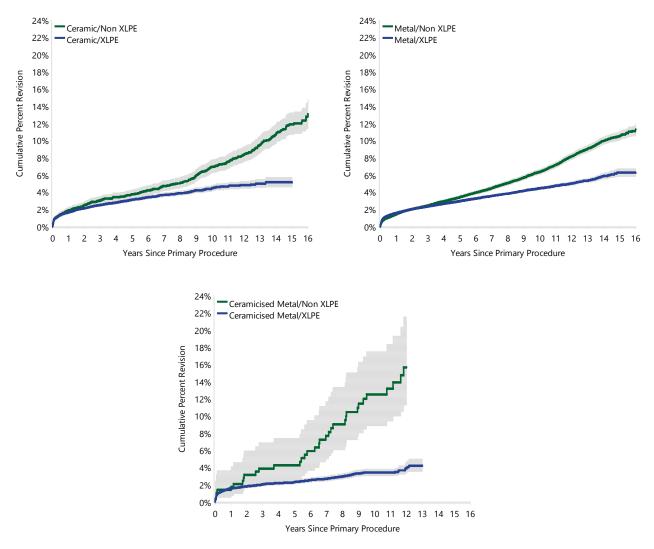




Figure HT27 Cumulative Percent Revision of Primary Total Conventional Hip Replacement using Non XLPE by Head Size (Primary Diagnosis OA)

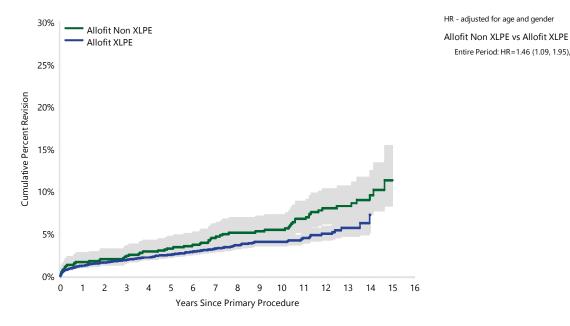



Num	ıber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Non XLPE	<32mm	36230	34626	32033	29272	19222	3864	1205
	32mm	4642	4256	3510	2750	746	11	3
	>32mm	299	276	220	148	20	0	0



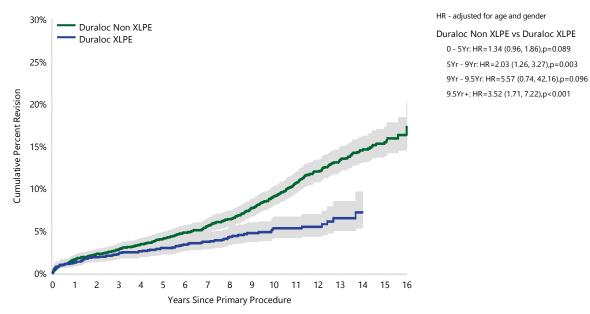


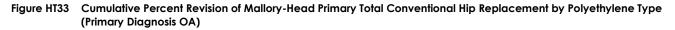
	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
XLPE	<32mm	48001	44954	39391	33101	16632	849	102
	32mm	84157	70357	47241	29945	5075	2	1
	>32mm	66973	54692	35992	21757	2020	7	0

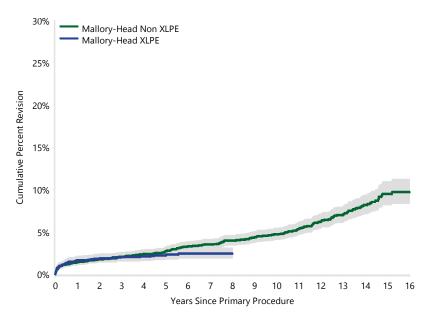


Acetabular Component	Polyethylene Type	N Revised	N Total	5 Yrs	8 Yrs	12 Yrs	13 Yrs	14 Yrs	15 Yrs
Allofit		300	8693	2.6 (2.3, 3.0)	3.9 (3.4, 4.4)	5.7 (5.0, 6.6)	6.2 (5.4, 7.3)	7.6 (6.2, 9.3)	8.8 (6.8, 11.5)
	Non XLPE	61	848	3.3 (2.3, 4.7)	5.1 (3.8, 6.9)	8.0 (6.2, 10.4)	8.3 (6.4, 10.7)	9.6 (7.3, 12.5)	11.3 (8.2, 15.5)
	XLPE	239	7845	2.5 (2.2, 2.9)	3.7 (3.2, 4.2)	5.0 (4.2, 5.9)	5.7 (4.7, 7.0)	7.2 (5.1, 10.2)	
Duraloc		418	4710	3.7 (3.2, 4.2)	5.6 (5.0, 6.4)	10.2 (9.2, 11.3)	11.5 (10.4, 12.7)	12.6 (11.4, 13.9)	13.6 (12.2, 15.1)
	Non XLPE	339	2994	4.1 (3.4, 4.8)	6.3 (5.5, 7.3)	12.0 (10.7, 13.4)	13.4 (12.0, 14.8)	14.5 (13.0, 16.1)	15.5 (13.9, 17.3)
	XLPE	79	1716	3.0 (2.2, 3.9)	4.3 (3.4, 5.5)	5.5 (4.3, 6.9)	6.5 (5.0, 8.5)	7.1 (5.3, 9.6)	
Mallory-Head		307	7030	2.6 (2.2, 3.0)	3.7 (3.2, 4.2)	6.0 (5.2, 6.8)	6.8 (5.9, 7.7)	7.9 (6.9, 9.0)	9.2 (7.9, 10.6)
	Non XLPE	246	4084	2.7 (2.3, 3.3)	4.0 (3.4, 4.6)	6.2 (5.5, 7.2)	7.1 (6.2, 8.1)	8.2 (7.1, 9.4)	9.5 (8.2, 11.0)
	XLPE	61	2946	2.3 (1.8, 3.0)	2.4 (1.9, 3.2)				
Reflection (Cup)		169	2244	2.8 (2.2, 3.6)	5.4 (4.4, 6.6)	11.1 (9.3, 13.2)	13.8 (11.6, 16.4)	17.6 (14.6, 21.1)	18.7 (15.4, 22.5)
	Non XLPE	142	1079	3.3 (2.3, 4.6)	7.5 (6.0, 9.5)	15.4 (12.9, 18.3)	18.1 (15.3, 21.4)	21.8 (18.4, 25.7)	22.7 (19.1, 26.9)
	XLPE	27	1165	2.3 (1.5, 3.4)	2.4 (1.6, 3.6)	2.7 (1.8, 4.2)			
Reflection (Shell)		601	14241	2.4 (2.1, 2.7)	3.5 (3.2, 3.8)	5.8 (5.3, 6.3)	6.7 (6.0, 7.3)	7.8 (6.9, 8.7)	9.0 (7.8, 10.2)
	Non XLPE	270	2322	4.3 (3.5, 5.2)	6.8 (5.8, 8.0)	12.6 (11.1, 14.3)	14.3 (12.7, 16.1)	15.6 (13.9, 17.6)	16.7 (14.8, 18.8)
	XLPE	331	11919	2.0 (1.8, 2.3)	2.7 (2.4, 3.1)	3.6 (3.2, 4.1)	3.8 (3.3, 4.3)	4.5 (3.7, 5.5)	6.3 (4.0, 9.8)
Vitalock		250	4619	2.5 (2.1, 3.0)	3.5 (3.0, 4.1)	5.3 (4.7, 6.1)	5.8 (5.1, 6.6)	6.6 (5.8, 7.5)	7.2 (6.3, 8.2)
	Non XLPE	209	3569	2.6 (2.1, 3.1)	3.6 (3.0, 4.2)	5.5 (4.8, 6.4)	6.0 (5.2, 6.9)	6.9 (6.0, 7.9)	7.5 (6.5, 8.6)
	XLPE	41	1050	2.4 (1.6, 3.5)	3.3 (2.3, 4.6)	4.7 (3.5, 6.5)	4.7 (3.5, 6.5)		
TOTAL		2045	41537						

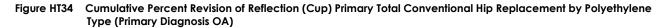

Table HT30 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Prosthesis Type and Polyethylene Type (Primary Diagnosis OA)

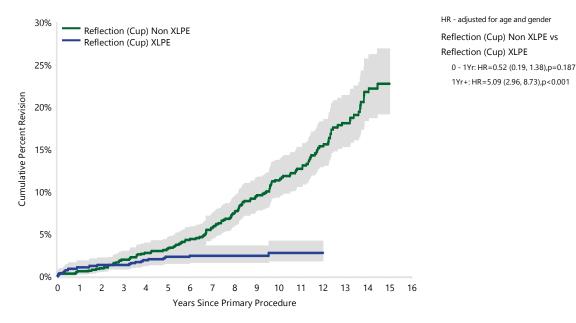

Cumulative Percent Revision of Allofit Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Figure HT31 Diagnosis OA)


Number at Risk 0 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs 16 Yrs 1 Yr Allofit Non XLPE 848 828 793 738 526 55 7 XLPE 21 0 7845 7236 5981 4643 1416


Entire Period: HR=1.46 (1.09, 1.95),p=0.012

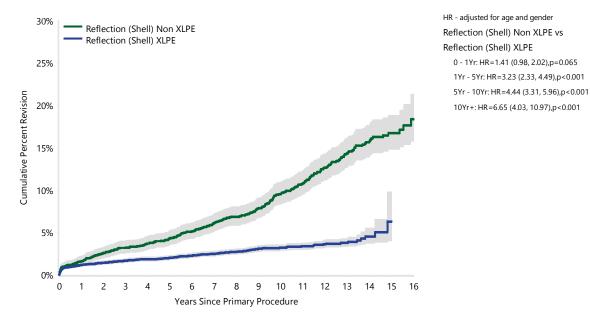
Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Duraloc	Non XLPE	2994	2915	2743	2567	1905	398	90
	XLPE	1716	1668	1575	1445	643	16	0

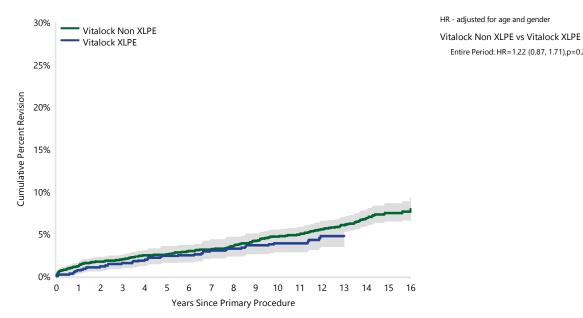




Mallory-Head Non XLPE vs Mallory-Head XLPE 0 - 1Mth: HR=0.82 (0.46, 1.45),p=0.497 1Mth - 3Mth: HR=1.63 (0.67, 3.97),p=0.280 3Mth - 1.5Yr: HR=0.87 (0.49, 1.56),p=0.640 1.5Yr+: HR=2.39 (1.30, 4.41),p=0.005


HR - adjusted for age and gender


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Mallory-Head Non XLPE	4084	3976	3810	3618	2592	468	177
XLPE	2946	2585	1908	1131	10	0	0


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Reflection (Cup) Non XLPE	1079	1052	975	895	564	85	26
XLPE	1165	1096	926	744	254	0	0

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Reflection (Shell) Non XLPE	2322	2243	2116	1964	1399	298	97
XLPE	11919	11455	10286	9019	4091	60	6

Entire Period: HR=1.22 (0.87, 1.71),p=0.249

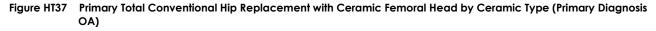
Figure HT36 Cumulative Percent Revision of Vitalock Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)

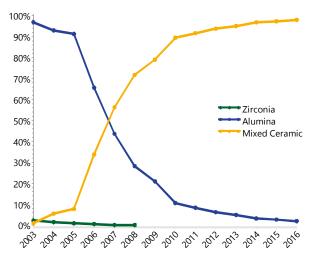
Num	nber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Vitalock	Non XLPE	3569	3477	3331	3162	2564	851	340
	XLPE	1050	1032	985	936	687	0	0

Table HT31 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Prosthesis Type and Polyethylene Type (Primary Diagnosis OA)

Acetabular Component	Polyethylene Type	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
G7		21	1236	1.7 (1.1, 2.7)	2.3 (1.4, 3.6)				
	XLPE	3	196	1.0 (0.3, 4.0)	2.1 (0.6, 6.8)				
	XLPE + Antioxidant	18	1040	1.9 (1.1, 3.0)	2.2 (1.3, 3.7)				
Ringloc		121	5518	1.6 (1.3, 2.0)	2.0 (1.6, 2.4)	2.2 (1.8, 2.6)	2.3 (1.9, 2.8)	2.4 (2.0, 2.9)	2.6 (2.1, 3.1)
	XLPE	63	3091	1.4 (1.0, 1.9)	1.7 (1.3, 2.3)	1.8 (1.4, 2.4)	2.0 (1.5, 2.6)	2.2 (1.7, 2.8)	2.3 (1.8, 3.0)
	XLPE + Antioxidant	58	2427	2.0 (1.5, 2.6)	2.3 (1.7, 3.0)	2.6 (2.0, 3.4)	2.7 (2.1, 3.5)	2.7 (2.1, 3.5)	2.7 (2.1, 3.5)
Trinity		47	2815	1.6 (1.2, 2.2)	1.9 (1.4, 2.6)	2.2 (1.6, 3.0)	2.6 (1.7, 4.0)	2.6 (1.7, 4.0)	
	XLPE	13	718	1.4 (0.7, 2.7)	2.1 (1.1, 3.9)	2.6 (1.4, 5.0)	3.3 (1.7, 6.3)	3.3 (1.7, 6.3)	
	XLPE + Antioxidant	34	2097	1.7 (1.2, 2.4)	1.9 (1.3, 2.6)	2.0 (1.4, 2.9)	2.0 (1.4, 2.9)		
TOTAL		189	9569						

Ceramic/Ceramic Bearing

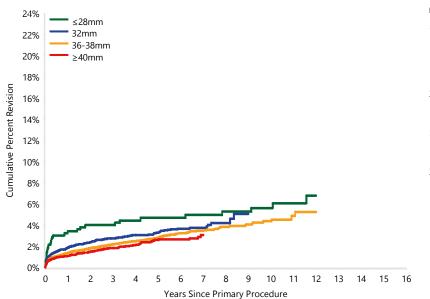

Ceramic/ceramic bearings have been used in 78,674 primary total conventional hip replacement procedures undertaken for osteoarthritis. This is the second most common bearing reported to the Registry.


This year, analysis has been restricted to procedures with mixed ceramic femoral head and mixed ceramic acetabular bearing surfaces. In 2016, mixed ceramic accounted for 92.0% of all procedures with ceramic/ceramic bearing surface (Figure HT37).

Head Size

To evaluate the effect of head size, an analysis was undertaken comparing four head size groups (≤28, 32, 36-38 and ≥40mm). Head sizes 36mm and 38mm have been combined in this analysis. Mixed ceramic heads with head sizes 36 to 38mm, and 40mm or larger have a lower rate of revision than 32mm heads. After 1.5 years there is no difference in the rate of revision between 28mm or smaller and 32mm head sizes. There is no difference in the rate of revision between 36 to 38mm and 40mm or larger head sizes (Table HT32 and Figure HT38).

At one year, the cumulative incidence of revision for dislocation is 2.0% for head sizes 28mm or smaller compared to 0.4% for 32mm, 0.3% for 36 to 38mm, and 0.1% for head sizes 40mm or larger (Figure HT39).

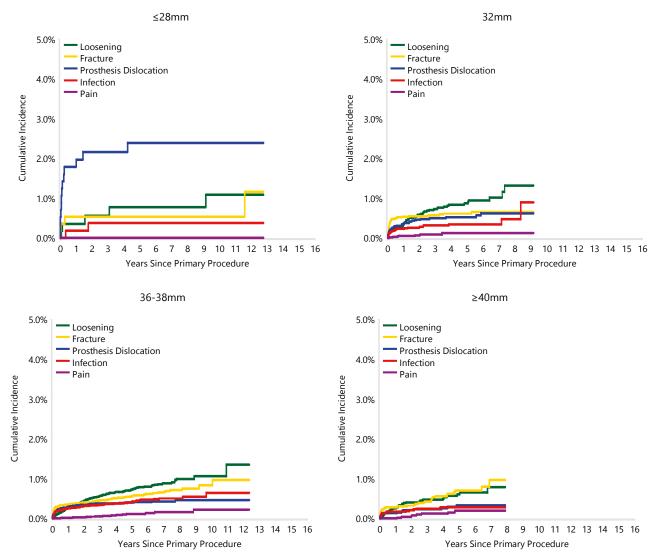


Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
≤28mm	30	564	3.4 (2.2, 5.3)	4.0 (2.6, 6.0)	4.7 (3.2, 6.9)	5.6 (3.9, 8.1)		
32mm	242	8384	1.9 (1.6, 2.2)	2.7 (2.4, 3.1)	3.3 (2.9, 3.7)			
36-38mm	792	32734	1.4 (1.2, 1.5)	2.2 (2.0, 2.4)	2.8 (2.6, 3.0)	4.4 (3.9, 4.9)		
≥40mm	129	6027	1.1 (0.8, 1.4)	1.8 (1.5, 2.2)	2.6 (2.2, 3.1)			
TOTAL	1193	47709						

Table HT32 Cumulative Percent Revision of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA)

Figure HT38 Cumulative Percent Revision of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA)

HR - adjusted for age and gender ≤28mm vs 32mm 0 - 2Wk: HR=2.18 (0.80, 5.94),p=0.126 2Wk - 1.5Yr: HR=1.79 (1.08, 2.98),p=0.024 1.5Yr+: HR=0.69 (0.36, 1.34),p=0.277


36-38mm vs 32mm Entire Period: HR=0.81 (0.69, 0.95),p=0.008

≥40mm vs 32mm Entire Period: HR=0.69 (0.55, 0.87),p=0.001

36-38mm vs ≥40mm Entire Period: HR=1.17 (0.97, 1.41),p=0.100

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
≤28mm	564	518	434	371	218	0	0
32mm	8384	7136	4832	2625	2	0	0
36-38mm	32734	27885	18461	10330	631	0	0
≥40mm	6027	5482	4047	2144	0	0	0

Constrained Acetabular Prostheses

Constrained acetabular prostheses have a mechanism to lock the femoral head into the acetabular component. Although often considered 'revision' components, there have been 1,923 procedures used for primary total conventional hip replacement. Of these, 725 procedures using constrained acetabular inserts and 1,198 procedures using constrained cups. There were 64 procedures reported in 2016. This is an increase of 3.1% compared to 2015.

Constrained acetabular prostheses are proportionally used more frequently for fractured neck of femur, tumour, failed internal fixation, and fracture/dislocation compared to all other acetabular components (Table HT33).

When all diagnoses are included, there is no difference in the rate of revision for constrained prostheses compared to other acetabular prostheses (Table HT34 and Figure HT40). This is also true when only those procedures with a diagnosis of osteoarthritis are included (Table HT35 and Figure HT41). Gender is not a risk factor for revision (Table HT36 and Figure HT42).

However, there is a difference in outcome with respect to age. Constrained prosthesis have a higher rate of revision if they are used in patients aged less than 70 years (Table HT37 and Figure HT43). There is no difference in the rate of revision related to fixation (Table HT38 and Figure HT44).

Dual Mobility Acetabular Prostheses

Dual mobility prostheses have a femoral head which moves within a polyethylene component, which also moves within a fixed acetabular shell.

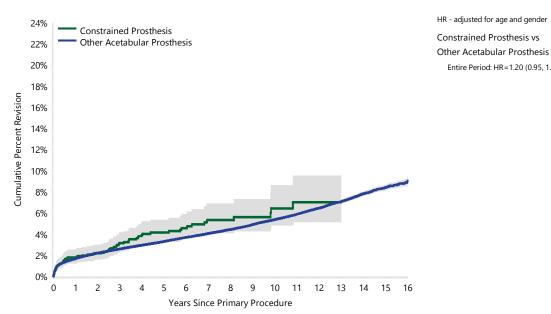
There have been 3,948 primary total conventional hip replacement procedures using dual mobility prostheses. Compared to other acetabular prostheses, dual mobility acetabular prostheses are proportionally used more frequently for fractured neck of femur, tumour, and failed internal fixation (Table HT39).

When all diagnoses are included, dual mobility prostheses have a higher rate of revision compared to other acetabular prostheses (Table HT40 and Figure HT45).

For the diagnosis of osteoarthritis, there is no difference in the rate of revision when dual mobility prostheses are used (Table HT41 and Figure HT46).

	Constrained	Prosthesis	Other Acetabu	lar Prosthesis
Diagnosis	N	Col%	N	Col%
Osteoarthritis	765	39.8	323862	88.8
Fractured Neck Of Femur	678	35.3	15187	4.2
Osteonecrosis	73	3.8	11978	3.3
Developmental Dysplasia	19	1.0	4537	1.2
Rheumatoid Arthritis	22	1.1	3711	1.0
Tumour	214	11.1	1863	0.5
Failed Internal Fixation	108	5.6	1515	0.4
Other Inflammatory Arthritis	5	0.3	1589	0.4
Fracture/Dislocation	28	1.5	413	0.1
Arthrodesis Takedown	8	0.4	109	0.0
Other	3	0.2	137	0.0
TOTAL	1923	100.0	364901	100.0

Table HT33 Primary Total Conventional Hip Replacement by Primary Diagnosis and Acetabular Type

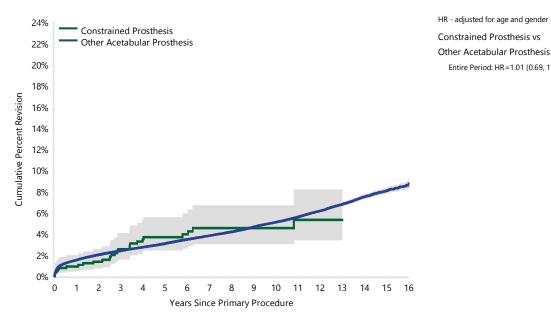

Entire Period: HR=1.20 (0.95, 1.52),p=0.117

Acetabular Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis	71	1923	1.8 (1.3, 2.5)	3.1 (2.4, 4.1)	4.1 (3.2, 5.3)	6.4 (4.8, 8.6)		
Other Acetabular Prosthesis	13693	364901	1.7 (1.6, 1.7)	2.6 (2.5, 2.7)	3.3 (3.2, 3.4)	5.4 (5.3, 5.5)	8.4 (8.2, 8.6)	9.0 (8.7, 9.4)
TOTAL	13764	366824						

Table HT34 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (All **Diagnoses**)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT40 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (All Diagnoses)


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis	1923	1560	1140	736	209	14	4
Other Acetabular Prosthesis	364901	318535	242906	179211	67627	7405	1881

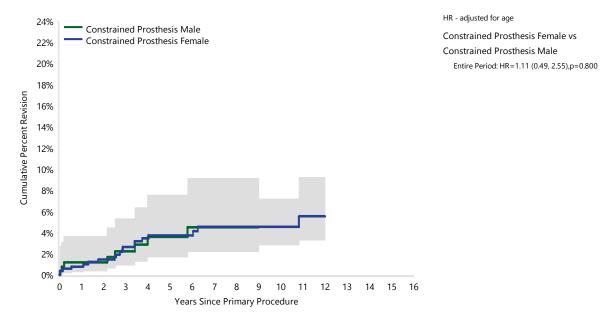
Acetabular Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis	27	765	0.9 (0.4, 1.9)	2.5 (1.6, 4.1)	3.7 (2.5, 5.5)	4.5 (3.1, 6.7)		
Other Acetabular Prosthesis	11583	323862	1.5 (1.5, 1.6)	2.4 (2.4, 2.5)	3.1 (3.0, 3.2)	5.1 (5.0, 5.2)	8.1 (7.8, 8.3)	8.8 (8.4, 9.1)
TOTAL	11610	324627						

Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Table HT35 **Diagnosis OA)**

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Figure HT41 Diagnosis OA)

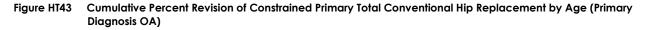
Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs 16 Yrs **Constrained Prosthesis** 765 695 560 402 153 9 2 Other Acetabular Prosthesis 323862 284840 218441 161709 61150 6566 1647

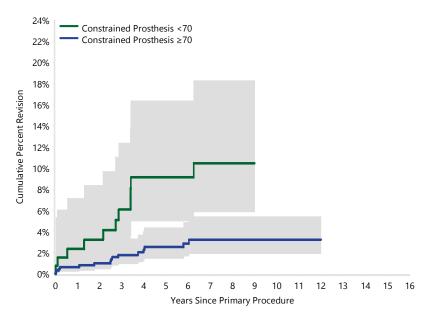

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Entire Period: HR=1.01 (0.69, 1.47),p=0.957

Acetabular Type	Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis	Male	8	256	1.2 (0.4, 3.6)	2.2 (0.9, 5.3)	3.6 (1.7, 7.5)			
	Female	19	509	0.8 (0.3, 2.1)	2.7 (1.5, 4.6)	3.7 (2.3, 6.1)	4.5 (2.8, 7.2)		
TOTAL		27	765						

Table HT36 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)

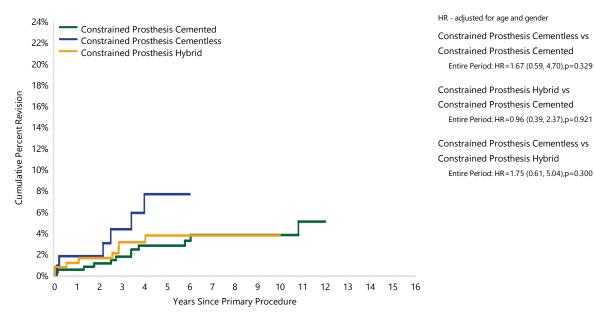

Figure HT42 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis Male	256	225	163	114	33	0	0
Female	509	470	397	288	120	9	2

Diagnosi	s OA)								
Acetabular Type	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis	<70	12	130	2.4 (0.8, 7.1)	6.1 (2.9, 12.4)	9.1 (5.0, 16.4)			
	≥70	15	635	0.6 (0.2, 1.7)	1.8 (1.0, 3.3)	2.5 (1.5, 4.4)	3.2 (1.9, 5.4)		
TOTAL		27	765						

Table HT37 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)


HR - adjusted for gender Constrained Prosthesis <70 vs Constrained Prosthesis ≥70 Entire Period: HR=3.71 (1.73, 7.95),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis <70	130	117	95	73	38	5	0
≥70	635	578	465	329	115	4	2

Acetabular Type	Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Constrained Prosthesis	Cemented	12	388	0.5 (0.1, 2.1)	1.7 (0.8, 3.8)	2.8 (1.4, 5.3)	3.8 (2.1, 6.8)		
	Cementless	7	112	1.8 (0.5, 7.0)	4.3 (1.6, 11.3)	7.6 (3.4, 16.6)			
	Hybrid	8	265	1.2 (0.4, 3.6)	3.1 (1.5, 6.4)	3.7 (1.9, 7.4)	3.7 (1.9, 7.4)		
TOTAL		27	765						

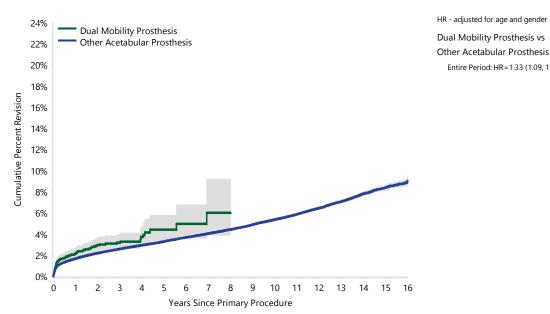
Table HT38 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)

Figure HT44 Cumulative Percent Revision of Constrained Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)

Number at Risk 5 Yrs 10 Yrs 15 Yrs 16 Yrs 0 Yr 1 Yr 3 Yrs 388 306 229 97 4 0 Constrained Prosthesis Cemented 363 112 95 69 45 14 1 0 Cementless 265 237 185 128 42 4 2 Hybrid

	Dual Mobility	/ Prosthesis	Other Acetabu	lar Prosthesis
Diagnosis	Ν	Col%	Ν	Col%
Osteoarthritis	2467	62.5	322160	88.8
Fractured Neck Of Femur	954	24.2	14911	4.1
Osteonecrosis	153	3.9	11898	3.3
Developmental Dysplasia	62	1.6	4494	1.2
Rheumatoid Arthritis	24	0.6	3709	1.0
Tumour	137	3.5	1940	0.5
Failed Internal Fixation	94	2.4	1529	0.4
Other Inflammatory Arthritis	15	0.4	1579	0.4
Fracture/Dislocation	31	0.8	410	0.1
Arthrodesis Takedown	7	0.2	110	0.0
Other	4	0.1	136	0.0
TOTAL	3948	100.0	362876	100.0

Table HT39 Primary Diagnosis of Primary Total Conventional Hip Replacement by Acetabular Mobility

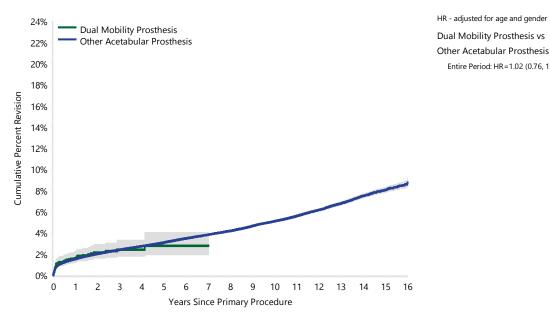

Entire Period: HR=1.33 (1.09, 1.61),p=0.004

Acetabular Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Dual Mobility Prosthesis	104	3948	2.2 (1.7, 2.7)	3.2 (2.6, 3.9)	4.4 (3.4, 5.8)			
Other Acetabular Prosthesis	13660	362876	1.7 (1.6, 1.7)	2.6 (2.5, 2.6)	3.3 (3.2, 3.4)	5.4 (5.3, 5.5)	8.4 (8.2, 8.6)	9.0 (8.7, 9.4)
TOTAL	13764	366824						

Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Table HT40 Diagnoses)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Figure HT45 Diagnoses)


Number at Risk 15 Yrs 0 Yr 1 Yr 3 Yrs 5 Yrs 10 Yrs 16 Yrs 0 **Dual Mobility Prosthesis** 3948 2450 882 256 5 0 Other Acetabular Prosthesis 362876 317645 243164 179691 67831 7419 1885

• ,								
Acetabular Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Dual Mobility Prosthesis	47	2467	1.6 (1.2, 2.2)	2.4 (1.8, 3.3)	2.8 (1.9, 4.1)			
Other Acetabular Prosthesis	11563	322160	1.5 (1.5, 1.6)	2.4 (2.4, 2.5)	3.1 (3.0, 3.2)	5.1 (5.0, 5.2)	8.1 (7.8, 8.3)	8.8 (8.4, 9.1)
TOTAL	11610	324627						

Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Table HT41 **Diagnosis OA)**

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT46 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA)

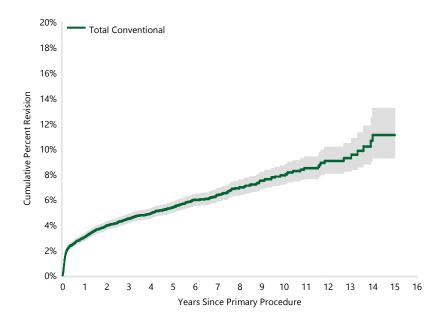
Number at Risk 15 Yrs 0 Yr 1 Yr 3 Yrs 5 Yrs 10 Yrs 16 Yrs **Dual Mobility Prosthesis** 2467 0 1573 556 151 4 0 Other Acetabular Prosthesis 322160 283962 218445 161960 61299 6575 1649

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Entire Period: HR=1.02 (0.76, 1.36),p=0.899

OUTCOME FOR FRACTURED NECK OF FEMUR

This year, the Registry has undertaken a separate analysis of the outcome of primary total conventional hip replacement for fractured neck of femur.


There have been 15,865 total conventional hip replacement procedures recorded by the

Registry for a diagnosis of fractured neck of femur. The cumulative percent revision of primary total conventional hip replacement at 10 years for fractured neck of femur is 7.9% (Table HT42 and Figure HT47).

Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Total Conventional	763	15865	3.0 (2.8, 3.3)	3.9 (3.6, 4.3)	4.5 (4.1, 4.8)	5.4 (5.0, 5.8)	6.3 (5.9, 6.9)	7.9 (7.2, 8.6)
TOTAL	763	15865						

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT47 Cumulative Percent Revision of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Total Conventional	15865	12450	10172	8199	5149	2952	1120

Reasons for Revision

Prosthesis dislocation (32.9%) is the most common reason for revision, followed by fracture (27.1%), loosening (16.6%), and infection (16.0%) (Table HT43 and Figure HT48).

Table HT43 Primary Total Conventional Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)

Reason for Revision	Number	Percent
Prosthesis Dislocation	251	32.9
Fracture	207	27.1
Loosening	127	16.6
Infection	122	16.0
Pain	9	1.2
Malposition	7	0.9
Implant Breakage Stem	7	0.9
Lysis	6	0.8
Implant Breakage Acetabular	5	0.7
Leg Length Discrepancy	5	0.7
Metal Related Pathology	3	0.4
Incorrect Sizing	3	0.4
Instability	3	0.4
Implant Breakage Acetabular Insert	3	0.4
Heterotopic Bone	2	0.3
Wear Acetabular Insert	1	0.1
Other	2	0.3
TOTAL	763	100.0

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Type of Revision

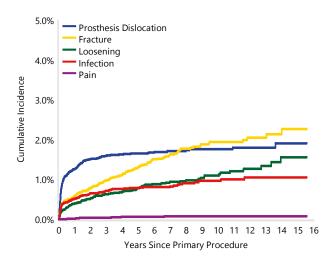

Replacement of the femoral component only is the most common type of revision (35.6%), followed by head and insert (21.0%), acetabular only (20.4%), and total hip replacement (femoral/acetabular) (8.4%) (Table HT44).

Table HT44	Primary Total Conventional Hip Replacement
	Hip Replacement by Type of Revision
	(Primary Diagnosis Fractured NOF)

Type of Revision	Number	Percent
Femoral Component	272	35.6
Head/Insert	160	21.0
Acetabular Component	156	20.4
THR (Femoral/Acetabular)	64	8.4
Head Only	38	5.0
Cement Spacer	34	4.5
Minor Components	17	2.2
Insert Only	10	1.3
Removal of Prostheses	3	0.4
Head/Neck/Insert	3	0.4
Reinsertion of Components	2	0.3
Head/Neck	2	0.3
Total Femoral	1	0.1
Neck Only	1	0.1
TOTAL	763	100.0

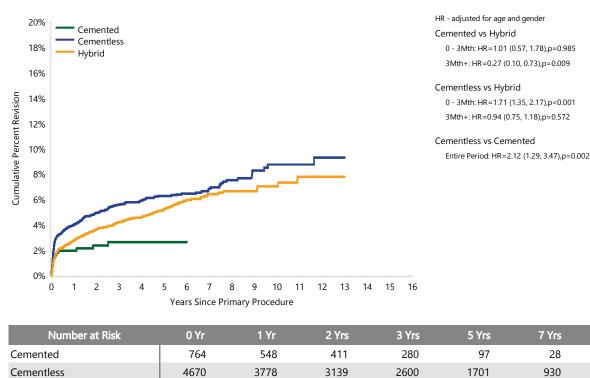
Note: Femoral heads are usually replaced when the acetabular component and/or femoral stem is revised All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT48 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)

Fixation

The analysis for fractured neck of femur and fixation has been performed on modern bearing surfaces and restricted to ceramic/ceramic and all femoral head materials used in combination with XLPE.

The Registry has recorded 764 procedures with cemented fixation, 4,670 with cementless fixation and 7,436 with hybrid fixation. Cemented fixation has a lower rate of revision for all time periods compared to cementless fixation and compared to hybrid fixation after 3 months. Cementless fixation has a higher rate of revision than hybrid fixation for the first three months only, and then there is no difference after this time (Table HT45 and Figure HT49).


There are differences in outcome with respect to fixation and age. For patients aged less than 70 years, there is no difference in the rate for revision between the three different fixation methods (Table HT46 and Figure HT50). For patients aged 70 years or older, cementless fixation has a higher rate of revision than cemented fixation for all time periods, and for the first three months compared to hybrid fixation. Hybrid fixation has a higher rate of revision compared to cemented fixation after one month (Table HT46 and Figure HT51).

Fixation	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Cemented	17	764	1.9 (1.1, 3.2)	2.3 (1.4, 3.8)	2.6 (1.6, 4.3)	2.6 (1.6, 4.3)		
Cementless	269	4670	4.0 (3.5, 4.6)	4.9 (4.3, 5.6)	5.6 (4.9, 6.3)	6.3 (5.5, 7.1)	6.8 (6.0, 7.8)	8.7 (7.4, 10.3)
Hybrid	314	7436	2.7 (2.4, 3.1)	3.6 (3.2, 4.1)	4.2 (3.7, 4.7)	5.2 (4.6, 5.9)	6.4 (5.6, 7.3)	7.0 (6.1, 8.1)
TOTAL	600	12870						

Note: Includes procedures using ceramic/ceramic and XLPE prostheses

Figure HT49 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis Fractured NOF)

5659

4474

3455

1994

Note: Includes procedures using ceramic/ceramic and XLPE prostheses

7436

Hybrid

1071

10 Yrs

3

321

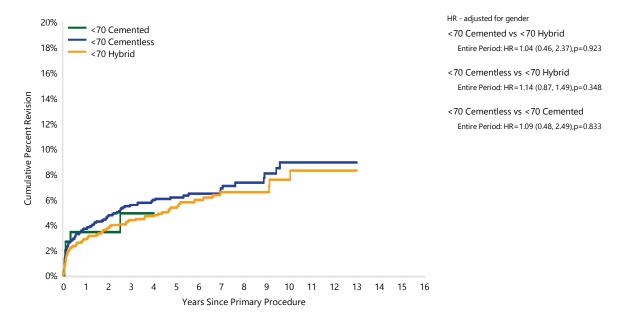

316

Table HT46 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Age and Fixation (Primary Diagnosis Fractured NOF)

Age	Fixation	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<70	Cemented	6	159	3.4 (1.4, 8.0)	3.4 (1.4, 8.0)	4.9 (2.1, 11.1)			
	Cementless	108	1862	3.7 (2.9, 4.7)	4.7 (3.8, 5.8)	5.6 (4.5, 6.8)	6.2 (5.1, 7.5)	6.8 (5.6, 8.4)	8.9 (7.0, 11.3)
	Hybrid	105	2291	2.8 (2.2, 3.6)	3.8 (3.0, 4.7)	4.4 (3.5, 5.4)	5.4 (4.3, 6.6)	6.6 (5.3, 8.2)	7.5 (5.8, 9.8)
≥70	Cemented	11	605	1.6 (0.8, 3.0)	2.1 (1.1, 3.7)	2.1 (1.1, 3.7)	2.1 (1.1, 3.7)		
	Cementless	161	2808	4.2 (3.5, 5.1)	5.1 (4.3, 6.0)	5.6 (4.7, 6.5)	6.3 (5.4, 7.4)	6.8 (5.7, 8.0)	8.4 (6.8, 10.3)
	Hybrid	209	5145	2.7 (2.3, 3.2)	3.6 (3.1, 4.2)	4.1 (3.5, 4.7)	5.2 (4.4, 6.0)	6.4 (5.4, 7.5)	6.7 (5.7, 7.9)
TOTAL		600	12870						

Note: Includes procedures using ceramic/ceramic and XLPE prostheses

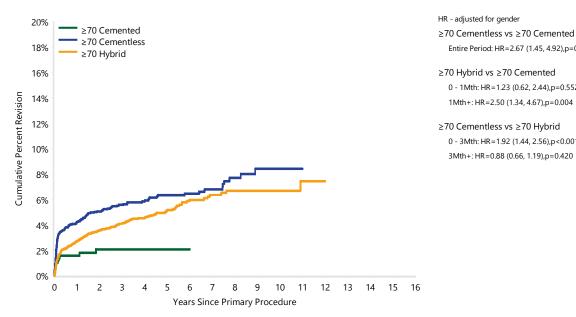
Figure HT50 Cumulative Percent Revision of Primary Total Conventional Hip Replacement in Patients Aged <70 Years by Fixation (Primary Diagnosis Fractured NOF)

	Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<70	Cemented	159	104	79	57	20	8	1
	Cementless	1862	1542	1306	1085	749	447	188
	Hybrid	2291	1777	1416	1125	699	394	135

Note: Includes procedures using ceramic/ceramic and XLPE prostheses

Entire Period: HR=2.67 (1.45, 4.92),p=0.001

0 - 1Mth: HR=1.23 (0.62, 2.44),p=0.552


1Mth+: HR=2.50 (1.34, 4.67),p=0.004

3Mth+: HR=0.88 (0.66, 1.19),p=0.420

≥70 Hybrid vs ≥70 Cemented

≥70 Cementless vs ≥70 Hybrid 0 - 3Mth: HR=1.92 (1.44, 2.56),p<0.001

Figure HT51 Cumulative Percent Revision of Primary Total Conventional Hip Replacement in Patients Aged ≥ 70 Years by Fixation (Primary Diagnosis Fractured NOF)

Num	ıber at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
≥70 years	Cemented	605	444	332	223	77	20	2
	Cementless	2808	2236	1833	1515	952	483	133
	Hybrid	5145	3882	3058	2330	1295	677	181

Note: Includes procedures using ceramic/ceramic and XLPE prostheses

Data Period 1 September 1999 – 31 December 2016

Head Size

Head size 32mm has a lower rate of revision after three months compared to head sizes less than 32mm. There is no difference when 36mm or larger head sizes are compared to head sizes both less than 32mm or 32mm (Table HT47 and Figure HT52).

Constrained Acetabular Prostheses

When used for fractured neck of femur, constrained prostheses have a lower rate of

revision compared to other acetabular prostheses (Table HT48 and Figure HT53).

Dual Mobility

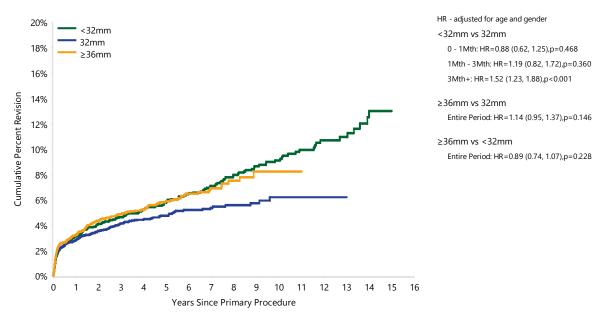
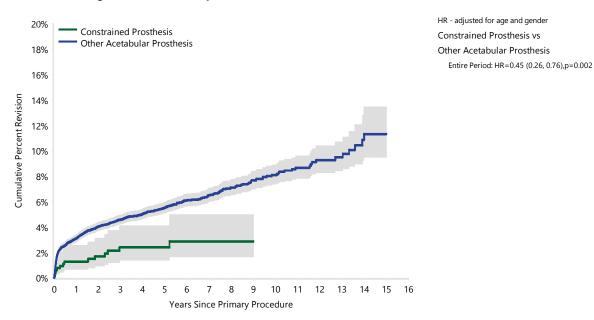

There is no difference in the rate of revision when dual mobility prostheses are used (Table HT49 and Figure HT54).

Table HT47 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF)

Head Size	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<32mm	255	4290	3.1 (2.6, 3.7)	4.1 (3.5, 4.8)	4.6 (4.0, 5.4)	5.8 (5.0, 6.7)	7.1 (6.2, 8.1)	9.1 (7.9, 10.5)
32mm	274	6736	2.8 (2.4, 3.3)	3.5 (3.1, 4.0)	4.1 (3.6, 4.7)	4.7 (4.2, 5.4)	5.4 (4.7, 6.1)	6.2 (5.2, 7.3)
≥36mm	234	4813	3.2 (2.7, 3.8)	4.3 (3.8, 5.0)	4.8 (4.2, 5.6)	5.9 (5.1, 6.7)	6.9 (5.9, 8.0)	8.2 (6.8, 9.9)
TOTAL	763	15839						

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded Excludes 26 procedures with unknown head size

Figure HT52 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF)

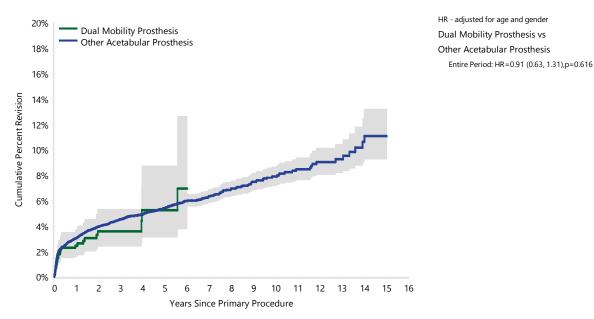

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<32mm	4290	3406	2841	2415	1734	1260	713
32mm	6736	5347	4334	3415	2050	1075	302
≥36mm	4813	3677	2980	2357	1357	612	105

Acetabular Type	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Constrained Prosthesis	14	678	1.3 (0.6, 2.5)	1.7 (0.9, 3.1)	2.4 (1.4, 4.1)	2.4 (1.4, 4.1)	2.9 (1.6, 5.0)	
Other Acetabular Prosthesis	749	15187	3.1 (2.8, 3.4)	4.0 (3.7, 4.4)	4.6 (4.2, 4.9)	5.5 (5.1, 6.0)	6.5 (6.0, 7.0)	8.1 (7.3, 8.9)
TOTAL	763	15865						

Table HT48 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis Fractured NOF)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT53 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis Fractured NOF)


Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Constrained Prosthesis	678	540	471	373	224	111	34
Other Acetabular Prosthesis	15187	11910	9701	7826	4925	2841	1086

Acetabular Mobility	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Dual Mobility Prosthesis	30	954	2.4 (1.6, 3.7)	3.6 (2.4, 5.3)	3.6 (2.4, 5.3)	5.2 (3.1, 8.7)		
Other Acetabular Prosthesis	733	14911	3.1 (2.8, 3.3)	4.0 (3.6, 4.3)	4.5 (4.2, 4.9)	5.4 (5.0, 5.9)	6.3 (5.8, 6.9)	7.9 (7.2, 8.6)
TOTAL	763	15865						

Table HT49 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis Fractured NOF)

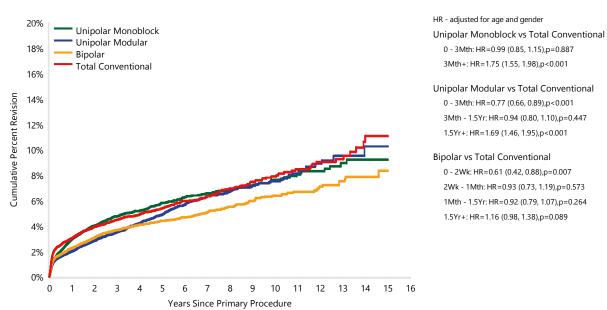
Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT54 Cumulative Percent Revision of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Dual Mobility Prosthesis	954	565	353	209	67	32	1
Other Acetabular Prosthesis	14911	11885	9819	7990	5082	2920	1119

OUTCOME OF TOTAL CONVENTIONAL COMPARED TO PARTIAL HIP REPLACEMENT

The rate of revision of total conventional hip replacement was compared to unipolar monoblock, unipolar modular and bipolar hip replacement for fractured neck of femur.

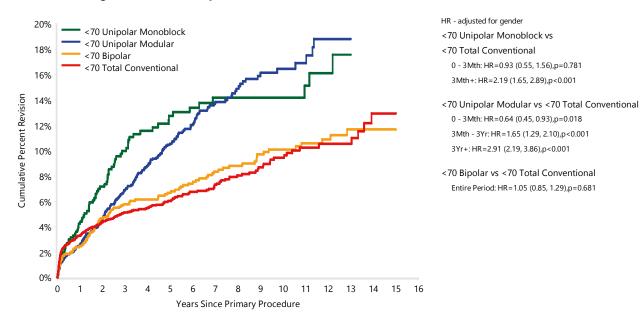

Unipolar monoblock hip replacement has a higher rate of revision than total conventional hip replacement after three months. Unipolar modular hip replacement has a lower rate of revision than total conventional hip replacement for the first three months. From three months to 1.5 years there is no difference, but after this time it has a higher rate of revision. Bipolar hip replacement has a lower rate of revision for the first two weeks compared to total conventional hip replacement, but after this time there is no difference (Table HT50 and Figure HT55).

For patients under 70 years of age, unipolar monoblock has a higher rate of revision after three months compared to total conventional hip replacement. The use of unipolar monoblock components in those aged less than 70 years may represent its use in patients with significant co-morbidities. Unipolar modular has a lower rate of revision than total conventional hip replacement for the first three moths, but after this time it is higher. There is no difference between bipolar and total conventional hip replacement in this age group (Table HT51 and Figure HT56).

For patients aged 70 years or older, there are time dependent variations in the comparative rates of revision. Unipolar monoblock has a higher rate of revision compared to total conventional hip replacement between three months and one year. Unipolar modular has a lower rate of revision for the first 1.5 years. After 1.5 years there is no difference. Bipolar hip replacement has a lower rate of revision than total conventional hip replacement for the entire period (Table HT51 and Figure HT57).

Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	1034	27453	2.9 (2.7, 3.2)	4.0 (3.7, 4.3)	4.8 (4.4, 5.1)	5.8 (5.4, 6.2)	6.5 (6.1, 7.0)	7.6 (7.0, 8.3)
Unipolar Modular	1149	34286	2.0 (1.8, 2.2)	2.8 (2.6, 3.0)	3.5 (3.3, 3.7)	4.9 (4.6, 5.2)	6.3 (5.9, 6.8)	7.5 (6.9, 8.2)
Bipolar	606	17486	2.3 (2.0, 2.5)	3.1 (2.8, 3.4)	3.7 (3.4, 4.0)	4.4 (4.0, 4.8)	5.0 (4.6, 5.5)	6.4 (5.7, 7.0)
Total Conventional	763	15865	3.0 (2.8, 3.3)	3.9 (3.6, 4.3)	4.5 (4.1, 4.8)	5.4 (5.0, 5.8)	6.3 (5.9, 6.9)	7.9 (7.2, 8.6)
TOTAL	3552	95090						

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded



Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	27453	16627	12742	9621	5235	2828	1045
Unipolar Modular	34286	23221	17936	13572	7314	3598	1015
Bipolar	17486	12050	9300	7415	4866	3191	1598
Total Conventional	15865	12450	10172	8199	5149	2952	1120

Age	Hip Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<70		734	10575	3.0 (2.7, 3.4)	4.7 (4.3, 5.1)	6.1 (5.6, 6.6)	7.8 (7.2, 8.5)	9.7 (9.0, 10.5)	11.7 (10.8, 12.7)
	Unipolar Monoblock	81	886	4.2 (3.0, 6.0)	7.1 (5.4, 9.4)	10.0 (7.8, 12.7)	12.7 (10.2, 15.9)	14.2 (11.3, 17.6)	14.2 (11.3, 17.6)
	Unipolar Modular	243	2845	2.5 (2.0, 3.2)	4.6 (3.8, 5.5)	6.9 (5.9, 8.1)	10.6 (9.2, 12.1)	13.8 (12.1, 15.8)	16.4 (14.3, 18.9)
	Bipolar	123	1909	2.5 (1.8, 3.3)	4.7 (3.7, 5.8)	5.8 (4.7, 7.1)	6.7 (5.5, 8.2)	8.4 (6.9, 10.1)	10.1 (8.4, 12.2)
	Total Conventional	287	4935	3.3 (2.8, 3.8)	4.4 (3.8, 5.0)	5.1 (4.5, 5.8)	6.0 (5.3, 6.8)	7.3 (6.4, 8.3)	9.4 (8.2, 10.9)
≥70		2818	84515	2.4 (2.3, 2.5)	3.2 (3.1, 3.3)	3.7 (3.6, 3.9)	4.6 (4.5, 4.8)	5.4 (5.2, 5.7)	6.5 (6.1, 6.8)
	Unipolar Monoblock	953	26567	2.9 (2.7, 3.1)	3.9 (3.6, 4.2)	4.5 (4.2, 4.9)	5.5 (5.1, 5.9)	6.2 (5.7, 6.7)	7.4 (6.7, 8.1)
	Unipolar Modular	906	31441	1.9 (1.8, 2.1)	2.6 (2.5, 2.9)	3.1 (2.9, 3.3)	4.2 (3.9, 4.5)	5.2 (4.8, 5.7)	6.1 (5.5, 6.7)
	Bipolar	483	15577	2.2 (2.0, 2.5)	2.8 (2.6, 3.2)	3.4 (3.0, 3.7)	4.0 (3.7, 4.5)	4.4 (4.0, 4.9)	5.6 (5.0, 6.3)
	Total Conventional	476	10930	2.9 (2.6, 3.2)	3.7 (3.4, 4.1)	4.2 (3.8, 4.6)	5.1 (4.6, 5.6)	5.8 (5.3, 6.5)	6.9 (6.1, 7.8)
TOT	AL	3552	95090						

Table HT51 Cumulative Percent Revision of Primary Hip Replacement by Class and Age (Primary Diagnosis Fractured NOF)

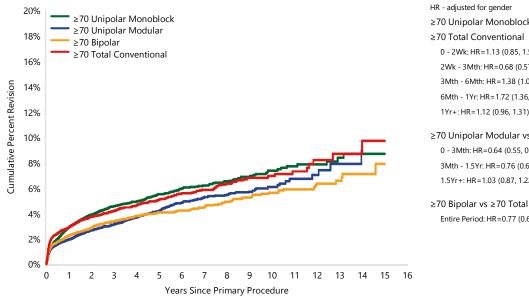

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT56	Cumulative Percent Revision of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary
	Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
<70 Unipolar Monoblock	886	597	494	410	282	202	108
Unipolar Modular	2845	2158	1767	1447	990	604	234
Bipolar	1909	1453	1188	1039	814	638	407
Total Conventional	4935	3934	3266	2696	1814	1120	506

Figure HT57 Cumulative Percent Revision of Primary Hip Replacement in Patients Aged ≥70 Years by Class (Primary Diagnosis Fractured NOF)

≥70 Unipolar Monoblock vs
≥70 Total Conventional
0 - 2Wk: HR=1.13 (0.85, 1.50),p=0.392
2Wk - 3Mth: HR=0.68 (0.57, 0.81),p<0.001
3Mth - 6Mth: HR=1.38 (1.05, 1.83),p=0.022
6Mth - 1Yr: HR=1.72 (1.36, 2.18),p<0.001
1Yr+: HR=1.12 (0.96, 1.31),p=0.163

- ≥70 Unipolar Modular vs ≥70 Total Conventional 0 - 3Mth: HR=0.64 (0.55, 0.75),p<0.001 3Mth - 1.5Yr: HR=0.76 (0.63, 0.91),p=0.002 1.5Yr+: HR=1.03 (0.87, 1.22),p=0.749
- ≥70 Bipolar vs ≥70 Total Conventional Entire Period: HR=0.77 (0.68, 0.88),p<0.001

	Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
≥70	Unipolar Monoblock	26567	16030	12248	9211	4953	2626	937
	Unipolar Modular	31441	21063	16169	12125	6324	2994	781
	Bipolar	15577	10597	8112	6376	4052	2553	1191
	Total Conventional	10930	8516	6906	5503	3335	1832	614

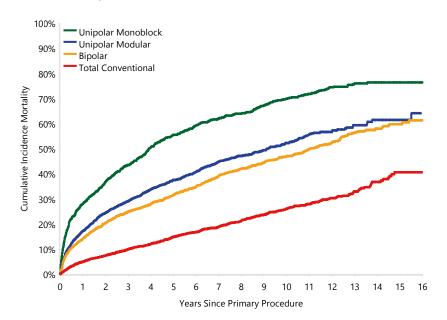
Competing Risk

The Registry typically presents the outcomes of joint replacement in terms of Kaplan-Meier estimates of the survival of the primary procedure. Using the Kaplan-Meier method, observations are censored at the close of the database or at the time of death if a revision has not occurred. These patients are then assumed to have the same chance of revision in the future as those whose follow up is not censored. However, if a patient dies they cannot be revised. Death is therefore a competing risk to revision. In the presence of a competing risk, such as death, Kaplan-Meier is known to overestimate the probability of revision. This is especially so if the incidence of the competing risk is high.

As there is a higher incidence of mortality with patients undergoing joint replacement for fractured neck of femur, the Registry has for the first time, estimated the probability of revision in the presence of competing risks using cumulative incidence. This analysis can be compared to the traditional Kaplan-Meier method.

In order to further investigate the impact of the competing risk of death, the cumulative incidence graphs of mortality and revision are provided for patients under 70 years and 70 years or older. For patients aged less than 70 years of age the cumulative incidence of mortality at 10 years for unipolar monoblock is 70.0%, for unipolar modular 52.2%, for bipolar 47.7% and for total conventional hip 26.0% (Table HT52 and Figure HT58). The cumulative incidence of revision for unipolar monoblock at 10 years is 9.0%, for unipolar modular 11.2%, bipolar 7.6%, and total conventional 8.4% (Table HT53 and Figure HT59).

For patients aged 70 years or older the cumulative incidence of mortality at 10 years for unipolar monoblock is 90.2%, for unipolar modular 81.6%, for bipolar 78.4% and for total conventional hip 64.8% (Table HT54 and Figure HT60). The cumulative incidence of revision for unipolar monblock at 10 years is 3.7%, for unipolar modular 3.5%, bipolar 3.6% and total conventional 5.4% (Table HT55 and Figure HT61).

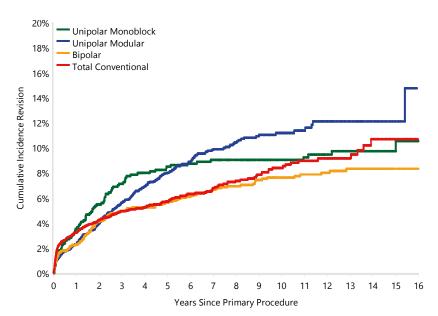

When compared to the Kaplan-Meier estimates of revision it can be seen that there is a lower risk of revision for patients when the competing risk approach is used. This is because of the high mortality of patients with a diagnosis of fractured neck of femur.

Hip Class	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	28.0	36.8	43.5	55.5	62.0	70.0
Unipolar Modular	17.2	24.4	29.1	37.5	44.8	52.2
Bipolar	14.2	20.3	24.8	31.6	39.1	47.0
Total Conventional	4.9	7.4	9.9	14.8	18.8	26.0

Table HT52 Cumulative Incidence Mortality of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fractured NOF)</th>

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT58 Cumulative Incidence Mortality of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fractured NOF)

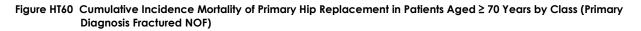

Number at Risk	0 Yr	1 Yrs	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	886	597	494	410	282	202	108
Unipolar Modular	2845	2158	1767	1447	990	604	234
Bipolar	1909	1453	1188	1039	814	638	407
Total Conventional	4935	3934	3266	2696	1814	1120	506

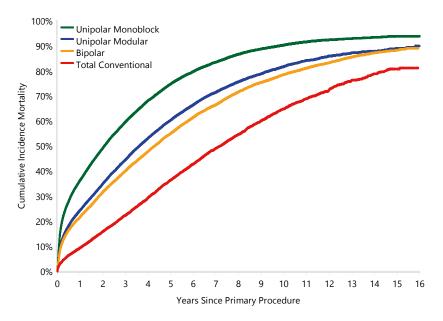
Hip Class	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	3.5 (2.4, 4.9)	5.5 (4.1, 7.1)	7.1 (5.6, 9.0)	8.5 (6.7, 10.5)	9.0 (7.2, 11.1)	9.0 (7.2, 11.1)
Unipolar Modular	2.3 (1.8, 2.9)	4.0 (3.3, 4.7)	5.6 (4.8, 6.5)	8.0 (7.0, 9.2)	9.9 (8.7, 11.2)	11.2 (9.8, 12.7)
Bipolar	2.3 (1.7, 3.1)	4.1 (3.3, 5.1)	5.0 (4.0, 6.1)	5.6 (4.6, 6.8)	6.7 (5.5, 8.0)	7.6 (6.4, 9.1)
Total Conventional	3.2 (2.8, 3.8)	4.2 (3.7, 4.8)	4.9 (4.3, 5.6)	5.7 (5.0, 6.5)	6.8 (6.0, 7.7)	8.4 (7.3, 9.6)

Table HT53 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fractured NOF)</th>

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT59 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fractured NOF)

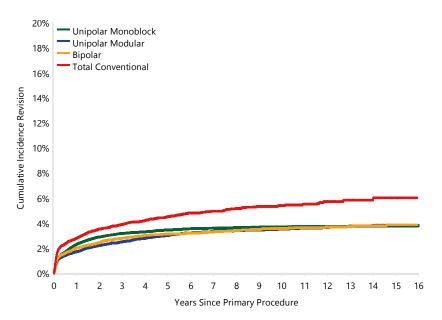



Number at Risk	0 Yr	1 Yrs	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	886	597	494	410	282	202	108
Unipolar Modular	2845	2158	1767	1447	990	604	234
Bipolar	1909	1453	1188	1039	814	638	407
Total Conventional	4935	3934	3266	2696	1814	1120	506

Hip Class	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	36.3	49.1	59.5	74.7	83.4	90.2
Unipolar Modular	24.3	34.8	44.4	60.2	71.4	81.6
Bipolar	21.6	31.5	40.0	54.9	66.4	78.4
Total Conventional	9.3	15.8	22.3	36.3	48.9	64.8

Table HT54 Cumulative Incidence Mortality of Primary Hip Replacement in Patients Aged ≥ 70 Years by Class (Primary Diagnosis Fractured NOF)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded


Number at Risk	0 Yr	1 Yrs	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	26567	16030	12248	9211	4953	2626	937
Unipolar Modular	31441	21063	16169	12125	6324	2994	781
Bipolar	15577	10597	8112	6376	4052	2553	1191
Total Conventional	10930	8516	6906	5503	3335	1832	614

Hip Class	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	2.3 (2.1, 2.5)	2.9 (2.7, 3.1)	3.2 (3.0, 3.4)	3.5 (3.2, 3.7)	3.6 (3.4, 3.8)	3.7 (3.5, 3.9)
Unipolar Modular	1.7 (1.6, 1.9)	2.2 (2.1, 2.4)	2.5 (2.3, 2.7)	3.0 (2.8, 3.2)	3.3 (3.1, 3.6)	3.5 (3.3, 3.8)
Bipolar	2.0 (1.8, 2.2)	2.4 (2.2, 2.7)	2.8 (2.5, 3.1)	3.1 (2.8, 3.4)	3.3 (3.0, 3.6)	3.6 (3.3, 3.9)
Total Conventional	2.8 (2.5, 3.1)	3.5 (3.2, 3.9)	3.9 (3.5, 4.3)	4.5 (4.1, 4.9)	4.9 (4.5, 5.4)	5.4 (4.9, 5.9)

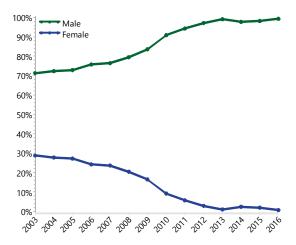
Table HT55 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged ≥ 70 Years by Class (Primary Diagnosis Fractured NOF)

Note: All procedures using metal/metal prostheses with head size larger than 32mm have been excluded

Figure HT61 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged ≥ 70 Years by Class (Primary Diagnosis Fractured NOF)

Number at Risk	0 Yr	1 Yrs	2 Yrs	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Unipolar Monoblock	26567	16030	12248	9211	4953	2626	937
Unipolar Modular	31441	21063	16169	12125	6324	2994	781
Bipolar	15577	10597	8112	6376	4052	2553	1191
Total Conventional	10930	8516	6906	5503	3335	1832	614

PRIMARY TOTAL RESURFACING HIP REPLACEMENT


DEMOGRAPHICS

There have been 16,950 total resurfacing hip replacement procedures reported to the Registry. This is an additional 429 procedures compared to the last report.

The use of total resurfacing hip replacement in Australia has been declining since 2005. In 2016, the number of total resurfacing procedures was 15.0% greater than in 2015 and 77.0% less than in 2005. Total resurfacing hip replacement represents 2.5% of all hip replacements performed in 2016.

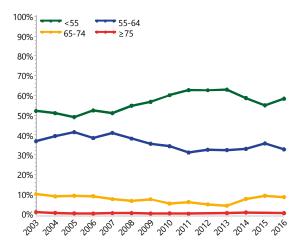

In 2016, 99.3% of total resurfacing hip replacements were undertaken in males (Figure HT62).

Figure HT62 Primary Total Resurfacing Hip Replacement by Gender

There was a small increase in the proportion of patients aged less than 55 years receiving total resurfacing hip replacement in 2016 (Figure HT63).

Figure HT63 Primary Total Resurfacing Hip Replacement by Age

There were only two different types of resurfacing prostheses used in 2016, with the Adept the most commonly used, accounting for 61.1% of procedures (Table HT57).

Table HT56	Age and Gender of Primary Total Resurfacing Hip Replacemen	÷
	Age and Gender of Fillingly fold Resoluting hip Replacement	

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	13371	78.9%	13	93	54	53.4	9.0
Female	3579	21.1%	14	81	53	51.6	8.6
TOTAL	16950	100.0%	13	93	54	53.0	8.9

Table HT57 Most Used Resurfacing Heads in Primary Total Resurfacing Hip Replacement

2003	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
1359 BHR	267 BHR	286 BHR	196 Adept	258 Adept	
58 Durom	58 Durom 126 Adept		171 BHR	164 BHR	
43 ASR	5 Icon				
42 Cormet	4 Cormet				
38 Cormet 2000 HAP					
7 Conserve Plus					
Most Used					
1547 (6) 100.0%	402 (4) 100.0%	380 (2) 100.0%	367 (2) 100.0%	422 (2) 100.0%	

OUTCOME FOR ALL DIAGNOSES

Primary Diagnosis

The principal diagnosis for primary total resurfacing hip replacement is osteoarthritis (95.3%), followed by developmental dysplasia (2.3%) and osteonecrosis (1.6%) (Table HT58). Primary total resurfacing hip replacement for osteoarthritis has a lower rate of revision compared to developmental dysplasia. There is no difference in the rate of revision for osteonecrosis compared to osteoarthritis (Figure HT64).

Prosthesis Types

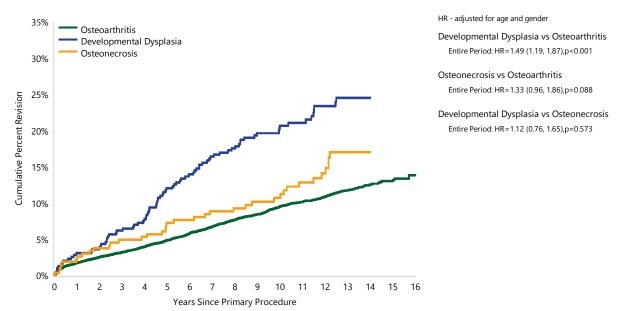

The cumulative percent revision of different total resurfacing hip prosthesis combinations with more than 100 procedures is listed in Table HT59. At 10 years, the prosthesis with the lowest cumulative percent revision is the Mitch TRH (5.6%).

Table HT58 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Primary Diagnosis

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Osteoarthritis	1424	16155	1.7 (1.5, 1.9)	3.2 (2.9, 3.5)	4.8 (4.5, 5.2)	9.5 (9.0, 10.0)	13.0 (12.2, 13.8)	13.8 (12.5, 15.2)
Developmental Dysplasia	84	394	3.1 (1.7, 5.3)	6.2 (4.2, 9.1)	12.0 (9.1, 15.7)	20.7 (16.8, 25.2)		
Osteonecrosis	37	270	2.2 (1.0, 4.9)	4.9 (2.9, 8.3)	7.2 (4.7, 11.1)	10.7 (7.4, 15.2)		
Other (6)	20	131	2.3 (0.8, 7.0)	5.6 (2.7, 11.4)	9.9 (5.7, 16.8)	16.3 (10.5, 24.8)		
TOTAL	1565	16950						

Note: Only primary diagnoses with over 100 procedures have been listed

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Osteoarthritis	16155	15456	14448	13298	7349	604	76
Developmental Dysplasia	394	378	357	330	225	17	4
Osteonecrosis	270	258	246	237	171	22	6

Head Component	Acetabular Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
ASR	ASR*	356	1168	3.4 (2.5, 4.6)	7.2 (5.9, 8.8)	15.3 (13.4, 17.5)	30.4 (27.8, 33.3)		
Adept	Adept	36	1206	0.9 (0.5, 1.7)	1.8 (1.1, 2.9)	2.7 (1.8, 4.2)	7.5 (5.1, 11.1)		
BHR	BHR	797	11377	1.4 (1.2, 1.6)	2.5 (2.2, 2.8)	3.5 (3.2, 3.9)	6.9 (6.4, 7.4)	10.2 (9.5, 11.1)	11.0 (9.8, 12.4)
Bionik	Bionik*	47	200	3.5 (1.7, 7.2)	12.0 (8.2, 17.4)	17.1 (12.5, 23.1)			
Cormet	Cormet*	113	626	2.1 (1.2, 3.6)	5.6 (4.1, 7.7)	9.5 (7.5, 12.1)	17.7 (14.7, 21.3)		
Durom	Durom*	93	847	3.2 (2.2, 4.6)	5.4 (4.1, 7.2)	7.5 (5.9, 9.5)	10.9 (8.9, 13.3)		
lcon	lcon*	13	118	1.7 (0.4, 6.6)	4.2 (1.8, 9.9)	5.9 (2.9, 12.1)	11.6 (6.6, 19.9)		
Mitch TRH	Mitch TRH*	46	1024	1.2 (0.7, 2.1)	2.1 (1.4, 3.2)	2.6 (1.8, 3.8)	5.6 (4.1, 7.5)		
Recap	Recap*	27	195	5.1 (2.8, 9.3)	8.7 (5.5, 13.7)	10.3 (6.8, 15.5)	15.8 (10.9, 22.6)		
Other (9)		37	189	5.3 (2.9, 9.6)	7.4 (4.5, 12.2)	9.6 (6.1, 14.8)	16.6 (11.9, 22.9)		
TOTAL		1565	16950						

Table HT59 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Prosthesis Combination

Note: Only combinations with over 100 procedures have been listed

* denotes prosthesis combinations with no reported use in primary total resurfacing hip replacement in 2016

OUTCOME FOR OSTEOARTHRITIS

The cumulative percent revision at 16 years for primary total resurfacing hip replacement undertaken for osteoarthritis is 13.8% (Table HT60 and Figure HT65).

Reasons for Revision

The main reasons for revision of primary total resurfacing hip replacement are metal related pathology (28.1%), loosening (23.4%) and fracture (18.7%) (Table HT61).

Metal related pathology is the most common reason for revision after seven years.

The five most common reasons for revision are shown in Figure HT66. The cumulative incidence of fracture increases rapidly in the first year. After this time, the incidence increases at a slower rate. The cumulative incidence of metal related pathology continues to increase and becomes the most common reason for revision after seven years.

Type of Revision

The most common type of revision for total resurfacing hip replacement is revision of both the femoral and acetabular components (70.2%). Femoral only revision is much less common (23.9%) and acetabular only revision is rarely undertaken (3.0%) (Table HT62).

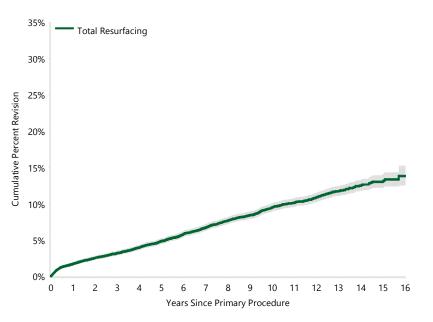
Age and Gender

Patients aged 65 years or older have a higher rate of revision compared to patients aged less than 55 years, and patients aged 55 to 64 years, for the first six months only. After six months, patients aged 65 years or older have a lower rate of revision compared to patients aged less than 55 years, and patients aged 55 to 64 years (Table HT63 and Figure HT67).

Females have a higher rate of revision compared to males. After one year, the rate of revision is over three times higher for females compared to males (Table HT64 and Figure HT68). Males aged 65 years or older have a higher rate of revision compared to males aged less than 55 years, and 55 to 64 years, for the first six months only. After six months, the rate of revision for males aged 65 years or older is lower compared to males aged less than 55 years. After three months, females aged 65 years or older have a lower rate of revision compared to females aged less than 55 years (Table HT64, Figures HT69 and HT70).

Head Size

The rate of revision decreases as the femoral component head size increases. Femoral head sizes of 44mm or less, and 45 to 49mm, have over twice the rate of revision compared to head sizes 55mm or larger. There is no difference for head sizes 50 to 54mm compared to 55mm or larger (Table HT65 and Figure HT71).


The reason for revision varies with head size. Head sizes less than 50mm have a higher cumulative incidence of metal related pathology, loosening, fracture, infection, and lysis compared to head sizes 50mm or larger (Figure HT72).

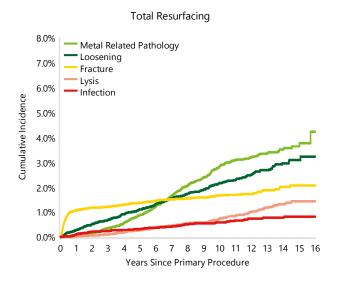
This effect of femoral component head size is evident in both males and females (Table HT66 and Figure HT73).

Table HT60 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)

Hip Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Total Resurfacing	1424	16155	1.7 (1.5, 1.9)	3.2 (2.9, 3.5)	4.8 (4.5, 5.2)	9.5 (9.0, 10.0)	13.0 (12.2, 13.8)	13.8 (12.5, 15.2)
TOTAL	1424	16155						

Figure HT65 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Total Resurfacing	16155	15456	14448	13298	7349	604	76

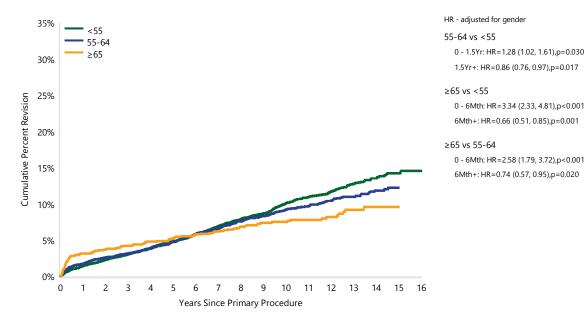

Table HT61Primary Total Resurfacing Hip Replacement by
Reason for Revision (Primary Diagnosis OA)

Reason for Revision	Number	Percent
Metal Related Pathology	400	28.1
Loosening	333	23.4
Fracture	266	18.7
Lysis	125	8.8
Infection	93	6.5
Pain	89	6.3
Osteonecrosis	36	2.5
Malposition	20	1.4
Prosthesis Dislocation	20	1.4
Other	42	2.9
TOTAL	1424	100.0

Table HT62 Primary Total Resurfacing Hip Replacement by Type of Revision (Primary Diagnosis OA)

Type of Revision	Number	Percent	
THR (Femoral/Acetabular)	1000	70.2	
Femoral Component	341	23.9	
Acetabular Component	43	3.0	
Cement Spacer	30	2.1	
Removal of Prostheses	10	0.7	
TOTAL	1424	100.0	

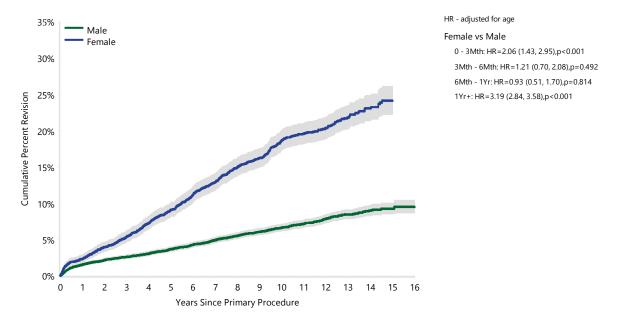
Figure HT66 Cumulative Incidence Revision Diagnosis of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)



					-				
	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55		783	8522	1.4 (1.2, 1.7)	3.0 (2.7, 3.4)	4.8 (4.4, 5.3)	10.1 (9.4, 10.8)	14.2 (13.1, 15.4)	14.5 (13.2, 15.8)
55-64		535	6189	1.7 (1.4, 2.1)	3.1 (2.7, 3.6)	4.7 (4.2, 5.3)	9.2 (8.4, 10.0)	12.2 (11.0, 13.5)	
≥65		106	1444	3.1 (2.4, 4.2)	4.2 (3.2, 5.4)	5.3 (4.2, 6.6)	7.5 (6.2, 9.1)	9.6 (7.7, 11.8)	

Table HT63 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Age (Primary Diagnosis OA)

1424 16155


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55	8522	8161	7606	6929	3716	332	51
55-64	6189	5940	5581	5182	2917	225	22
≥65	1444	1355	1261	1187	716	47	3

TOTAL

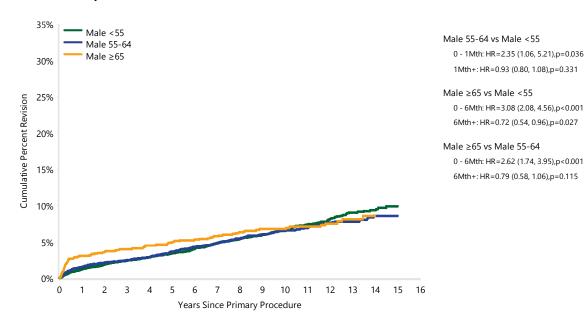

Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male		785	12893	1.5 (1.3, 1.8)	2.6 (2.3, 2.9)	3.7 (3.3, 4.0)	6.6 (6.1, 7.1)	9.2 (8.5, 10.1)	9.5 (8.6, 10.4)
	<55	402	6647	1.2 (1.0, 1.5)	2.4 (2.1, 2.8)	3.4 (3.0, 3.9)	6.7 (6.0, 7.4)	9.9 (8.8, 11.2)	
	55-64	296	4935	1.6 (1.2, 1.9)	2.5 (2.1, 2.9)	3.6 (3.1, 4.2)	6.5 (5.8, 7.4)	8.6 (7.5, 9.8)	
	≥65	87	1311	3.1 (2.3, 4.2)	4.0 (3.0, 5.2)	4.9 (3.9, 6.3)	6.8 (5.5, 8.4)		
Female		639	3262	2.3 (1.8, 2.9)	5.4 (4.7, 6.2)	9.1 (8.2, 10.1)	18.6 (17.3, 20.1)	24.1 (22.2, 26.2)	
	<55	381	1875	2.1 (1.6, 2.9)	5.1 (4.2, 6.2)	9.3 (8.1, 10.8)	19.4 (17.6, 21.4)	25.3 (22.8, 28.0)	
	55-64	239	1254	2.4 (1.7, 3.4)	5.7 (4.5, 7.1)	8.8 (7.4, 10.5)	18.0 (15.9, 20.3)	23.1 (20.1, 26.4)	
	≥65	19	133	3.8 (1.6, 8.8)	6.0 (3.1, 11.7)	8.4 (4.7, 14.6)	13.5 (8.6, 20.9)		
TOTAL		1424	16155						

 Table HT64
 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender and Age (Primary Diagnosis OA)

Figure HT68 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender (Primary Diagnosis OA)

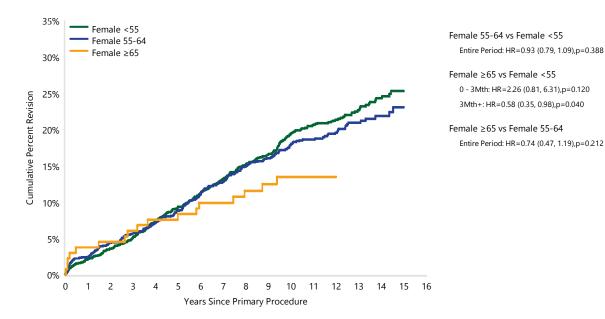
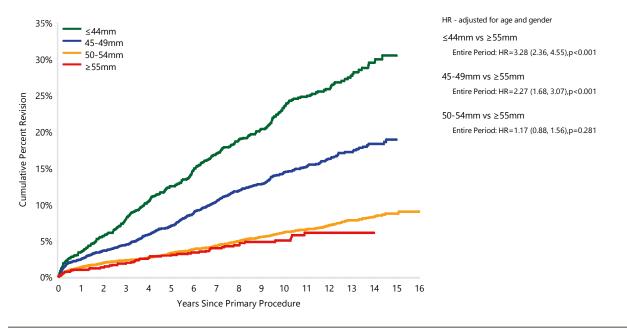

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	12893	12276	11388	10384	5501	418	55
Female	3262	3180	3060	2914	1848	186	21

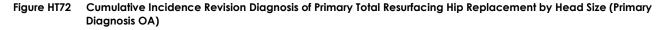
Figure HT69 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement in Males by Age (Primary Diagnosis OA)

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	<55	6647	6330	5839	5258	2679	227	35
	55-64	4935	4719	4410	4058	2187	152	17
	≥65	1311	1227	1139	1068	635	39	3

Figure HT70 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement in Females by Age (Primary Diagnosis OA)


Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs 16 Yrs Female <55 1875 1831 1767 1671 1037 105 16 55-64 1254 1221 1171 1124 730 73 5 ≥65 133 128 122 119 8 0 81

Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
≤44mm	299	1196	3.4 (2.5, 4.6)	8.0 (6.6, 9.7)	12.4 (10.7, 14.5)	23.3 (20.9, 25.9)	30.5 (27.2, 34.0)	
45-49mm	505	3699	2.4 (1.9, 2.9)	4.4 (3.8, 5.1)	7.0 (6.2, 7.9)	14.4 (13.2, 15.7)	18.9 (17.1, 20.9)	
50-54mm	569	10117	1.3 (1.1, 1.6)	2.3 (2.0, 2.6)	3.3 (2.9, 3.6)	6.1 (5.6, 6.6)	8.7 (7.8, 9.6)	9.0 (8.0, 10.1)
≥55mm	51	1142	1.0 (0.5, 1.7)	1.8 (1.2, 2.8)	2.9 (2.0, 4.1)	5.0 (3.7, 6.6)		
TOTAL	1424	16154						


Table HT65 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)

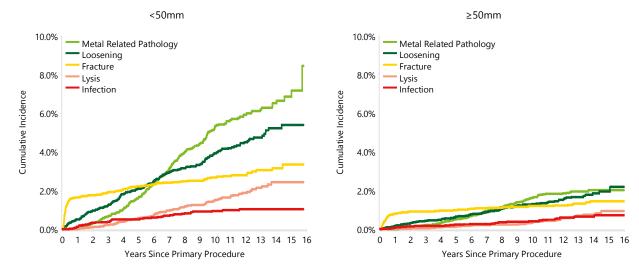
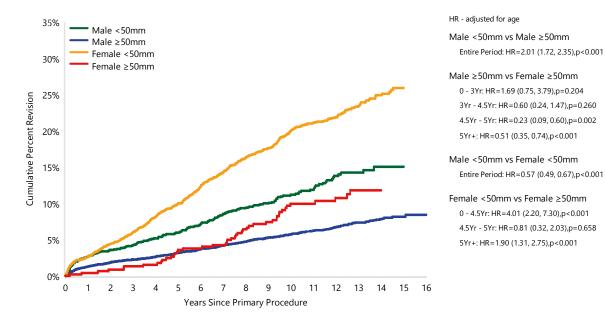

Note: Excludes one procedure with unknown head size

Figure HT71 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
≤44mm	1196	1153	1092	1030	633	71	7
45-49mm	3699	3548	3335	3093	1661	154	13
50-54mm	10117	9652	9009	8243	4636	349	51
≥55mm	1142	1102	1011	931	419	30	5



Gender	Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male		785	12892	1.5 (1.3, 1.8)	2.6 (2.3, 2.9)	3.7 (3.3, 4.0)	6.6 (6.1, 7.1)	9.2 (8.5, 10.1)	9.5 (8.6, 10.4)
	<50mm	211	2084	2.7 (2.1, 3.5)	4.3 (3.5, 5.2)	6.0 (5.0, 7.1)	11.2 (9.8, 12.9)	15.1 (12.9, 17.6)	
	≥50mm	574	10808	1.3 (1.1, 1.5)	2.3 (2.0, 2.6)	3.2 (2.9, 3.6)	5.7 (5.3, 6.3)	8.2 (7.4, 9.0)	8.5 (7.5, 9.5)
Female		639	3262	2.3 (1.8, 2.9)	5.4 (4.7, 6.2)	9.1 (8.2, 10.1)	18.6 (17.3, 20.1)	24.1 (22.2, 26.2)	
	<50mm	593	2811	2.6 (2.1, 3.3)	6.0 (5.2, 7.0)	10.0 (8.9, 11.2)	20.0 (18.5, 21.6)	25.9 (23.9, 28.2)	
	≥50mm	46	451	0.4 (0.1, 1.8)	1.3 (0.6, 2.9)	3.6 (2.2, 5.8)	10.0 (7.4, 13.3)		
TOTAL		1424	16154						

Table HT66 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender and Head Size (Primary Diagnosis OA)

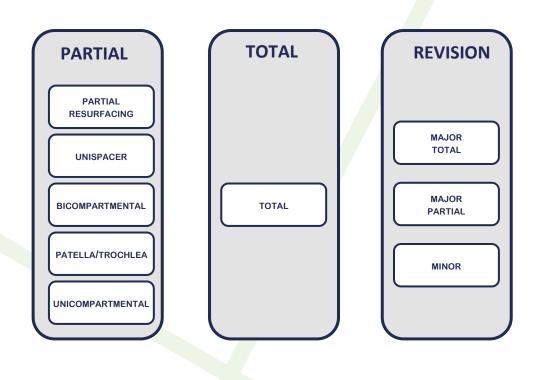
Note: Excludes one male procedure with unknown head size

Figure HT73 Cumulative Percent Revision of Primary Total Resurfacing Hip Replacement by Gender and Head Size (Primary Diagnosis OA)

Number at	Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	<50mm	2084	1970	1808	1636	746	68	3
	≥50mm	10808	10305	9579	8747	4755	350	52
Female	<50mm	2811	2731	2619	2487	1548	157	17
	≥50mm	451	449	441	427	300	29	4

Knee Replacement

CATEGORIES OF KNEE REPLACEMENT


The Registry groups knee replacement into three broad categories: primary partial, primary total and revision knee replacement.

A primary replacement is an initial replacement procedure undertaken on a joint and involves replacing either part (partial) or all (total) of the articular surface.

Primary partial knees are sub-categorised into classes depending on the type of prosthesis used. The classes of primary partial knee replacement are: partial resurfacing, unispacer, bicompartmental, patella/trochlea and unicompartmental. These are defined in the subsequent sections. Revision knee replacements are re-operations of previous knee replacements where one or more of the prosthetic components are replaced, removed, or one or more components are added. Revisions include reoperations of primary partial, primary total or previous revision procedures. Knee revisions are sub-categorised into three classes: major total, major partial, or minor revisions.

Detailed demographic information on knee replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2017

KNEE REPLACEMENT

USE OF KNEE REPLACEMENT

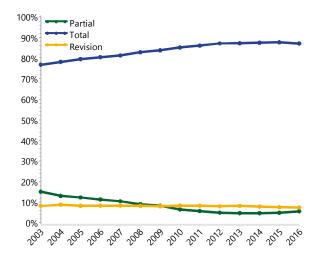

This report analyses 653,480 knee replacements with a procedure date up to and including 31 December 2016. This is an additional 60,903 knee procedures compared to the number reported last year. When considering all knee procedures currently recorded by the Registry, primary partial knee accounts for 8.1%, primary total knee 83.8% and revision knee replacement 8.1% (Table K1).

Table K1 Number of Knee Replacements

Knee Category	Number	Percent
Partial	52902	8.1
Total	547407	83.8
Revision	53171	8.1
TOTAL	653480	100.0

In 2016, the number of knee replacements undertaken increased by 2,020 (3.5%) compared to 2015. During the last year, primary partial and primary total knee replacement increased by 18.8% and 2.8%, respectively. There was a slight increase in revision knee replacement (1.6%).

Since 2003, the number of knee replacement procedures undertaken annually has increased by 111.5%. Primary total knee replacement has increased by 139.8% and revision knee replacement by 92.1%. Primary partial knee replacement has decreased by 22.0%. In 2016, primary total knee replacement accounts for 87.0% of all knee replacement procedures. This has increased from 76.7% in 2003. Primary partial knee replacement decreased from 15.1% in 2003 to 5.6% in 2016. The proportion of revision knee procedures has declined from a peak of 8.8% in 2004 to 7.4% in 2016. This equates to 834 fewer revision procedures in 2016 than would have been expected if the proportion of revision procedures had remained at 8.8% (Figure K1).

Figure K1 Proportion of Knee Replacements

ASA SCORE AND BMI IN KNEE REPLACEMENT

Data is reported on knee replacement procedures for both the American Society of Anaesthesiologists - Physical Status Classification (ASA score) and Body Mass Index (BMI). The Registry commenced collecting ASA score in 2012 and BMI in 2015.

There is ASA score data on 206,077 and BMI data on 103,566 knee replacement procedures.

In 2016, the ASA score is reported in 99.3% of knee replacement procedures and BMI is reported in 92.3% of procedures.

BMI is reported for 93.1% of primary partial knees, 92.7% of primary total knees and 87.5% of revision knee replacements.

ASA score and BMI are both known to impact the outcome of knee replacement surgery. In the future, this data will be used to risk adjust in a range of analyses.

ASA SCORE

There are five ASA score classifications (https://www.asahq.org/resources/clinicalinformation/asa-physical-status-classificationsystem):

- 1. A normal healthy patient.
- 2. A patient with mild systemic disease.
- 3. A patient with severe systemic disease.
- 4. A patient with severe systemic disease that is a constant threat to life.
- 5. A moribund patient who is not expected to survive without the operation.

Overall, in 92.2% of procedures, patients have an ASA score of 2 or 3, 6.5% have a score of 1 and 1.3% have a score of 4. Very few procedures were recorded where patients have a score of 5.

There is a difference depending on the class of knee replacement. There are more patients undergoing partial knee replacement procedures with ASA scores 1 or 2 than those having primary total knee replacement procedures (76.1% and 62.7%, respectively). For patients undergoing revision knee replacement surgery, there are a lower proportion with ASA scores 1 or 2 (50.8%) (Table K2).

BMI

BMI for adults is classified by the World Health Organisation into six main categories (http://apps.who.int/bmi/index.jsp?introPage=i ntro_3.html):

,	
Underweight	<18.50
Normal	18.50 - 24.99
Pre-obese	25.00 - 29.99
Obese Class 1	30.00 - 34.99
Obese Class 2	35.00 - 39.99
Obese Class 3	≥40.00
	Normal Pre-obese Obese Class 1 Obese Class 2

For all knee replacements, the majority of procedures are undertaken in patients that are either pre-obese or obese class 1 (62.3%). There is almost no difference in BMI for patients when primary total and revision knee replacement are compared. For partial knee replacement, 55.6% of procedures were in either normal or pre-obese patients compared to 41.8% for primary total knee and 41.3% for revision knee replacement (Table K3).

There is a gender difference with a higher proportion of males in the normal and preobese categories, which is most apparent in primary partial knee replacement (Figure K2).

Table K2 ASA Score by Knee Category

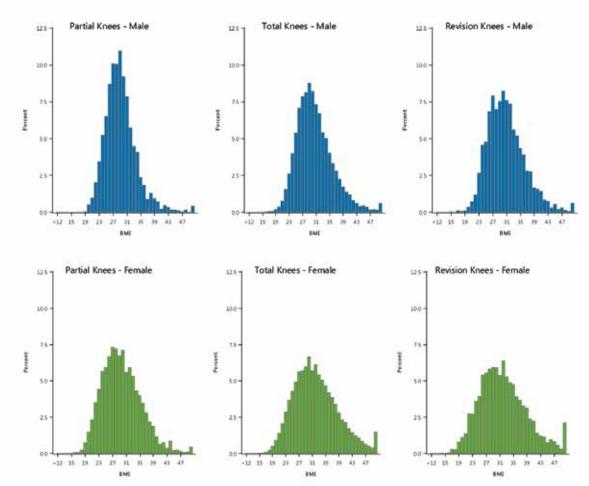

	Partial		Т	Total		Revision		TOTAL	
ASA Score	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%	
1	1482	14.4	11240	6.2	668	4.2	13390	6.5	
2	6367	61.7	101706	56.5	7363	46.6	115436	56.0	
3	2415	23.4	64927	36.1	7215	45.6	74557	36.2	
4	47	0.5	2068	1.1	565	3.6	2680	1.3	
5	1	0.0	11	0.0	2	0.0	14	0.0	
TOTAL	10312	100.0	179952	100.0	15813	100.0	206077	100.0	

Table K3 BMI Category for Knee Replacement by Knee Category

	Partial		T	Total		Revision		TOTAL	
BMI Category	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%	
Underweight	8	0.1	192	0.2	26	0.4	226	0.2	
Normal	827	15.0	9643	10.6	818	11.0	11288	10.9	
Pre-obese	2242	40.6	28311	31.2	2248	30.3	32801	31.7	
Obese Class 1	1653	29.9	27720	30.6	2288	30.8	31661	30.6	
Obese Class 2	582	10.5	15234	16.8	1270	17.1	17086	16.5	
Obese Class 3	210	3.8	9526	10.5	768	10.4	10504	10.1	
TOTAL	5522	100.0	90626	100.0	7418	100.0	103566	100.0	

Note: BMI has not been presented for patients aged 19 and under

Figure K2 BMI Distribution by Gender and Knee Category

Note: BMI has not been presented for patients aged 19 and under

Primary Partial Knee Replacement

CLASSES OF PARTIAL KNEE REPLACEMENT

The Registry sub-categorises partial knee replacement into five classes. These are defined by the type of prostheses used.

- 1. **Partial resurfacing** involves the use of one or more button prostheses to replace part of the natural articulating surface on one or more sides of the joint, in one or more articular compartments of the knee.
- 2. **Unispacer** involves the use of a medial or lateral femorotibial compartment articular spacer.
- 3. **Bicompartmental** involves the replacement of the medial femoral and trochlear articular surface of the knee with a single femoral prosthesis, as well as the medial tibial articular surface with a unicompartmental tibial prosthesis. It may also include the use of a patellar prosthesis.
- Patella/trochlea involves the use of a trochlear prosthesis to replace the femoral trochlear articular surface and on most occasions a patellar prosthesis.
- 5. **Unicompartmental** involves the replacement of the femoral and tibial articular surface of either the medial or lateral femorotibial compartment using unicompartmental femoral and tibial prostheses.

Detailed information on demographics of each class of primary partial knee replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website <u>https://aoanjrr.sahmri.com/annual-reports-2017</u>

USE OF PARTIAL KNEE REPLACEMENT

Unicompartmental knee replacement remains the most common primary partial knee replacement, accounting for 93.0% of all partial knee replacement procedures. The second most common is patella/trochlea replacement (6.2%). Only small numbers of the three remaining partial knee procedures have been reported (partial resurfacing, unispacer and bicompartmental knee replacement) (Table KP1).

The unispacer procedure has not been used since 2005 and has the highest revision rate of any class of partial knee replacement. Bicompartmental knee replacement has not been used since 2012. Neither of these classes of partial knee replacement are presented in detail in this report.

Detailed information on unispacer and bicompartmental knee replacement is available in the supplementary report 'Outcomes of Classes No Longer Used - Hip and Knee Arthroplasty' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2017.

Osteoarthritis is the principal diagnosis for the five classes of partial knee replacement (98.9%). There is considerable variation in the outcome of primary partial knee replacement depending on the class (Table KP2).

Table KP1 Partial Knee Replacement by Class

Partial Knee Class	Number	Percent
Partial Resurfacing	238	0.4
Unispacer	40	0.1
Bicompartmental	165	0.3
Patella/Trochlea	3286	6.2
Unicompartmental	49173	93.0
TOTAL	52902	100.0

Table KP2 Cumulative Percent Revision of Primary Partial Knee Replacement by Class

Partial Knee Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Partial Resurfacing	70	238	5.5 (3.3, 9.3)	17.0 (12.7, 22.5)	25.0 (19.6, 31.5)			
Unispacer	32	40	42.5 (29.0, 59.2)	67.5 (53.0, 81.2)	67.5 (53.0, 81.2)	77.5 (63.7, 88.8)		
Bicompartmental	24	165	6.1 (3.3, 11.0)	11.7 (7.6, 17.7)	14.2 (9.7, 20.6)			
Patella/Trochlear	604	3286	2.5 (2.0, 3.1)	8.6 (7.6, 9.7)	14.5 (13.2, 16.0)	27.7 (25.5, 30.0)	44.5 (39.6, 49.8)	
Unicompartmental	5964	49173	2.2 (2.1, 2.4)	5.7 (5.5, 5.9)	8.1 (7.8, 8.4)	14.7 (14.3, 15.1)	22.1 (21.4, 22.9)	23.4 (22.4, 24.4)
TOTAL	6694	52902						

PARTIAL RESURFACING

DEMOGRAPHICS

The Registry has recorded 238 partial resurfacing knee procedures. This is an additional 14 procedures compared to the number reported last year. The use of partial resurfacing knee replacement has decreased from a peak of 42 procedures in 2006.

The most common reason for undertaking a partial resurfacing procedure is osteoarthritis (88.7%). The mean age of patients with partial resurfacing knee replacement was 50.4 years and 50.8% were males (Table KP3).

All recorded partial resurfacing procedures used the 'Hemicap' range of prostheses.

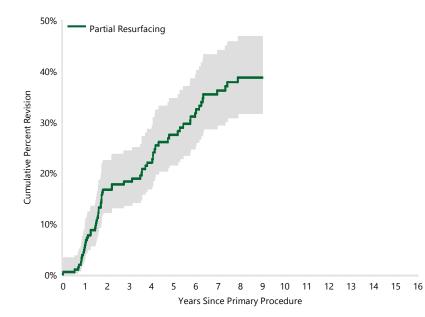
Of the 238 procedures, 177 used one cap, 56 used two, and five used three caps. When a single cap was used, most (138) were implanted on the femoral articular surface. The remainder were used on the trochlear (14), tibial (13) and patellar surfaces (10). There are two procedures where the positioning of the cap is unknown. When two caps were used, 53 were implanted on the patellar plus trochlear, one patellar plus femoral, and two where both devices were used on the femoral articular surface. The five procedures using three caps were all implanted on the patellar, trochlear and femoral articular surfaces. There are 85 procedures that involve resurfacing of the patella/trochlear joint either on one side (27) or both sides (58). This is six more patella/trochlear procedures than reported last year. The five year cumulative percent revision for one side is 22.4% and 35.5% when both sides were resurfaced.

The main reasons for revision of a partial resurfacing are progression of disease (60.0%), loosening (12.9%) and pain (8.6%).

Most primary partial resurfacing replacements are revised to either a total knee replacement (54.3%) or unicompartmental knee replacement (25.7%). The remaining revisions are patellar resurfacing only (7.1%), patella/trochlear resurfacing (5.7%), partial resurfacing (5.7%), or removal of the prosthesis (1.4%).

The cumulative percent revision of partial resurfacing procedures undertaken for osteoarthritis is 5.8% at one year and 38.7% at nine years (Table KP4 and Figure KP1).

The cumulative percent revision of partial resurfacing procedures undertaken for osteoarthritis is 38.7% at nine years.

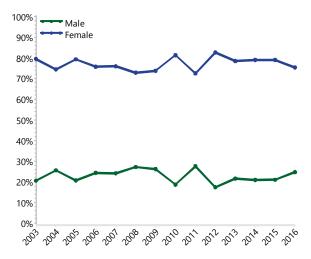

Table KP3 Age and Gender of Primary Partial Resurfacing Knee Replacement

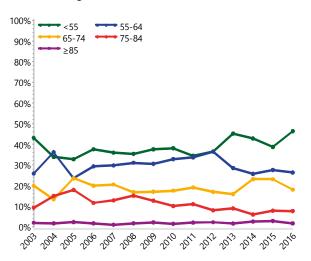
Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	121	50.8%	17	85	49	49.3	14.3
Female	117	49.2%	30	88	51	51.5	11.7
TOTAL	238	100.0%	17	88	50	50.4	13.1

Table KP4 Cumulative Percent Revision of Primary Partial Resurfacing Knee Replacement (Primary Diagnosis OA)

Knee Class	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	9 Yrs
Partial Resurfacing	67	211	5.8 (3.3, 10.0)	16.6 (12.2, 22.5)	18.3 (13.6, 24.3)	27.5 (21.5, 34.7)	36.2 (29.3, 44.1)	38.7 (31.6, 46.9)
TOTAL	67	211						

Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	5 Yrs	7 Yrs	9 Yrs
Partial Resurfacing	211	194	162	144	103	83	52


PATELLA/TROCHLEA


DEMOGRAPHICS

There have been 3,286 patella/trochlear knee replacements reported to the Registry. This is an additional 305 procedures compared to the previous report.

The principal diagnosis for patella/trochlear procedures is osteoarthritis (98.9%). This procedure is most frequently undertaken in females (76.9%). The mean age of patients is 58.9 years (Table KP5, Figures KP2 and KP3).

Figure KP2 Primary Patella/Trochlea Knee Replacement by Gender

In 2016, the four most common resurfacing trochlear prostheses were the Gender Solutions, Journey, Restoris MCK and Avon. The Gender Solutions prosthesis was first reported in 2009 and since 2010 it has remained the most frequently used prosthesis in this class (Table KP6).

The outcomes of patella/trochlear prosthesis combinations with more than 20 procedures are presented in Table KP7.

Table KP5	Age and Gender of Primary Patella/Trochlea Knee Replacement
-----------	---

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	759	23.1%	25	95	60	60.9	13.2
Female	2527	76.9%	22	95	57	58.3	12.0
TOTAL	3286	100.0%	22	95	58	58.9	12.3

Table KP6	Most Used Resurfacing	a Trochlear Prostheses in Primary	y Patella/Trochlea Knee Replacement
	most osca kesonaemg		

	2003		2013		2014		2015		2016
Ν	Model	Ν	Model	Ν	Model	Ν	Model	Ν	Model
56	LCS	94	Gender Solutions	115	Gender Solutions	115	Gender Solutions	150	Gender Solutions
43	Avon	47	RBK	41	Avon	39	RBK	38	Journey
29	Lubinus	42	Journey	37	RBK	38	Journey	37	Restoris MCK
13	Themis	26	Avon	32	Journey	37	Avon	35	Avon
9	MOD III	20	Sigma HP	7	Sigma HP	7	Sigma HP	34	RBK
1	RBK	14	Vanguard	1	HLS Kneetec	5	Restoris MCK	6	Sigma HP
		3	HLS Kneetec	1	Vanguard	2	Vanguard		
Most	Jsed								
151	(6) 100.0%	246	(7) 100.0%	234	(7) 100.0%	243	(7) 100.0%	300	(6) 100.0%

Resurfacing Trochlea	Patella	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	13 Yrs	14 Yrs
Avon	Avon	57	363	1.2 (0.4, 3.1)	6.9 (4.6, 10.4)	12.5 (9.2, 16.9)	25.1 (19.3, 32.3)		
Avon	Kinemax Plus*	83	307	2.0 (0.9, 4.3)	4.9 (3.0, 8.0)	11.9 (8.7, 16.1)	22.9 (18.4, 28.3) 3	1.7 (25.8, 38.5	i) 34.4 (27.8, 42.1)
Avon	Triathlon	1	76	0.0 (0.0, 0.0)	1.8 (0.2, 11.8)				
Gender Solutions	Natural Knee Flex	5	33	0.0 (0.0, 0.0)	12.6 (4.2, 34.6)	12.6 (4.2, 34.6)			
Gender Solutions	Nexgen	42	719	1.5 (0.8, 2.8)	5.2 (3.6, 7.6)	7.6 (5.3, 10.9)			
Journey	Genesis II	54	436	2.2 (1.2, 4.2)	8.1 (5.7, 11.4)	12.8 (9.6, 16.9)			
LCS	LCS*	150	395	3.5 (2.1, 5.9)	11.7 (8.9, 15.3)	20.9 (17.2, 25.3)	37.8 (32.9, 43.3)		
Lubinus	Duracon*	24	77	2.6 (0.7, 10.0)	9.2 (4.5, 18.4)	16.0 (9.4, 26.4)	25.3 (16.6, 37.2) 3	6.9 (25.6, 51.3	5)
Lubinus	Lubinus*	19	39	5.1 (1.3, 19.0)	18.1 (9.1, 34.3)	20.9 (11.0, 37.6)	35.2 (22.1, 52.9) 4	9.9 (34.1, 68.3	59.0 (41.7, 77.1)
MOD III	MOD III*	22	63	4.8 (1.6, 14.0)	14.3 (7.7, 25.7)	17.5 (10.1, 29.4)	26.2 (16.9, 39.2) 3	9.8 (27.9, 54.5) 39.8 (27.9, 54.5)
RBK	RBK	81	477	3.5 (2.2, 5.6)	10.3 (7.7, 13.7)	17.0 (13.5, 21.3)	26.2 (20.9, 32.6)		
Restoris MCK	Restoris MCK	0	37	0.0 (0.0, 0.0)					
Sigma HP	PFC Sigma	20	108	4.8 (2.0, 11.1)	15.6 (9.7, 24.6)				
Themis	Themis*	11	38	2.6 (0.4, 17.2)	2.6 (0.4, 17.2)	8.0 (2.6, 22.7)	18.9 (9.5, 35.6) 3	6.1 (20.4, 58.4	.)
Vanguard	Series A*	11	41	4.9 (1.2, 18.1)	17.3 (8.6, 32.9)	30.3 (17.0, 50.5)			
Other (26)		24	77	4.0 (1.3, 12.0)	13.8 (7.7, 24.2)	16.9 (10.0, 27.9)	38.7 (26.5, 54.1) 4	7.5 (32.8, 64.8	3)
TOTAL		604	3286						

Table KP7 Cumulative Percent Revision of Primary Patella/Trochlea Knee Replacement by Prosthesis Combination

Note: Only combinations with over 20 procedures have been listed

* denotes prosthesis combination with no reported use in patella/trochlear knee replacement in 2016

OUTCOME FOR OSTEOARTHRITIS

The Registry has recorded 595 revisions of primary patella/trochlear knee replacement for osteoarthritis.

The most common reason for revision is progression of disease (47.9%), followed by loosening (16.5%) and pain (12.3%) (Table KP8).

The main type of revision of a primary patella/trochlear knee replacement is to a total knee replacement (84.7%) (Table KP9).

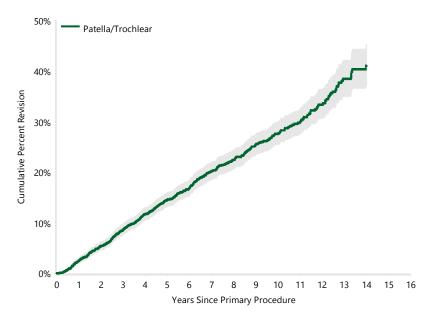
The cumulative percent revision for primary patella/trochlear knee replacement undertaken for osteoarthritis is 14.5% at five years and 41.0% at 14 years (Table KP10 and Figure KP4).

Table KP8 Primary Patella/Trochlea Knee Replacement by Reason for Revision (Primary Diagnosis OA)

Reason for Revision	Number	Percent
Progression Of Disease	285	47.9
Loosening	98	16.5
Pain	73	12.3
Implant Breakage Patella	23	3.9
Wear Patella	19	3.2
Infection	16	2.7
Malalignment	15	2.5
Lysis	10	1.7
Other	56	9.4
TOTAL	595	100.0

Age and gender are risk factors for revision. Patients younger than 65 years of age have a higher rate of revision than patients aged 65 years or older (Table KP11 and Figure KP5).

Males have a higher rate of revision than females (Table KP12 and Figure KP6).

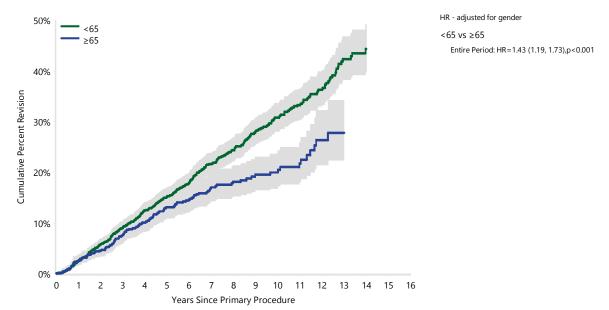

Table KP9 Primary Patella/Trochlea Knee Replacement by Type of Revision (Primary Diagnosis OA)

Type of Revision	Number	Percent
TKR (Tibial/Femoral)	504	84.7
Patella Only	56	9.4
Patella/Trochlea Resurfacing	24	4.0
UKR (Uni Tibial/Uni Femoral)	7	1.2
Removal of Prostheses	2	0.3
Cement Spacer	2	0.3
TOTAL	595	100.0

Table KP10 Cumulative Percent Revision of Primary Patella/Trochlea Knee Replacement (Primary Diagnosis OA)

Knee Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	13 Yrs	14 Yrs
Patella/Trochlear	595	3251	2.5 (2.0, 3.1)	8.6 (7.6, 9.7)	14.5 (13.2, 16.0)	27.6 (25.4, 29.9)	38.5 (35.0, 42.2)	41.0 (37.0, 45.2)
TOTAL	595	3251						

Figure KP4 Cumulative Percent Revision of Primary Patella/Trochlea Knee Replacement (Primary Diagnosis OA)

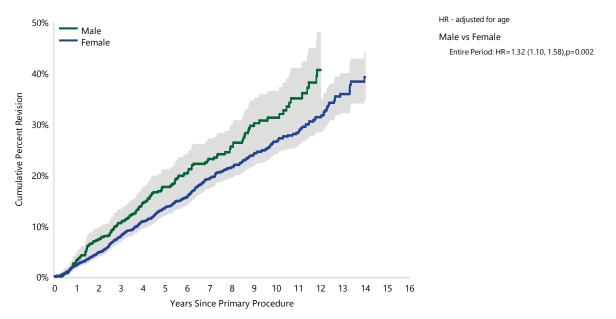


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	13 Yrs	14 Yrs
Patella/Trochlear	3251	2874	2220	1650	524	153	83

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	13 Yrs	14 Yrs
<65	453	2231	2.5 (1.9, 3.3)	9.0 (7.8, 10.4)	15.2 (13.5, 16.9)	30.7 (28.0, 33.7)	42.4 (38.2, 46.7)	44.3 (39.8, 49.1)
≥65	142	1020	2.5 (1.7, 3.7)	7.5 (6.0, 9.5)	13.1 (10.9, 15.7)	19.9 (16.8, 23.6)	27.8 (22.3, 34.2)	
TOTAL	595	3251						

Table KP11 Cumulative Percent Revision of Primary Patella/Trochlea Knee Replacement by Age (Primary Diagnosis OA)

Figure KP5 Cumulative Percent Revision of Primary Patella/Trochlea Knee Replacement by Age (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	13 Yrs	14 Yrs
<65	2231	1965	1534	1134	370	113	65
≥65	1020	909	686	516	154	40	18

Table KP12 Cumulative Percent Revision of Primary Patella/Trochlea Knee Replacement by Gender (Primary Diagnosis OA)

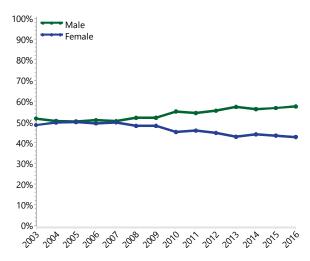
Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	13 Yrs	14 Yrs
Male	159	752	3.3 (2.2, 4.9)	10.5 (8.4, 13.2)	17.6 (14.7, 21.0)	31.3 (26.7, 36.4)		
Female	436	2499	2.2 (1.7, 2.9)	8.0 (6.9, 9.2)	13.6 (12.1, 15.2)	26.5 (24.1, 29.1)	35.9 (32.2, 39.9)	39.2 (34.8, 44.0)
TOTAL	595	3251						

Figure KP6 Cumulative Percent Revision of Primary Patella/Trochlea Knee Replacement by Gender (Primary Diagnosis OA)

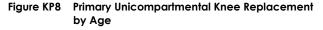
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	13 Yrs	14 Yrs
Male	752	653	502	373	105	29	18
Female	2499	2221	1718	1277	419	124	65

UNICOMPARTMENTAL

DEMOGRAPHICS


This year, the Registry is reporting on 49,173 primary unicompartmental knee procedures. This is an additional 3,079 procedures compared to the last report.

The use of unicompartmental knee replacement increased from 4.4% of all knee replacements in 2015 to 5.1% in 2016. Although the proportion of unicompartmental knee replacement has increased slightly over the last two years, it is still considerably less than it was in 2003 (14.5%).


Osteoarthritis is the principal diagnosis, accounting for 99.0% of primary unicompartmental knee replacement procedures.

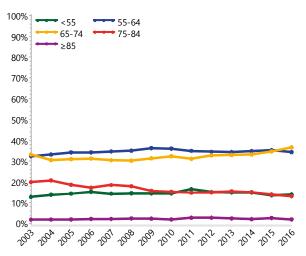

This procedure is undertaken more often in males (52.9%) (Table KP13). The proportion of males has increased from 50.3% in 2007 to 57.4% in 2016 (Figure KP7).

Figure KP7 Primary Unicompartmental Knee Replacement by Gender

Unicompartmental knee replacement is most frequently undertaken in patients aged between 55 and 74 years (66.2%). The age distribution has remained relatively stable since 2003 (Figure KP8). The mean age of patients is 65.2 years (Table KP13).

In 2016, the 10 most used tibial prostheses accounted for 97.3% of all unicompartmental procedures. The Oxford (cementless), ZUK and Restoris MCK were the most used prostheses in 2016 (Table KP14).

The outcomes of unicompartmental knee prosthesis combinations with more than 200 procedures are presented in Table KP15.

Table KP13 Age and Gender of Primary Unicompartmental Knee Replacement

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	26020	52.9%	24	98	65	65.7	9.6
Female	23153	47.1%	25	95	64	64.7	10.2
TOTAL	49173	100.0%	24	98	65	65.2	9.9

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
1366 Oxford (ctd)	579 ZUK	674 ZUK	745 ZUK	780 Oxford (cless)
444 Repicci II	483 Oxford (cless)	639 Oxford (cless)	704 Oxford (cless)	730 ZUK
373 Preservation Fixed	398 Oxford (ctd)	397 Oxford (ctd)	394 Oxford (ctd)	607 Restoris MCK
353 M/G	167 Unix	130 Sigma HP	145 Restoris MCK	379 Oxford (ctd)
336 Allegretto Uni	96 Sigma HP	97 Unix	128 Sigma HP	156 Sigma HP
321 GRU	68 Repicci II	52 Journey Uni	113 Unix	133 Journey Uni
275 Genesis	64 Journey Uni	51 Freedom PKR/Active	54 Triathlon PKR	62 Unix
260 Unix	63 Freedom PKR/Active	47 Endo-Model Sled	46 GRU	40 Endo-Model Sled
121 Preservation Mobile	37 Endo-Model Sled	35 Repicci II	46 Repicci II	40 Triathlon PKR
101 Endo-Model Sled	36 BalanSys Uni Fixed	28 BalanSys Uni Fixed	41 Journey Uni	18 GMK-UNI
10 Most Used				
3950 (10) 96.1%	1991 (10) 93.1%	2150 (10) 94.8%	2416 (10) 94.7%	2945 (10) 97.3%
Remainder				
159 (7) 3.9%	147 (10) 6.9%	119 (10) 5.2%	136 (10) 5.3%	83 (8) 2.7%
TOTAL				
4109 (17) 100.0%	2138 (20) 100.0%	2269 (20) 100.0%	2552 (20) 100.0%	3028 (18) 100.0%

Table KP14 10 Most Used Tibial Prostheses in Primary Unicompartmental Knee Replacement

Uni Femoral	Uni Tibial	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Allegretto Uni	Allegretto Uni*	324	2035	3.2 (2.5, 4.0)	5.8 (4.9, 6.9)	8.1 (6.9, 9.3)	14.5 (13.0, 16.3)	21.4 (19.0, 24.0)	23.5 (20.3, 27.1)
BalanSys Uni	BalanSys Uni Fixed	21	388	1.8 (0.9, 3.8)	3.0 (1.7, 5.3)	4.0 (2.4, 6.8)	8.1 (5.2, 12.7)		
Endo-Model Sled	Endo-Model Sled	153	1229	1.1 (0.6, 1.9)	4.8 (3.7, 6.2)	7.6 (6.2, 9.3)	14.4 (12.2, 16.9)		
Freedom PKR/Active	Freedom PKR/Active	296	1500	1.7 (1.1, 2.5)	7.4 (6.2, 8.9)	12.8 (11.1, 14.7)	24.8 (22.3, 27.6)		
GRU	GRU	252	2050	1.4 (1.0, 2.0)	4.4 (3.6, 5.4)	6.1 (5.1, 7.3)	13.1 (11.5, 14.8)		
Genesis	Genesis*	309	1864	2.7 (2.0, 3.5)	8.3 (7.1, 9.6)	11.0 (9.6, 12.5)	16.3 (14.6, 18.1)		
Journey	Journey	18	243	1.3 (0.4, 4.0)	6.3 (3.8, 10.4)	8.7 (5.6, 13.6)			
Journey	Journey Uni	10	322	3.5 (1.8, 7.0)	4.9 (2.6, 9.2)				
M/G	M/G*	258	2135	1.6 (1.1, 2.2)	4.2 (3.4, 5.1)	6.4 (5.5, 7.6)	10.7 (9.4, 12.1)	15.5 (13.6, 17.6)	
Oxford (cless)	Oxford (cless)	236	4209	3.1 (2.6, 3.7)	5.1 (4.4, 5.9)	6.8 (5.9, 7.8)	13.2 (10.3, 16.7)		
Oxford (cless)	Oxford (ctd)	21	329	3.5 (1.9, 6.5)	7.9 (4.9, 12.8)	11.4 (7.1, 18.1)			
Oxford (ctd)	Oxford (ctd)	1807	12811	2.2 (1.9, 2.4)	5.8 (5.4, 6.2)	8.4 (7.9, 8.9)	14.7 (14.0, 15.4)	22.4 (21.2, 23.6)	23.1 (21.7, 24.7)
Preservation	Preservation Fixed*	382	2318	2.4 (1.9, 3.1)	7.1 (6.1, 8.2)	9.5 (8.4, 10.8)	15.6 (14.1, 17.2)	22.8 (19.8, 26.1)	
Preservation	Preservation Mobile*	126	400	5.3 (3.5, 7.9)	15.5 (12.3, 19.5)	19.1 (15.6, 23.3)	27.2 (23.1, 31.9)		
Repicci II	Repicci II	572	3045	1.7 (1.3, 2.2)	4.8 (4.1, 5.6)	7.9 (7.0, 8.9)	17.7 (16.2, 19.3)	28.6 (26.2, 31.2)	
Restoris MCK	Restoris MCK	5	752	0.8 (0.3, 1.9)					
Sigma HP	Sigma HP	27	857	0.9 (0.4, 1.9)	3.0 (1.9, 4.7)	4.4 (3.0, 6.6)			
Triathlon PKR	Triathlon PKR	16	224	3.0 (1.4, 6.6)	7.8 (4.5, 13.3)	9.5 (5.4, 16.4)			
Uniglide	Uniglide	137	751	4.9 (3.5, 6.7)	10.6 (8.6, 13.1)	12.8 (10.6, 15.5)	19.8 (16.9, 23.2)		
Unix	Unix	411	3862	2.4 (2.0, 2.9)	5.3 (4.6, 6.1)	7.0 (6.2, 7.9)	12.1 (10.9, 13.3)	18.6 (16.1, 21.4)	
ZUK	ZUK	275	5921	1.4 (1.1, 1.7)	3.6 (3.1, 4.2)	4.9 (4.3, 5.6)	8.9 (7.6, 10.3)		
Other (36)		308	1928	3.8 (3.0, 4.8)	8.6 (7.4, 9.9)	11.1 (9.8, 12.7)	19.7 (17.7, 22.0)	24.1 (21.3, 27.1)	
TOTAL		5964	49173						

Note: Only combinations with over 200 procedures have been listed

* denotes prosthesis combination with no reported use in unicompartmental knee replacement in 2016

OUTCOME FOR OSTEOARTHRITIS

The Registry has recorded 5,894 revisions of primary unicompartmental knee replacements.

The cumulative percent revision at 16 years for primary unicompartmental knee replacement undertaken for osteoarthritis is 23.4% (Table KP16 and Figure KP9).

The main reasons for revision are loosening (39.9%), progression of disease (31.3%) and pain (8.9%) (Table KP17 and Figure KP10). The main type of revision is to a total knee replacement (87.0%) (Table KP18).

Age is a major factor affecting the outcome of primary unicompartmental knee replacement, with the rate of revision decreasing with increasing age (Table KP19 and Figure KP11). Females have a higher rate of revision. The effect of age on the rate of revision is evident in both males and females (Table KP20 and Figure KP12).

Comparison of Medial and Lateral Unicompartmental Knee Replacement

The Registry has recorded 1,992 lateral unicompartmental knee procedures undertaken for osteoarthritis. There is no difference in the rate of revision when compared to medial unicompartmental knee replacement (Table KP21 and Figure KP13).

The outcome of prosthesis combinations with more than 50 procedures used in lateral unicompartmental knee replacement is presented in Table KP22.

Table KP16 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)

Knee Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Unicompartmental	5894	48661	2.2 (2.1, 2.4)	5.7 (5.5, 5.9)	8.1 (7.8, 8.4)	14.6 (14.3, 15.0)	22.1 (21.4, 22.9)	23.4 (22.4, 24.5)
TOTAL	5894	48661						

40% Unicompartmental 35% 30% **Cumulative Percent Revision** 25% 20% 15% 10% 5% 0% 0 1 2 3 7 9 10 11 12 13 16 4 5 6 8 14 15 Years Since Primary Procedure

Figure KP9	Cumulative Percent Pevision of Primar	y Unicompartmental Knee Replacement	(Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Unicompartmental	48661	44448	37673	31992	15639	1471	291

 Table KP17
 Primary Unicompartmental Knee

 Replacement by Reason for Revision (Primary Diagnosis OA)

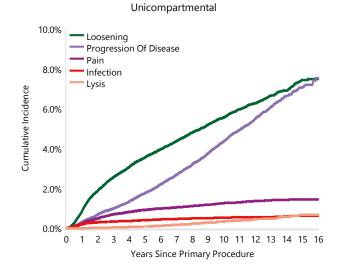
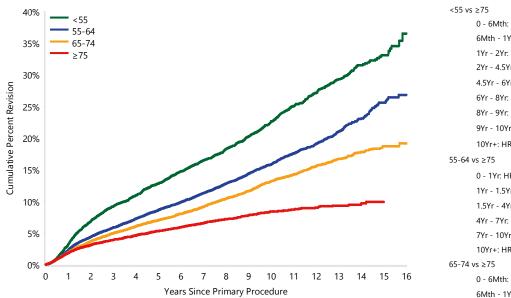

Reason for Revision	Number	Percent
Loosening	2352	39.9
Progression Of Disease	1844	31.3
Pain	524	8.9
Infection	232	3.9
Lysis	147	2.5
Fracture	136	2.3
Bearing Dislocation	117	2.0
Wear Tibial Insert	83	1.4
Malalignment	66	1.1
Instability	62	1.1
Wear Tibial	48	0.8
Other	283	4.8
TOTAL	5894	100.0

Table KP18 Primary Unicompartmental Knee Replacement by Type of Revision (Primary Diagnosis OA)

Type of Revision	Number	Percent
TKR (Tibial/Femoral)	5126	87.0
Uni Insert Only	343	5.8
Uni Tibial Component	207	3.5
Uni Femoral Component	69	1.2
UKR (Uni Tibial/Uni Femoral)	64	1.1
Cement Spacer	50	0.8
Patella/Trochlear Resurfacing	10	0.2
Removal of Prostheses	7	0.1
Reinsertion of Components	6	0.1
Patella Only	5	0.1
Femoral Component*	4	0.1
Cement Only	2	0.0
Tibial Component	1	0.0
TOTAL	5894	100.0

Note: *Bicompartmental Component

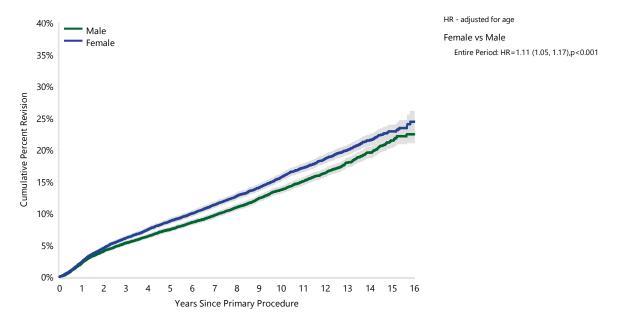

Figure KP10 Cumulative Incidence Revision Diagnosis of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55	1361	6964	3.2 (2.8, 3.7)	9.2 (8.5, 9.9)	12.8 (12.0, 13.7)	22.7 (21.5, 23.9)	33.1 (31.2, 35.2)	36.5 (33.1, 40.2)
55-64	2255	16499	2.3 (2.1, 2.6)	5.9 (5.5, 6.3)	8.6 (8.2, 9.1)	15.8 (15.1, 16.5)	25.6 (24.3, 27.0)	26.9 (25.2, 28.6)
65-74	1670	15759	1.9 (1.7, 2.2)	5.0 (4.6, 5.3)	7.0 (6.6, 7.5)	13.2 (12.5, 13.8)	18.7 (17.7, 19.9)	19.2 (17.8, 20.6)
≥75	608	9439	1.8 (1.6, 2.1)	3.9 (3.5, 4.4)	5.3 (4.9, 5.9)	8.4 (7.7, 9.1)	9.9 (8.9, 11.0)	
TOTAL	5894	48661						

Table KP19 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA)

Figure KP11 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA)

19r - 1.5Yr: HR=1.28 (1.07, 1.54),p=0.008 1Yr - 1.5Yr: HR=1.75 (1.39, 2.21),p<0.001 1.5Yr - 4Yr: HR=1.83 (1.57, 2.13),p<0.001 4Yr - 7Yr: HR=2.13 (1.81, 2.50),p<0.001 7Yr - 10Yr: HR=2.69 (2.19, 3.31),p<0.001 10Yr+: HR=5.37 (4.05, 7.13),p<0.001


0 - 6Mth: HR=1.15 (0.90, 1.48),p=0.272 6Mth - 1Yr: HR=1.01 (0.80, 1.27),p=0.933 1Yr - 2Yr: HR=1.46 (1.20, 1.79),p<0.001 2Yr - 5Yr: HR=1.52 (1.30, 1.78),p<0.001 5Yr - 7Yr: HR=1.67 (1.36, 2.04),p<0.001 7Yr - 9Yr: HR=2.10 (1.66, 2.66),p<0.001 9Yr+: HR=3.06 (2.37, 3.95),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55	6964	6326	5288	4495	2243	249	48
55-64	16499	15082	12869	11049	5558	531	99
65-74	15759	14334	12153	10364	5251	550	116
≥75	9439	8706	7363	6084	2587	141	28

Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male		2839	25794	2.1 (1.9, 2.3)	5.3 (5.0, 5.6)	7.5 (7.1, 7.8)	13.7 (13.2, 14.2)	21.5 (20.4, 22.6)	22.4 (21.1, 23.8)
	<55	581	3098	3.2 (2.6, 3.9)	9.0 (8.0, 10.2)	12.3 (11.1, 13.6)	21.9 (20.2, 23.8)	34.2 (31.0, 37.6)	
	55-64	1161	8815	2.3 (2.0, 2.7)	5.8 (5.3, 6.4)	8.6 (8.0, 9.2)	15.6 (14.7, 16.6)	25.3 (23.5, 27.3)	27.1 (24.7, 29.7)
	65-74	814	8823	1.7 (1.5, 2.1)	4.5 (4.1, 5.0)	6.1 (5.6, 6.7)	11.7 (10.9, 12.6)	17.2 (15.7, 18.8)	17.2 (15.7, 18.8)
	≥75	283	5058	1.6 (1.3, 2.0)	3.6 (3.1, 4.2)	4.8 (4.2, 5.4)	7.8 (6.9, 8.8)	9.5 (8.0, 11.4)	
Female		3055	22867	2.4 (2.2, 2.6)	6.1 (5.8, 6.4)	8.8 (8.4, 9.2)	15.6 (15.1, 16.2)	22.9 (21.9, 23.9)	24.4 (22.9, 26.0)
	<55	780	3866	3.2 (2.7, 3.9)	9.3 (8.4, 10.3)	13.2 (12.2, 14.4)	23.2 (21.7, 24.9)	32.4 (30.0, 35.0)	
	55-64	1094	7684	2.3 (2.0, 2.7)	6.0 (5.4, 6.5)	8.7 (8.1, 9.4)	16.0 (15.1, 17.0)	25.9 (24.0, 27.9)	
	65-74	856	6936	2.2 (1.9, 2.6)	5.5 (5.0, 6.1)	8.1 (7.5, 8.8)	14.9 (13.9, 15.9)	20.6 (19.0, 22.3)	21.4 (19.2, 23.7)
	≥75	325	4381	2.0 (1.7, 2.5)	4.3 (3.7, 5.0)	6.0 (5.3, 6.8)	9.1 (8.1, 10.1)	10.4 (9.2, 11.9)	
TOTAL		5894	48661						

Table KP20 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Gender and Age (Primary Diagnosis OA)

Figure KP12 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Gender (Primary Diagnosis OA)

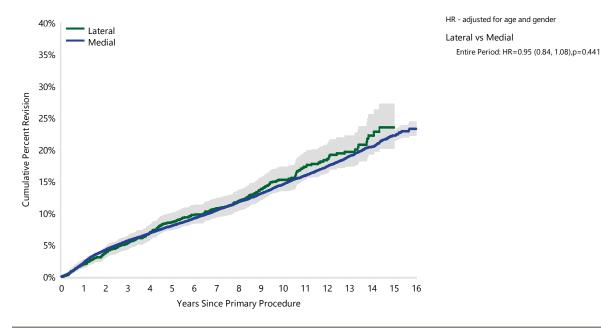

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	25794	23424	19615	16451	7787	743	148
Female	22867	21024	18058	15541	7852	728	143

Table KP21 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Position (Primary Diagnosis OA)
--

Position	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Lateral	265	1992	2.0 (1.5, 2.8)	5.3 (4.4, 6.4)	8.6 (7.4, 10.0)	15.3 (13.5, 1	7.3) 23.5 (20.2, 27.2)	
Medial	5080	43298	2.2 (2.1, 2.4)	5.7 (5.4, 5.9)	8.0 (7.8, 8.3)	14.5 (14.1, 1	4.9) 22.2 (21.4, 23.1)	23.3 (22.2, 24.4)
TOTAL	5345	45290						

Note: Excludes 3,371 primary unicompartmental knee procedures with unknown/missing position

Figure KP13 Cumulative Percent Revision of Primary Unicompartmental Knee Replacement by Position (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Lateral	1992	1855	1605	1383	710	59	14
Medial	43298	39332	33052	27872	13207	1098	212

 Table KP22
 Cumulative Percent Revision of Lateral Primary Unicompartmental Knee Replacement by Prosthesis Combination (Primary Diagnosis OA)

Femoral Component	Tibial Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Endo-Model Sled	Endo-Model Sled	16	141	0.0 (0.0, 0.0)	3.9 (1.6, 9.2)	7.5 (4.0, 13.9)			
Freedom PKR/Active	Freedom PKR/Active	20	150	0.7 (0.1, 4.7)	5.8 (2.9, 11.2)	9.9 (5.9, 16.5)			
GRU	GRU	23	193	2.6 (1.1, 6.2)	4.2 (2.1, 8.3)	5.3 (2.9, 9.7)	12.8 (8.5, 19.0)		
Genesis	Genesis	24	137	1.5 (0.4, 5.7)	5.8 (3.0, 11.3)	9.6 (5.7, 15.9)	17.0 (11.5, 24.8)		
M/G	M/G	8	54	1.9 (0.3, 12.4)	3.7 (0.9, 14.1)	3.7 (0.9, 14.1)	10.9 (4.6, 24.3)		
Oxford (cless)	Oxford (ctd)	2	51	2.1 (0.3, 13.9)	2.1 (0.3, 13.9)	2.1 (0.3, 13.9)			
Oxford (ctd)	Oxford (ctd)	30	158	6.4 (3.5, 11.6)	9.1 (5.5, 14.9)	13.1 (8.5, 19.8)	21.7 (15.2, 30.5)		
Preservation	Preservation Fixed	16	149	0.0 (0.0, 0.0)	3.4 (1.4, 8.0)	6.8 (3.7, 12.3)	10.0 (6.0, 16.4)		
Repicci II	Repicci II	62	258	2.3 (1.1, 5.1)	7.1 (4.5, 11.0)	12.8 (9.2, 17.6)	20.9 (16.2, 26.8)		
Unix	Unix	21	184	1.1 (0.3, 4.4)	3.4 (1.6, 7.5)	7.2 (4.1, 12.3)	11.7 (7.5, 18.1)		
ZUK	ZUK	8	176	0.0 (0.0, 0.0)	2.1 (0.7, 6.3)	5.8 (2.6, 13.0)			
Other (28)		35	341	3.5 (1.9, 6.2)	6.8 (4.4, 10.3)	8.6 (5.8, 12.6)	13.9 (9.8, 19.6)		
TOTAL		265	1992						

Note: Only combinations with over 50 procedures have been listed.

Primary Total Knee Replacement

CLASS OF TOTAL KNEE REPLACEMENT

The Registry defines a total knee replacement as a replacement of the entire femorotibial articulation using a single femoral and a single tibial prosthesis. This may or may not be combined with a patellar resurfacing replacement.

In this report, the Registry details the outcome of total knee replacement based on specific patient and prosthesis characteristics. In addition, the outcome for different types of total knee prostheses are presented.

Most total knee systems have a variety of individual prostheses within the system that vary based on distinguishing prosthesis characteristics. Where possible, the Registry sub-divides these systems into the specific prosthesis types. The initial characteristic used is fixation. Further sub-division is based on mobility, stability and flexion capacity. However, this further system sub-division is not uniformly applied to all knee systems at this time. High use prosthesis systems are sub-divided. This enables the identification of differences or potential differences in outcome between prostheses with different characteristics within each of these systems.

Low use systems are unlikely to be sub-divided. This is because of small numbers or insufficient follow up. The exception is, if the entire system is identified as having a higher than anticipated rate of revision. The Registry then undertakes a catalogue range specific analysis to determine if the higher than anticipated rate of revision is associated with specific prosthesis characteristics within that system.

To enable the Registry to undertake range specific analyses uniformly across all knee systems, it is necessary to link the different catalogue ranges to the specific prosthesis characteristics for every prosthesis within the system. This is an ongoing process with increasing numbers of systems being subdivided.

DEMOGRAPHICS

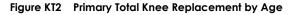
There have been 547,407 primary total knee replacement procedures reported to the Registry. This is an additional 52,836 procedures compared to the last report.

Primary total knee replacement continues to increase. In 2016, there were 2.8% more procedures than 2015 and 139.8% more than in 2003. As a proportion of all knee replacement procedures, primary total knee replacement increased from 76.7% in 2003 to 87.0% in 2016.

Osteoarthritis is the most common diagnosis for primary total knee replacement (97.6%).

There have been 547,407 primary total knee replacement procedures reported to the Registry. This is an additional 52,836 procedures compared to the last report.

In 2016, primary total knee replacement remains more common in females (56.1%). This proportion has remained constant since 2003 (Figure KT1). The mean age of patients is 68.5 years (Table KT1).


100% Male 90% Female 80% Female 80% Female 70% Female 60% Female 50% Female 10% Female 20% Female 10% Female 0% Female 10% Female </

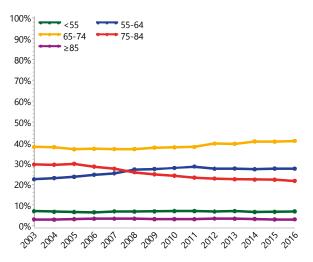
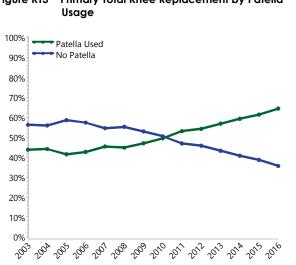

Figure KT1 Primary Total Knee Replacement by Gender

Table KT1 Age and Gender of Primary Total Knee Replacement


Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Female	310950	56.8%	8	103	69	68.8	9.4
Male	236457	43.2%	8	101	68	68.2	9.2
TOTAL	547407	100.0%	8	103	69	68.5	9.3

There has been a decrease in the proportion of patients aged 75 to 84 years from 29.5% in 2003, to 21.6% in 2016. The proportion of patients aged less than 55 years remains small (6.9% in 2016) and there has been little change in that proportion since 2003 (Figure KT2).

Detailed demographic information on primary total knee replacement is available in the supplementary report 'Demographics of Hip, Knee and Shoulder Arthroplasty' on the AOANJRR website: https://aoanjrr.sahmri.com/annual-reports-2017. Patellar resurfacing at the time of the primary total knee replacement continues to increase from a low of 41.5% in 2005 to 64.4% in 2016 (Figure KT3).

Primary Total Knee Replacement by Patella Figure KT3

The most common method of fixation is cementing both femoral and tibial components. This has increased from 44.8% in 2003 to 66.4% in 2016. The use of cementless fixation continues to decrease from a peak of 26.3% in 2003 to 11.8% in 2016 (Figure KT4).

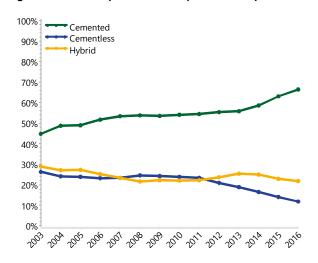
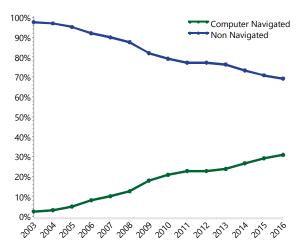



Figure KT4 Primary Total Knee Replacement by Fixation

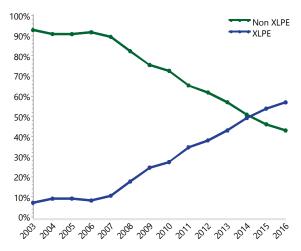

The proportion of primary total knee replacement procedures inserted with computer navigation has increased from 2.4% in 2003 to 30.8% in 2016 (Figure KT5).

Figure KT5 Primary Total Knee Replacement by Computer Navigation

The use of cross-linked polyethylene (XLPE) in primary total knee replacement continues to increase. The proportion of procedures using XLPE was 7.1% in 2003 compared to 57.0% in 2016 (Figure KT6).

Cruciate retaining (CR) and posterior stabilised (PS) prostheses are reported separately for the majority of total knee prostheses. This reporting is based on the design of the femoral component. In 2016, the most commonly used femoral prostheses were the Triathlon CR (18.2%), Nexgen CR Flex (12.3%) and Nexgen LPS Flex (5.7%) (Table KT2). The most used prostheses are also reported based on fixation (cemented, cementless and hybrid) (Tables KT3 to KT5).

2003	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
3184 LCS CR	7407 Triathlon CR	8091 Triathlon CR	8703 Triathlon CR	9467 Triathlon CR
2847 Duracon	6179 Nexgen CR Flex	6382 Nexgen CR Flex	6337 Nexgen CR Flex	6416 Nexgen CR Flex
2150 Nexgen CR	3259 LCS CR	3216 LCS CR	3327 Vanguard CR	2971 Nexgen LPS Flex
1419 PFC Sigma CR	2814 Nexgen LPS Flex	3004 Vanguard CR	3106 Nexgen LPS Flex	2836 Vanguard CR
1354 Scorpio CR	2698 PFC Sigma CR	2896 Nexgen LPS Flex	2925 LCS CR	2721 LCS CR
1058 Genesis II CR	2653 Vanguard CR	2286 PFC Sigma CR	2216 Attune CR	2476 Attune CR
1002 Natural Knee II	1598 Genesis II CR	2018 Legion Oxinium PS	2000 Legion Oxinium PS	1949 Legion Oxinium PS
902 Nexgen LPS	1537 Genesis II Oxinium PS	1510 Genesis II CR	1455 PFC Sigma CR	1534 GMK Sphere Primary
883 Profix	1388 Legion Oxinium PS	1404 Genesis II Oxinium PS	1397 Genesis II CR	1475 Genesis II Oxinium PS
751 Scorpio PS	1292 PFC Sigma PS	1254 Genesis II PS	1390 Genesis II Oxinium PS	1451 Evolution
10 Most Used				
15550 (10) 71.5%	30825 (10) 69.3%	32061 (10) 67.8%	32856 (10) 64.8%	33296 (10) 63.9%
Remainder				
6184 (47) 28.5%	13668 (74) 30.7%	15221 (71) 32.2%	17849 (75) 35.2%	18830 (69) 36.1%
TOTAL				
21734 (57) 100.0%	44493 (84) 100.0%	47282 (81) 100.0%	50705 (85) 100.0%	52126 (79) 100.0%

Table KT2 10 Most Used Femoral Prostheses in Primary Total Knee Replacement

Table KT3 10 Most Used Femoral Prostheses in Cemented Primary Total Knee Replacement

2003	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
1212 Duracon	3390 Triathlon CR	4033 Triathlon CR	4644 Triathlon CR	5367 Triathlon CR	
933 LCS CR	2388 Nexgen LPS Flex	2540 Nexgen LPS Flex	2741 Nexgen LPS Flex	3163 Nexgen CR Flex	
826 Nexgen LPS	2254 Nexgen CR Flex	2345 Nexgen CR Flex	2718 Nexgen CR Flex	2652 Nexgen LPS Flex	
760 Nexgen CR	1537 Genesis II Oxinium PS	2018 Legion Oxinium PS	2216 Attune CR	2476 Attune CR	
693 Nexgen LPS Flex	1386 Legion Oxinium PS	1404 Genesis II Oxinium PS	2000 Legion Oxinium PS	1949 Legion Oxinium PS	
644 Genesis II CR	1206 Genesis II PS	1276 Vanguard CR	1390 Genesis II Oxinium PS	1533 GMK Sphere Primary	
494 Profix	1167 Vanguard CR	1225 Genesis II PS	1327 Vanguard CR	1475 Genesis II Oxinium PS	
471 Genesis II Oxinium CR	1089 PFC Sigma PS	1017 PFC Sigma CR	1189 Genesis II PS	1451 Evolution	
471 PFC Sigma PS	1088 PFC Sigma CR	941 Genesis II CR	1133 GMK Sphere Primary	1134 Vanguard CR	
418 Genesis II PS	996 Genesis II CR	927 PFC Sigma PS	1088 Evolution	1047 Attune PS	
10 Most Used					
6922 (10) 71.8%	16501 (10) 66.6%	17726 (10) 64.2%	20446 (10) 64.1%	22247 (10) 64.5%	
Remainder					
2718 (38) 28.2%	8267 (68) 33.4%	9891 (67) 35.8%	11434 (72) 35.9%	12261 (65) 35.5%	
TOTAL					
9640 (48) 100.0%	24768 (78) 100.0%	27617 (77) 100.0%	31880 (82) 100.0%	34508 (75) 100.0%	

2003	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
1490 LCS CR	1739 Triathlon CR	1687 Nexgen CR Flex	1590 Nexgen CR Flex	1373 Nexgen CR Flex	
810 Nexgen CR	1732 Nexgen CR Flex	1626 Triathlon CR	1373 Triathlon CR	1238 LCS CR	
519 Natural Knee II	1472 LCS CR	1427 LCS CR	1273 LCS CR	1228 Triathlon CR	
488 Active Knee	440 RBK	410 Vanguard CR	410 Vanguard CR	394 Scorpio NRG CR	
484 Duracon	413 Vanguard CR	385 RBK	360 Scorpio NRG CR	287 Vanguard CR	
318 Scorpio CR	354 PFC Sigma CR	252 Score	347 RBK	264 RBK	
313 PFC Sigma CR	249 ACS	247 Scorpio NRG CR	249 Score	226 Nexgen LPS Flex	
304 RBK	248 Nexgen LPS Flex	237 PFC Sigma CR	245 Nexgen LPS Flex	152 Score	
188 Profix	238 Score	210 Nexgen LPS Flex	184 PFC Sigma CR	138 GMK Primary	
182 Scorpio PS	233 Active Knee	176 GMK Primary	143 Natural Knee Flex	131 PFC Sigma CR	
10 Most Used					
5096 (10) 87.8%	7118 (10) 84.4%	6657 (10) 84.7%	6174 (10) 85.8%	5431 (10) 87.5%	
Remainder					
705 (17) 12.2%	1318 (26) 15.6%	1198 (24) 15.3%	1019 (22) 14.2%	776 (17) 12.5%	
TOTAL					
5801 (27) 100.0%	8436 (36) 100.0%	7855 (34) 100.0%	7193 (32) 100.0%	6207 (27) 100.0%	

Table KT4 10 Most Used Femoral Prostheses in Cementless Primary Total Knee Replacement

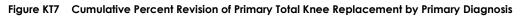
Table KT5 10 Most Used Femoral Prostheses in Hybrid Primary Total Knee Replacement

2003	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
1151 Duracon	2278 Triathlon CR	2432 Triathlon CR	2686 Triathlon CR	2872 Triathlon CR	
765 PFC Sigma CR	2193 Nexgen CR Flex	2350 Nexgen CR Flex	2029 Nexgen CR Flex	1880 Nexgen CR Flex	
761 LCS CR	1256 PFC Sigma CR	1318 Vanguard CR	1590 Vanguard CR	1415 Vanguard CR	
742 Scorpio CR	1073 Vanguard CR	1032 PFC Sigma CR	777 LCS CR	698 LCS CR	
580 Nexgen CR	893 LCS CR	881 LCS CR	520 Genesis II CR	513 Genesis II CR	
360 Genesis II CR	547 Genesis II CR	509 Genesis II CR	391 Scorpio CR	447 Apex Knee CR	
276 Maxim	352 Scorpio CR	382 Scorpio CR	377 Legion CR	376 BalanSys	
232 Natural Knee II	321 Triathlon PS	294 Triathlon PS	367 PFC Sigma CR	375 PFC Sigma CR	
205 AGC	203 PFC Sigma PS	288 Legion CR	337 Score	363 Scorpio CR	
204 Scorpio PS	194 Active Knee	283 ACS	294 Natural Knee Flex	312 Score	
10 Most Used					
5276 (10) 83.8%	9310 (10) 82.5%	9769 (10) 82.7%	9368 (10) 80.5%	9251 (10) 81.1%	
Remainder					
1017 (26) 16.2%	1979 (34) 17.5%	2041 (33) 17.3%	2264 (34) 19.5%	2160 (31) 18.9%	
TOTAL					
6293 (36) 100.0%	11289 (44) 100.0%	11810 (43) 100.0%	11632 (44) 100.0%	11411 (41) 100.0%	

OUTCOME FOR ALL DIAGNOSES

Primary Diagnosis

The most common diagnosis for primary total knee replacement is osteoarthritis (97.6%), followed by rheumatoid arthritis (1.4%), 'other inflammatory arthritis' (0.5%) and osteonecrosis (0.3%).


Rheumatoid arthritis has a lower rate of revision compared to osteoarthritis after nine months. Osteonecrosis has a higher rate of revision compared to osteoarthritis. There is no difference in the rate of revision between 'other inflammatory arthritis' and osteoarthritis (Table KT6 and Figure KT7).

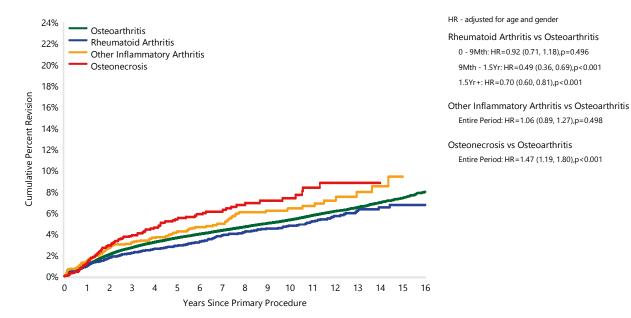

Rheumatoid arthritis has a lower rate of revision compared to osteoarthritis.

Table KT6 Cumulative Percent Revision of Primary Total Knee Replacement by Primary Diagnosis

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Osteoarthritis	19627	534202	1.0 (1.0, 1.1)	2.7 (2.7, 2.8)	3.6 (3.6, 3.7)	5.3 (5.2, 5.4)	7.4 (7.2, 7.6)	8.0 (7.7, 8.3)
Rheumatoid Arthritis	272	7542	1.0 (0.8, 1.2)	2.2 (1.9, 2.6)	2.9 (2.5, 3.3)	4.8 (4.2, 5.5)	6.7 (5.7, 7.9)	6.7 (5.7, 7.9)
Other Inflammatory Arthritis	119	2705	1.5 (1.1, 2.0)	3.2 (2.5, 4.0)	4.2 (3.4, 5.1)	6.4 (5.2, 7.8)	9.4 (7.0, 12.6)	
Osteonecrosis	92	1777	1.2 (0.8, 1.8)	3.9 (3.0, 5.0)	5.4 (4.3, 6.7)	7.4 (5.9, 9.2)		
Other (5)	116	1181	2.6 (1.8, 3.8)	8.2 (6.5, 10.2)	11.0 (8.9, 13.4)	17.5 (14.2, 21.4)		
TOTAL	20226	547407						

Note: Only primary diagnoses with over 1,000 procedures have been listed

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Osteoarthritis	534202	474281	363321	268621	93358	7947	1861
Rheumatoid Arthritis	7542	6898	5641	4459	1956	229	68
Other Inflammatory Arthritis	2705	2375	1804	1314	470	71	20
Osteonecrosis	1777	1581	1181	869	326	26	3

PROSTHESIS TYPES

There have been 516 femoral and tibial prosthesis combinations used in primary total knee replacement reported to the Registry. In 2016, 119 femoral and tibial combinations were used. This is eight less than in 2015.

The cumulative percent revision of the 144 combinations with more than 400 procedures per combination are listed in Tables KT7 to KT9. Although the listed combinations are a small proportion of all possible combinations, they represent 96.4% of all primary total knee replacement. The 'Other' group is the combined outcome of the remaining 372 prosthesis combinations with less than 400 procedures reported per combination.

There are 63 cemented femoral and tibial prosthesis combinations with more than 400 procedures. Of those with a 16 year cumulative percent revision, the Nexgen CR/Nexgen is the lowest at 5.1% (Table KT7). There are 39 cementless femoral and tibial prosthesis combinations with more than 400 procedures. Of those with a 16 year cumulative percent revision, the Nexgen CR/Nexgen is the lowest at 4.4% (Table KT8).

516 different femoral and tibial prosthesis combinations have been reported to the Registry. Outcomes at 16 years are being reported for the first time.

There are 42 combinations of primary total knee replacement using hybrid fixation and with more than 400 procedures. The PFC Sigma CR/PFC Sigma has the lowest 16 year cumulative percent revision (4.8%) (Table KT9).

Femoral Component	Tibial Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
ACS	ACS Mobile	12	533	1.0 (0.4, 2.4)	1.9 (0.9, 3.9)				
AGC	AGC	195	3497	0.5 (0.3, 0.9)	2.5 (2.0, 3.0)	3.6 (3.0, 4.3)	5.6 (4.8, 6.5)	8.8 (7.4, 10.4)	9.6 (7.6, 12.1)
Active Knee	Active Knee	48	1698	0.9 (0.5, 1.5)	2.4 (1.7, 3.4)	3.7 (2.7, 5.0)	4.8 (3.4, 6.6)		
Advance	Advance II	56	918	1.5 (0.9, 2.6)	4.2 (3.1, 5.7)	4.8 (3.6, 6.4)	7.1 (5.4, 9.4)		
Apex Knee CR	Apex Knee	3	1016	0.1 (0.0, 0.7)	0.7 (0.2, 2.2)				
Apex Knee PS	Apex Knee	25	1953	0.7 (0.4, 1.2)	3.4 (1.9, 5.9)				
Attune CR	Attune	49	5691	0.6 (0.4, 0.9)	2.1 (1.4, 3.1)				
Attune PS	Attune	18	2693	0.4 (0.2, 0.8)	1.1 (0.6, 1.9)				
BalanSys	BalanSys	27	1636	0.3 (0.1, 0.7)	1.6 (1.0, 2.5)	2.1 (1.3, 3.2)	4.2 (2.5, 7.0)		
Columbus	Columbus	8	403	0.8 (0.3, 2.5)	2.5 (1.2, 5.4)	2.5 (1.2, 5.4)			
Duracon	Duracon*	453	8968	1.0 (0.8, 1.2)	2.4 (2.1, 2.8)	3.3 (2.9, 3.7)	4.9 (4.4, 5.4)	7.0 (6.3, 7.9)	7.2 (6.4, 8.2)
E.Motion	E.Motion	23	519	2.0 (1.1, 3.7)	4.9 (3.2, 7.4)	5.4 (3.6, 8.1)			
Evolis	Evolis	14	797	0.3 (0.1, 1.1)	1.0 (0.5, 2.1)	1.6 (0.9, 3.0)			
Evolution	Evolution	32	3107	0.7 (0.4, 1.2)	2.3 (1.5, 3.5)				
GMK Primary	GMK Primary	17	587	1.1 (0.5, 2.3)	2.8 (1.7, 4.7)	5.1 (2.6, 9.8)			
GMK Sphere Primary	GMK Primary	49	3417	1.2 (0.8, 1.7)	2.7 (2.0, 3.7)				
Genesis II CR	Genesis II	466	13669	0.9 (0.8, 1.1)	2.4 (2.1, 2.7)	3.1 (2.8, 3.4)	4.3 (3.9, 4.7)	5.6 (4.9, 6.5)	6.0 (5.0, 7.1)
Genesis II CR	Profix Mobile*	35	490	1.7 (0.8, 3.3)	3.4 (2.1, 5.4)	5.4 (3.7, 8.0)	9.0 (6.3, 12.9)		
Genesis II Oxinium CR	Genesis II	347	7488	1.0 (0.8, 1.3)	2.8 (2.4, 3.2)	3.7 (3.2, 4.2)	6.1 (5.5, 6.9)	10.9 (8.3, 14.2)	
Genesis II Oxinium PS	Genesis II	785	15823	1.5 (1.3, 1.7)	3.8 (3.5, 4.1)	5.2 (4.8, 5.6)	7.5 (6.9, 8.1)		
Genesis II PS	Genesis II	571	15816	1.2 (1.1, 1.4)	2.8 (2.6, 3.1)	3.7 (3.4, 4.0)	5.0 (4.5, 5.5)	6.2 (5.2, 7.3)	
Journey Oxinium	Journey*	245	3032	1.4 (1.0, 1.9)	4.6 (3.9, 5.4)	6.4 (5.6, 7.4)	10.9 (9.4, 12.7)		
Kinemax Plus	Kinemax Plus*	111	1826	0.9 (0.6, 1.5)	2.4 (1.8, 3.3)	3.1 (2.4, 4.0)	4.6 (3.7, 5.7)	8.5 (6.9, 10.4)	9.3 (7.2, 12.0)
LCS CR	LCS	299	3939	1.0 (0.7, 1.4)	3.8 (3.2, 4.4)	5.0 (4.4, 5.8)	7.2 (6.4, 8.1)	9.1 (8.1, 10.2)	9.4 (8.2, 10.8)

Femoral Component	Tibial Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
LCS CR	MBT	364	10638	0.8 (0.7, 1.0)	2.5 (2.2, 2.8)	3.4 (3.0, 3.8)	5.2 (4.7, 5.9)		
LCS PS	MBT*	36	492	1.4 (0.7, 3.0)	5.6 (3.9, 8.1)	7.3 (5.2, 10.2)			
Legion CR	Genesis II	29	1266	1.5 (0.9, 2.4)	2.4 (1.6, 3.6)	3.3 (2.2, 4.9)			
Legion Oxinium CR	Genesis II	59	2696	0.8 (0.5, 1.3)	2.4 (1.8, 3.2)	3.1 (2.3, 4.0)			
Legion Oxinium PS	Genesis II	261	9937	1.1 (0.9, 1.3)	3.3 (2.9, 3.7)	4.3 (3.7, 4.9)			
Legion PS	Genesis II	73	3939	1.0 (0.7, 1.3)	2.1 (1.7, 2.7)	2.6 (2.0, 3.3)			
MRK	MRK	7	430	0.7 (0.2, 2.2)	1.8 (0.9, 3.7)	1.8 (0.9, 3.7)			
Maxim	Maxim*	37	498	1.2 (0.5, 2.7)	2.6 (1.5, 4.5)	4.8 (3.2, 7.1)	6.5 (4.6, 9.2)		
Natural Knee Flex	Natural Knee II	33	1449	1.1 (0.7, 1.9)	2.8 (1.9, 4.0)	3.2 (2.2, 4.5)			
Natural Knee II	Natural Knee II*	49	1754	0.5 (0.2, 0.9)	1.3 (0.8, 2.0)	1.9 (1.3, 2.7)	3.4 (2.5, 4.5)	4.1 (3.0, 5.7)	
Nexgen CR	Nexgen	119	3853	0.6 (0.4, 0.8)	1.4 (1.1, 1.9)	1.9 (1.5, 2.4)	2.9 (2.4, 3.6)	5.1 (4.0, 6.4)	5.1 (4.0, 6.4)
Nexgen CR Flex	Natural Knee II	8	804	0.2 (0.1, 1.0)	0.7 (0.3, 1.8)	0.7 (0.3, 1.8)			
Nexgen CR Flex	Nexgen	315	19517	0.7 (0.6, 0.8)	1.5 (1.3, 1.7)	2.1 (1.8, 2.3)	2.8 (2.4, 3.2)		
Nexgen LCCK	Nexgen	29	706	2.0 (1.1, 3.4)	3.6 (2.4, 5.5)	5.2 (3.5, 7.7)	5.2 (3.5, 7.7)		
Nexgen LPS	Nexgen	239	5776	1.0 (0.8, 1.3)	2.3 (2.0, 2.8)	3.0 (2.5, 3.5)	4.8 (4.2, 5.5)	6.0 (5.2, 7.0)	6.0 (5.2, 7.0)
Nexgen LPS Flex	Nexgen	956	29701	0.9 (0.8, 1.0)	2.3 (2.1, 2.5)	3.1 (2.9, 3.4)	5.0 (4.7, 5.4)		
Optetrak-PS	Optetrak	178	2603	1.5 (1.1, 2.0)	4.6 (3.8, 5.5)	6.3 (5.4, 7.4)	9.8 (8.3, 11.4)		
Optetrak-PS	Optetrak-RBK	43	768	1.5 (0.8, 2.6)	3.9 (2.7, 5.7)	5.1 (3.6, 7.2)	10.0 (6.8, 14.5)		
PFC Sigma CR	MBT	28	1153	0.9 (0.5, 1.6)	1.7 (1.1, 2.6)	2.1 (1.4, 3.2)	3.0 (2.0, 4.3)		
PFC Sigma CR	PFC Sigma	318	12226	0.8 (0.7, 1.0)	2.0 (1.7, 2.2)	2.4 (2.1, 2.7)	3.4 (3.0, 3.9)	5.7 (4.6, 7.1)	
PFC Sigma PS	MBT	231	5971	0.9 (0.7, 1.2)	2.7 (2.3, 3.1)	3.5 (3.0, 4.0)	4.8 (4.2, 5.5)		
PFC Sigma PS	PFC Sigma	274	7600	1.2 (0.9, 1.4)	2.5 (2.2, 2.9)	3.2 (2.8, 3.6)	4.7 (4.1, 5.4)	7.2 (5.9, 8.8)	
Persona	Persona	6	821	0.5 (0.2, 1.5)	1.5 (0.6, 3.5)				
Profix	Profix*	142	3285	1.1 (0.8, 1.5)	2.6 (2.1, 3.2)	3.2 (2.6, 3.9)	4.7 (4.0, 5.5)	4.9 (4.2, 5.9)	
Profix Oxinium	Profix*	81	999	1.9 (1.2, 3.0)	5.0 (3.8, 6.5)	6.6 (5.2, 8.4)	8.0 (6.5, 10.0)		
RBK	RBK	91	2290	1.0 (0.7, 1.5)	2.8 (2.1, 3.6)	3.6 (2.9, 4.5)	5.9 (4.7, 7.5)		
SAIPH	SAIPH	11	1333	0.5 (0.2, 1.2)	1.6 (0.8, 3.1)				
Score	Score	12	628	0.9 (0.4, 2.1)	1.5 (0.8, 3.1)	1.9 (1.0, 3.6)			
Scorpio CR	Series 7000	88	1793	0.8 (0.5, 1.4)	2.2 (1.6, 3.0)	2.9 (2.2, 3.8)	4.9 (3.9, 6.1)	6.4 (5.1, 7.9)	
Scorpio NRG CR	Series 7000	37	1579	0.7 (0.4, 1.3)	1.7 (1.2, 2.6)	2.4 (1.7, 3.5)			
Scorpio NRG PS	Series 7000	61	2592	0.6 (0.4, 1.0)	1.6 (1.2, 2.2)	2.4 (1.8, 3.1)			
Scorpio PS	Scorpio	31	511	1.2 (0.5, 2.6)	3.8 (2.4, 5.9)	4.4 (2.9, 6.6)	6.4 (4.5, 9.0)		
Scorpio PS	Scorpio+*	60	900	1.2 (0.7, 2.2)	4.0 (2.9, 5.5)	5.6 (4.3, 7.4)	7.0 (5.4, 9.0)		
Scorpio PS	Series 7000	184	3225	1.1 (0.8, 1.5)	2.9 (2.4, 3.5)	4.0 (3.4, 4.8)	6.8 (5.8, 7.9)	10.9 (8.3, 14.3)	
Triathlon CR	Triathlon	607	31060	0.8 (0.7, 0.9)	2.0 (1.8, 2.2)	2.5 (2.3, 2.7)	3.9 (3.4, 4.5)		
Triathlon PS	Triathlon	219	6676	1.4 (1.2, 1.7)	3.1 (2.6, 3.6)	4.0 (3.4, 4.5)	5.1 (4.3, 6.0)		
Vanguard CR	Maxim	178	7915	0.6 (0.5, 0.8)	2.2 (1.9, 2.7)	2.9 (2.5, 3.4)	4.3 (3.5, 5.3)		
Vanguard CR	Vanguard	16	983	0.5 (0.2, 1.2)	1.2 (0.7, 2.2)	1.4 (0.8, 2.6)			
Vanguard PS	Maxim	193	3751	1.9 (1.5, 2.4)	4.5 (3.8, 5.3)	5.7 (4.9, 6.6)	7.5 (6.1, 9.3)		
Other (181)		540	8182	1.7 (1.4, 2.0)	4.4 (3.9, 4.9)	6.2 (5.7, 6.9)	9.1 (8.3, 9.9)	11.6 (10.4, 13.0) 1	2.5 (10.8, 14.4)
TOTAL		10131	301816						

Note: Some cementless components have been cemented

Only combinations with over 400 procedures have been listed

* denotes prosthesis combinations that have not had any reported use in primary total knee procedures in 2016

Femoral Component	Tibial Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
	ACS Fixed	26		17(0933)	6.0 (4.1, 8.7)				
Active Knee	Active Knee	403			3.9 (3.4, 4.5)	5.6 (4.9, 6.2)	9.3 (8.4, 10.3)		
Advance	Advance	28			4.6 (3.1, 6.7)	4.8 (3.3, 7.1)			
	Advantim*	59			2.7 (2.0, 3.8)	3.6 (2.7, 4.8)	5.2 (3.9, 6.9)	7.6 (5.4, 10.7)	
	Columbus	58			7.7 (5.6, 10.4)		13.5 (10.4, 17.3)	1.0 (3.4, 10.7)	
Duracon	Duracon*	206			2.7 (2.2, 3.3)	3.7 (3.1, 4.4)		83 (69 99)	9.2 (7.1, 11.8)
GMK Primary	GMK Primary	19			3.2 (2.1, 5.0)		3.3 (4.0, 0.3)	0.5 (0.5, 5.5)	J.E (1.1, 11.0)
-	Genesis II	25	561	1.3 (0.6, 2.8)	4.4 (2.8, 6.7)	5.0 (3.3, 7.6)			
Genesis II CR	Profix Mobile*	35			2.0 (1.1, 3.7)	3.0 (1.8, 4.9)	4.6 (3.1, 6.9)	8.1 (5.8, 11.3)	10.2 (6.9, 14.9)
Genesis II PS	Genesis II	19			3.5 (2.1, 5.8)	4.1 (2.5, 6.6)	(, , ,	(, , ,	(, , ,
LCS CR	LCS	149			3.3 (2.7, 4.2)	4.3 (3.5, 5.2)	5.9 (5.0, 7.0)	6.9 (5.9, 8.1)	7.9 (6.5, 9.6)
LCS CR	MBT	300			3.4 (3.0, 3.9)	4.3 (3.8, 4.8)	5.5 (4.8, 6.2)	(, , , ,	(, , , ,
	MBT Duofix	587			3.3 (3.0, 3.6)	4.1 (3.8, 4.5)		7.2 (6.4, 8.2)	
LCS Duofix	MBT Duofix*	449					13.0 (11.9, 14.2)	. (,	
Maxim	Maxim*	39			3.0 (1.9, 4.7)			8.4 (5.8, 12.2)	
Natural Knee Flex	Natural Knee II	29			2.2 (1.4, 3.3)			0.1 (0.0) (2.2)	
Natural Knee II	Natural Knee II*	227	2890	1.0 (0.7, 1.4)	2.2 (1.7, 2.8)	3.4 (2.8, 4.2)	7.1 (6.1, 8.2)	13.4 (11.5, 15.7)	
Nexgen CR	Nexgen	109	3402	0.6 (0.4, 0.9)	1.7 (1.3, 2.2)	2.2 (1.7, 2.7)	3.1 (2.5, 3.8)	4.4 (3.5, 5.4)	4.4 (3.5, 5.4)
Nexgen CR	Nexgen TM CR	40	676	1.4 (0.7, 2.6)	4.4 (3.1, 6.4)	6.1 (4.5, 8.3)	6.7 (4.9, 9.1)		
Nexgen CR Flex	Nexgen	194	6886	1.1 (0.9, 1.4)	2.5 (2.1, 2.9)	3.1 (2.6, 3.6)	4.2 (3.5, 4.9)		
Nexgen CR Flex	Nexgen TM CR	201	8870	0.6 (0.4, 0.8)	1.9 (1.6, 2.2)	2.4 (2.1, 2.8)	3.6 (3.0, 4.3)		
Nexgen LPS	Nexgen TM LPS	24	1099	0.9 (0.4, 1.6)	1.4 (0.8, 2.4)	2.5 (1.6, 3.7)	3.1 (2.0, 4.8)		
Nexgen LPS Flex	Nexgen	20	670	2.7 (1.6, 4.3)	3.7 (2.4, 5.7)				
Nexgen LPS Flex	Nexgen TM LPS	28			2.6 (1.7, 4.0)				
PFC Sigma CR		54			1.5 (1.1, 2.2)				
PFC Sigma CR		62			4.9 (3.7, 6.4)	5.7 (4.4, 7.4)	7.3 (5.6, 9.6)		
PFC Sigma CR		113	2548	1.2 (0.8, 1.7)	3.3 (2.7, 4.1)	4.2 (3.4, 5.1)	5.6 (4.6, 7.0)		
Profix	Profix*	88	1488	1.1 (0.7, 1.8)	3.5 (2.6, 4.5)	4.6 (3.6, 5.8)	6.2 (5.1, 7.7)	6.8 (5.4, 8.4)	
RBK	RBK	280			3.2 (2.8, 3.7)	4.2 (3.7, 4.8)	5.6 (4.9, 6.3)		
Score	Score	111	1877	1.5 (1.0, 2.2)	5.4 (4.3, 6.6)	7.3 (6.0, 8.9)			
Scorpio CR	Series 7000	200	3135	1.3 (1.0, 1.8)	3.4 (2.8, 4.1)	4.7 (4.0, 5.5)	7.4 (6.4, 8.5)	8.8 (7.5, 10.4)	
Scorpio NRG CR	Series 7000	60	2362	1.0 (0.6, 1.5)	2.3 (1.7, 3.2)	2.9 (2.2, 3.8)			
Scorpio NRG PS	Series 7000	66	1046	1.4 (0.8, 2.3)	5.7 (4.4, 7.4)	7.2 (5.7, 9.1)			
Scorpio PS	Series 7000	44	570	2.5 (1.5, 4.1)	5.3 (3.7, 7.5)	6.2 (4.5, 8.6)	7.7 (5.7, 10.2)		
Triathlon CR	Triathlon	333			2.2 (1.9, 2.5)	2.9 (2.6, 3.2)	3.7 (3.3, 4.2)		
Triathlon PS	Triathlon	46	1008	2.1 (1.4, 3.2)	3.8 (2.7, 5.1)	4.8 (3.6, 6.3)			
Vanguard CR	Maxim	32	581	1.2 (0.6, 2.5)	3.8 (2.5, 5.8)	5.3 (3.7, 7.5)	6.1 (4.3, 8.6)		
Vanguard CR	Regenerex	54	1386	1.1 (0.7, 1.9)	3.8 (2.8, 5.1)	5.2 (3.9, 6.9)			
Vanguard CR	Vanguard	42	1277	1.3 (0.8, 2.1)	3.6 (2.7, 4.9)	3.8 (2.8, 5.1)			
Other (72)		541	5243	2.8 (2.4, 3.3)	7.6 (6.9, 8.3)	9.2 (8.4, 10.1)	11.9 (10.9, 12.9)	14.3 (12.8, 15.9)	
TOTAL		5400	112267						

TOTAL

Note: Only combinations with over 400 procedures have been listed

* denotes prosthesis combinations that have not had any reported use in primary total knee procedures in 2016

Table KT9 Cumulative Percent Revision of Hybrid Primary Total Knee Replacement by Prosthesis Combination

Femoral	Tibial	N	N	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Component ACS	Component ACS Fixed	Revised	Total	17/10.20					
AGC	AGC	36 58	777 1644	0.6 (0.3, 1.1)	7.4 (5.2, 10.5) 1.4 (0.9, 2.1)	20(1420)	3.4 (2.6, 4.6)	5.2 (3.8, 7.0)	
AGC Active Knee	AGC Active Knee	91	2136	0.5 (0.3, 1.1)	,	2.0 (1.4, 2.9) 3.7 (2.9, 4.7)		5.2 (5.0, 7.0)	
Active Knee Advance	Advance II	21	453	1.1 (0.5, 2.7)	,	3.5 (2.1, 5.8)	5.8 (3.7, 9.0)		
Advance Apex Knee CR	Apex Knee	9	916	1.0 (0.5, 2.2)	1.8 (0.9, 3.9)	5.5 (2.1, 5.0)	5.0 (5.7, 5.0)		
BalanSys	BalanSys	6	702	0.8 (0.3, 2.0)					
Duracon	Duracon*	421	7963	1.2 (1.0, 1.5)		3.5 (3.1, 3.9)	4.9 (4.5, 5.5)	6.8 (6.1, 7.6)	7.3 (6.4, 8.4)
GMK Primary	GMK Primary	11	439	0.5 (0.1, 2.0)	3.5 (1.9, 6.4)	5.5 (5.1, 5.5)	1.5 (1.5, 5.5)	0.0 (0.1, 1.0)	1.5 (0.1, 0.1)
Genesis II CR	Genesis II	289	7265	0.9 (0.7, 1.1)		3.9 (3.5, 4.5)	5.2 (4.6, 5.8)	6.0 (5.2, 6.9)	6.0 (5.2, 6.9)
Genesis II PS	Genesis II	57	705	1.7 (1.0, 3.0)			8.7 (6.7, 11.2)	(,,	(,,
LCS CR	LCS	133	2363	1.0 (0.7, 1.5)		3.8 (3.1, 4.6)		6.8 (5.7, 8.2)	7.2 (5.9, 8.8)
LCS CR	MBT	242	8432	0.7 (0.6, 1.0)		3.0 (2.6, 3.4)			
LCS CR	MBT Duofix	29	889	1.5 (0.9, 2.6)		3.9 (2.7, 5.6)			
LCS Duofix	MBT*	67	822	1.5 (0.8, 2.6)			9.3 (7.0, 12.2)		
Legion CR	Genesis II	46	1474	1.4 (0.9, 2.2)		5.3 (3.8, 7.3)			
Maxim	Maxim*	99	1407	0.8 (0.4, 1.4)		3.9 (3.0, 5.1)			
Natural	Natural	20	1007	04(02.00)	10(0(10)	17(10.20)			
Knee Flex	Knee II	20	1687	0.4 (0.2, 0.8)	1.0 (0.6, 1.8)	1.7 (1.0, 2.8)			
Natural Knee II	Natural Knee ll*	92	1966	1.2 (0.8, 1.8)	2.2 (1.6, 2.9)	2.5 (1.9, 3.3)	4.1 (3.2, 5.2)	9.8 (7.2, 13.2)	
Nexgen CR	Nexgen	114	4111	0.4 (0.3, 0.7)	1.5 (1.2, 2.0)	2.1 (1.7, 2.6)	3.1 (2.5, 3.8)	3.9 (3.2, 4.8)	
Nexgen CR Flex	Nexgen	303	16425	0.8 (0.6, 0.9)	1.8 (1.6, 2.0)	2.2 (1.9, 2.5)	2.8 (2.4, 3.2)		
Nexgen CR Flex	Nexgen TM CR	14	779	0.5 (0.2, 1.4)	1.3 (0.7, 2.5)	1.5 (0.8, 2.6)	1.9 (1.1, 3.2)		
Nexgen LPS	Nexgen	50	990	0.4 (0.2, 1.1)	2.6 (1.7, 3.8)	4.1 (3.0, 5.6)	5.6 (4.2, 7.5)		
Nexgen LPS Flex	Nexgen	35	803	2.1 (1.3, 3.4)	5.0 (3.5, 7.0)	5.3 (3.8, 7.3)			
Nexgen LPS Flex	Nexgen TM LPS	13	503	0.6 (0.2, 1.8)	1.8 (0.9, 3.5)	2.0 (1.1, 3.7)	2.7 (1.6, 4.7)		
Optetrak-CR	Optetrak	34	666	1.7 (0.9, 3.1)	3.6 (2.3, 5.7)	4.5 (3.0, 6.9)	8.7 (6.1, 12.4)		
PFC Sigma CR	MBT	170	3671	1.3 (0.9, 1.7)	3.2 (2.7, 3.9)	4.3 (3.6, 5.0)	5.4 (4.6, 6.3)	6.2 (5.1, 7.4)	
PFC Sigma CR	PFC Sigma	295	10858	0.6 (0.5, 0.8)	1.9 (1.6, 2.2)	2.4 (2.1, 2.8)	3.6 (3.1, 4.1)	4.8 (4.0, 5.6)	4.8 (4.0, 5.6)
PFC Sigma PS	MBT Duofix	131	1921	1.8 (1.3, 2.5)	5.0 (4.0, 6.1)	6.9 (5.7, 8.2)	8.5 (7.2, 10.1)		
Profix	Profix Mobile*	56	592	1.9 (1.0, 3.4)	5.7 (4.1, 7.9)	7.4 (5.6, 9.9)	9.3 (7.1, 12.0)		
Profix	Profix*	35	769	0.8 (0.4, 1.7)	2.5 (1.6, 3.9)	3.9 (2.7, 5.6)			
RBK	RBK	45	1370	1.0 (0.6, 1.7)		3.6 (2.6, 4.9)	4.9 (3.5, 6.8)		
Score	Score	24	943	1.9 (1.1, 3.1)					
Scorpio CR	Scorpio+*	135	1893	1.0 (0.6, 1.6)		4.4 (3.5, 5.4)	7.3 (6.1, 8.6)		
Scorpio CR	Series 7000	227	6580	0.7 (0.5, 1.0)		2.8 (2.4, 3.3)	4.2 (3.7, 4.9)	5.9 (5.0, 6.9)	5.9 (5.0, 6.9)
Scorpio NRG CR		23	787	0.4 (0.1, 1.2)		2.8 (1.7, 4.4)			
Scorpio PS	Scorpio+*	43	905	1.0 (0.5, 1.9)		3.4 (2.4, 4.8)		6.8 (4.7, 9.6)	
Scorpio PS	Series 7000	86	1072	1.1 (0.6, 2.0)		5.7 (4.4, 7.3)		14.1 (10.2, 19.5)	
Triathlon CR	Triathlon	264	16633	0.6 (0.5, 0.8)			3.2 (2.6, 3.9)		
Triathlon PS	Triathlon	65	2239	1.5 (1.1, 2.2)		3.5 (2.7, 4.5)			
Vanguard CR	Maxim	192	7447	0.9 (0.7, 1.2)		3.6 (3.1, 4.2)	5.4 (4.2, 6.8)		
Vanguard CR	Vanguard	65	2607	0.6 (0.4, 1.0)		2.8 (2.1, 3.6)			
Vanguard PS	Maxim	21	587	1.5 (0.8, 3.0)		4.6 (2.9, 7.1)			
Other (119)		528	6133	2.2 (1.9, 2.7)	6.0 (5.4, 6.7)	7.4 (6.7, 8.1)	10.8 (9.9, 11.8)	13.7 (12.3, 15.2)	13.7 (12.3, 15.2)
TOTAL		4695	133324						

Note: Only combinations with over 400 procedures have been listed

* denotes prosthesis combinations that have not had any reported use in primary total knee procedures in 2016

OUTCOME FOR OSTEOARTHRITIS - PATIENT CHARACTERISTICS

Primary total knee replacement has the lowest rate of revision compared to all other classes of primary knee replacement. At 16 years, the cumulative percent revision of primary total knee replacement undertaken for osteoarthritis is 8.0% (Table KT10 and Figure KT8).

Reason for Revision

Loosening is the main reason for revision (25.9%), followed by infection (22.5%), patellofemoral pain (10.9%), pain (8.6%) and instability (7.3%) (Table KT11).

The aetiology of loosening changes with time. Loosening reported in the first few years most likely reflects failure to gain fixation. Loosening reported in later years is often due to loss of fixation, secondary to bone resorption.

Previously, the Registry has reported loosening/lysis as a single diagnosis. This included the diagnoses of loosening or lysis, as well as loosening and lysis combined. Loosening and lysis are now considered separately. The diagnosis of loosening is used when loosening is reported either alone or in combination with lysis. The diagnosis of lysis is used for procedures that report only this diagnosis (Table KT11).

The five most common reasons for revision are shown in Figure KT9. Infection is the most common reason for early revision. Loosening becomes the most common reason after three years.

Type of Revision

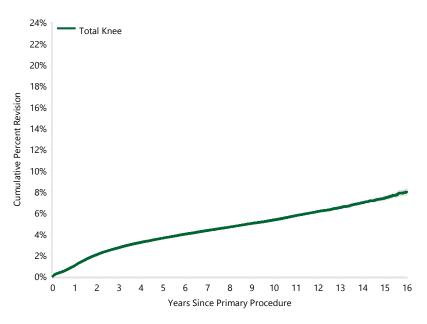
The most common types of revision are replacement of both the femoral and tibial prostheses (25.6%), insert only exchange (21.6%) and patella only replacement (20.7%) (Table KT12).

Age and Gender

Age is a major factor affecting the outcome of primary total knee replacement. The rate of revision decreases with increasing age. This difference becomes more evident with time. Those aged less than 55 years have more than three times the rate of revision after nine months and more than eight times after 9.5 years compared to those aged 75 years or older (Table KT13 and Figure KT10).

Males have a higher rate of revision compared to females (Table KT14 and Figure KT11).

Loosening is the most common reason for revision in both males and females. Males have a higher incidence of revision for infection, with a 16 year cumulative incidence of 1.7% compared to 0.9% for females (Figure KT12).


Males have a higher rate of revision which is largely due to an increased incidence of infection.

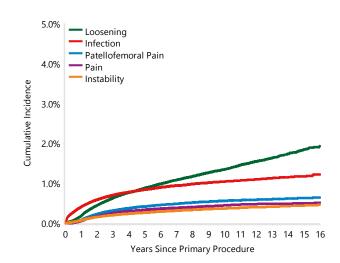
Age related differences in the rate of revision are evident for both males and females (Table KT14, Figures KT13 and KT14).

Table KT10 Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA)

Knee Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Total Knee	19627	534202	1.0 (1.0, 1.1)	2.7 (2.7, 2.8)	3.6 (3.6, 3.7)	5.3 (5.2, 5.4)	7.4 (7.2, 7.6)	8.0 (7.7, 8.3)
TOTAL	19627	534202						

Figure KT8 Cumulative Percent Revision of Primary Total Knee Replacement (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Total Knee	534202	474281	363321	268621	93358	7947	1861


Table KT11Primary Total Knee Replacement by Reason
for Revision (Primary Diagnosis OA)

Reason for Revision	Number	Percent
Loosening	5074	25.9
Infection	4412	22.5
Patellofemoral Pain	2143	10.9
Pain	1694	8.6
Instability	1429	7.3
Patella Erosion	992	5.1
Arthrofibrosis	689	3.5
Fracture	541	2.8
Malalignment	428	2.2
Lysis	389	2.0
Wear Tibial Insert	331	1.7
Metal Related Pathology	304	1.5
Incorrect Sizing	239	1.2
Other	962	4.9
TOTAL	19627	100.0

Table KT12 Primary Total Knee Replacement by Type of Revision (Primary Diagnosis OA)

Type of Revision	Number	Percent
TKR (Tibial/Femoral)	5034	25.6
Insert Only	4245	21.6
Patella Only	4060	20.7
Insert/Patella	1970	10.0
Tibial Component	1904	9.7
Femoral Component	1145	5.8
Cement Spacer	1102	5.6
Removal of Prostheses	102	0.5
Minor Components	39	0.2
Cement Only	9	0.0
Reinsertion of Components	9	0.0
Total Femoral	8	0.0
TOTAL	19627	100.0

Figure KT9 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement (Primary Diagnosis OA)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55	2645	35261	1.7 (1.6, 1.9)	5.1 (4.8, 5.3)	6.9 (6.6, 7.2)	10.8 (10.4, 11.3)	15.6 (14.7, 16.5)	16.5 (15.2, 18.0)
55-64	6738	140352	1.2 (1.1, 1.3)	3.4 (3.3, 3.5)	4.6 (4.5, 4.7)	7.0 (6.8, 7.2)	10.0 (9.6, 10.4)	11.0 (10.4, 11.6)
65-74	7027	207745	0.9 (0.9, 1.0)	2.5 (2.5, 2.6)	3.4 (3.3, 3.5)	4.9 (4.8, 5.0)	6.4 (6.2, 6.6)	6.8 (6.4, 7.1)
≥75	3217	150844	0.8 (0.8, 0.8)	1.8 (1.7, 1.9)	2.3 (2.2, 2.3)	2.9 (2.8, 3.0)	3.5 (3.3, 3.8)	3.6 (3.3, 3.9)
TOTAL	19627	534202						

Table KT13 Cumulative Percent Revision of Primary Total Knee Replacement by Age (Primary Diagnosis OA)

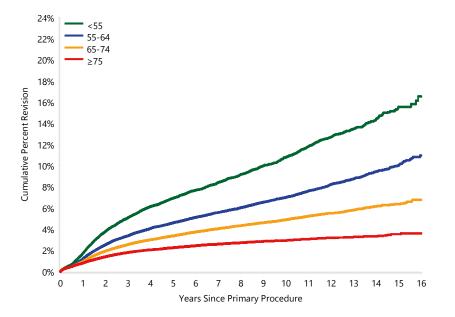
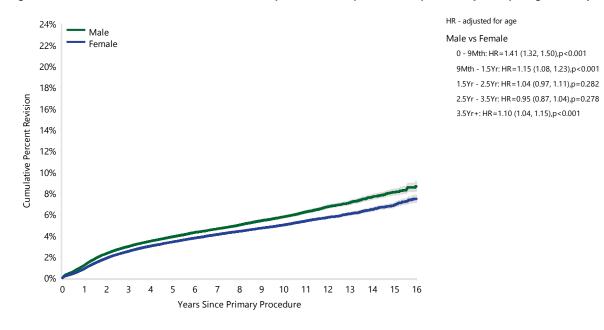


Figure KT10 Cumulative Percent Revision of Primary Total Knee Replacement by Age (Primary Diagnosis OA)

 $\label{eq:heat} \begin{array}{l} \mathsf{HR}$ - adjusted for gender $$$ <55 vs $\geq 75 $$$ 0 - 6Mth; HR = 1.45 (1.25, 1.68),p < 0.001 $$ 6Mth - 9Mth; HR = 2.90 (2.44, 3.46),p < 0.001 $$ 9Mth - 2Yr; HR = 3.50 (3.21, 3.81),p < 0.001 $$ 2Yr - 2.5Yr; HR = 3.51 (2.83, 3.87),p < 0.001 $$ 2.5Yr - 6.5Yr; HR = 3.87 (3.53, 4.23),p < 0.001 $$ 6.5Yr - 9.5Yr; HR = 8.35 (5.69, 8.19),p < 0.001 $$ 9.5Yr$ +; HR = 8.55 (7.01, 10.42),p < 0.001 $$ 55 - 64 vs $\geq 75 $$$ \end{tabular}$

0 - 3Mth: HR=0.98 (0.87, 1.12),p=0.808 3Mth - 9Mth: HR=1.63 (1.47, 1.80),p<0.001 9Mth - 4Yr: HR=2.26 (2.14, 2.38),p<0.001 4Yr - 6.5Yr: HR=2.67 (2.40, 2.98),p<0.001 6.5Yr - 7Yr: HR=4.40 (3.43, 5.63),p<0.001 7Yr - 10Yr: HR=4.16 (3.54, 4.88),p<0.001 10Yr+: HR=5.13 (4.26, 6.16),p<0.001 65 - 74 vs ≥75


0 - 6Mth: HR=1.02 (0.92, 1.12),p=0.754 6Mth - 1Yr: HR=1.41 (1.29, 1.54),p<0.001 1Yr - 2Yr: HR=1.67 (1.56, 1.80),p<0.001 2Yr - 4Yr: HR=1.58 (1.46, 1.69),p<0.001 4Yr - 4.5Yr: HR=2.12 (1.78, 2.53),p<0.001 4.5Yr - 6.5Yr: HR=1.77 (1.58, 1.99),p<0.001 6.5Yr+: HR=2.52 (2.18, 2.92),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
<55	35261	31196	24006	18023	6857	713	176
55-64	140352	124342	95282	70916	25349	2429	583
65-74	207745	184009	140271	104000	38391	3529	845
≥75	150844	134734	103762	75682	22761	1276	257

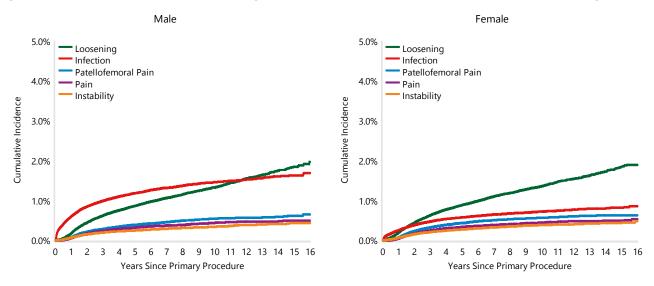
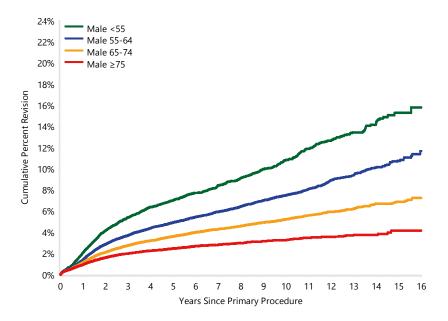
Gender	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male		9138	232351	1.2 (1.2, 1.3)	3.0 (2.9, 3.1)	3.9 (3.8, 4.0)	5.8 (5.6, 5.9)	8.1 (7.8, 8.4)	8.7 (8.2, 9.1)
	<55	1156	15121	2.1 (1.8, 2.3)	5.4 (5.0, 5.8)	7.0 (6.6, 7.5)	10.8 (10.2, 11.5)	15.3 (14.0, 16.6)	15.8 (14.2, 17.5)
	55-64	3283	64030	1.4 (1.3, 1.5)	3.7 (3.5, 3.9)	4.9 (4.7, 5.1)	7.5 (7.2, 7.8)	10.7 (10.2, 11.4)	11.7 (10.7, 12.7)
	65-74	3303	92546	1.1 (1.1, 1.2)	2.7 (2.6, 2.9)	3.6 (3.5, 3.7)	5.2 (5.0, 5.4)	6.9 (6.5, 7.3)	7.2 (6.7, 7.8)
	≥75	1396	60654	0.9 (0.9, 1.0)	2.0 (1.9, 2.1)	2.5 (2.3, 2.6)	3.3 (3.1, 3.4)	4.1 (3.6, 4.7)	4.1 (3.6, 4.7)
Female		10489	301851	0.9 (0.8, 0.9)	2.5 (2.5, 2.6)	3.4 (3.3, 3.5)	5.0 (4.9, 5.1)	6.9 (6.7, 7.1)	7.5 (7.1, 7.8)
	<55	1489	20140	1.5 (1.3, 1.7)	4.8 (4.5, 5.2)	6.9 (6.5, 7.3)	10.8 (10.2, 11.4)	15.8 (14.6, 17.2)	17.2 (15.1, 19.5)
	55-64	3455	76322	1.0 (1.0, 1.1)	3.1 (3.0, 3.3)	4.4 (4.2, 4.5)	6.6 (6.4, 6.9)	9.4 (8.9, 9.9)	10.4 (9.6, 11.2)
	65-74	3724	115199	0.8 (0.7, 0.8)	2.4 (2.3, 2.5)	3.2 (3.1, 3.3)	4.6 (4.5, 4.8)	6.0 (5.7, 6.3)	6.4 (6.0, 6.9)
	≥75	1821	90190	0.7 (0.7, 0.8)	1.7 (1.6, 1.8)	2.1 (2.0, 2.2)	2.7 (2.6, 2.9)	3.2 (3.0, 3.5)	3.3 (3.0, 3.7)
TOTAL		19627	534202						

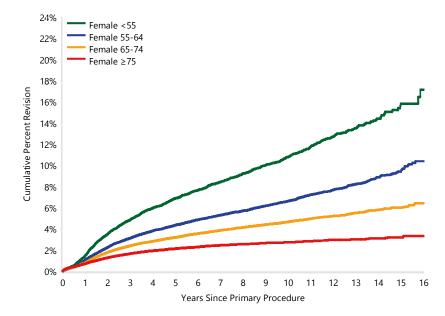
Table KT14 Cumulative Percent Revision of Primary Total Knee Replacement by Gender and Age (Primary Diagnosis OA)

Figure KT11 Cumulative Percent Revision of Primary Total Knee Replacement by Gender (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	232351	205147	155298	113552	37977	3156	737
Female	301851	269134	208023	155069	55381	4791	1124

Figure KT12 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Gender (Primary Diagnosis OA)


Figure KT13 Cumulative Percent Revision of Primary Total Knee Replacement in Males by Age (Primary Diagnosis OA)

Male <55 vs Male ≥75

0 - 9Mth: HR=1.98 (1.68, 2.33),p<0.001 9Mth - 1Yr: HR=3.22 (2.53, 4.11),p<0.001 1Yr - 1.5Yr: HR=2.73 (2.25, 3.31),p<0.001 1.5Yr - 2Yr: HR=3.81 (3.09, 4.71),p<0.001 2Yr - 2.5Yr: HR=3.02 (2.35, 3.89),p<0.001 2.5Yr - 3Yr: HR=4.20 (3.22, 5.49),p<0.001 3Yr - 3.5Yr: HR=3.13 (2.29, 4.28),p<0.001 3.5Yr - 9.5Yr: HR=4.02 (3.47, 4.66),p<0.001 9.5Yr+: HR=5.61 (4.41, 7.15),p<0.001 Male 55 – 64 vs Male ≥75 0 - 9Mth: HR=1.43 (1.27, 1.61),p<0.001 9Mth - 1Yr: HR=1.81 (1.50, 2.17),p<0.001 1Yr - 1.5Yr: HR=2.11 (1.84, 2.42),p<0.001 1.5Yr - 4Yr: HR=2.38 (2.14, 2.65),p<0.001 4Yr - 7Yr: HR=2.78 (2.42, 3.20),p<0.001 7Yr - 12Yr: HR=3.25 (2.79, 3.80),p<0.001 12Yr+: HR=3.82 (2.75, 5.31),p<0.001 Male 65-74 vs Male ≥75 0 - 6Mth: HR=1.15 (1.01, 1.31),p=0.038 6Mth - 1.5Yr: HR=1.35 (1.22, 1.50),p<0.001 1.5Yr - 2.5Yr: HR=1.61 (1.41, 1.83),p<0.001 2.5Yr+: HR=1.84 (1.67, 2.04),p<0.001

	Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Male	<55	15121	13330	10310	7826	3021	330	83
	55-64	64030	56510	42995	32029	11241	1092	271
	65-74	92546	81664	61645	45106	15900	1355	305
	≥75	60654	53643	40348	28591	7815	379	78

Figure KT14 Cumulative Percent Revision of Primary Total Knee Replacement in Females by Age (Primary Diagnosis OA)

 $\begin{array}{l} \mbox{Female} < 55 \mbox{ vs Female} \geq 75 \\ \mbox{0 - 9Mth: HR=1.68 (1.42, 1.99), p<0.001} \\ \mbox{9Mth} - 2Yr: HR=3.64 (3.25, 4.09), p<0.001 \\ \mbox{2Yr} - 4Yr: HR=3.84 (3.39, 4.36), p<0.001 \\ \mbox{4Yr} - 7Yr: HR=5.85 (4.94, 6.92), p<0.001 \\ \mbox{7Yr} +: HR=7.17 (6.02, 8.54), p<0.001 \\ \end{array}$

- Female 55-64 vs Female ≥75 0 - 3Mth: HR=0.83 (0.69, 1.00),p=0.053 3Mth - 9Mth: HR=1.46 (1.26, 1.70),p<0.001 9Mth - 4Yr: HR=2.31 (2.14, 2.49),p<0.001 4Yr+: HR=3.66 (3.24, 4.14),p<0.001
- Female 65-74 vs Female ≥75 0 - 9Mth: HR=1.01 (0.90, 1.13),p=0.872 9Mth - 4Yr: HR=1.67 (1.54, 1.80),p<0.001 4Yr - 7.5Yr: HR=2.32 (2.02, 2.66),p<0.001 7.5Yr+: HR=2.16 (1.84, 2.54),p<0.001

Nu	mber at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Female	<55	20140	17866	13696	10197	3836	383	93
	55-64	76322	67832	52287	38887	14108	1337	312
	65-74	115199	102345	78626	58894	22491	2174	540
	≥75	90190	81091	63414	47091	14946	897	179

OUTCOME FOR OSTEOARTHRITIS - PROSTHESIS CHARACTERISTICS

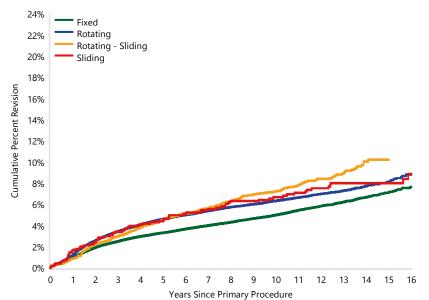
Fixed and Mobile Bearing

Tibial prostheses are either modular or nonmodular. Modular prostheses have a metal baseplate and tibial insert, which may be fixed or mobile. Non-modular prostheses are either all-polyethylene or polyethylene moulded to a metal baseplate.

Mobile bearings include inserts that move in one of three ways: rotating, sliding, or both rotating and sliding. Fixed bearings include nonmodular tibial prostheses, as well as fixed inserts that do not move relative to the baseplate.

Fixed bearing prostheses have a lower rate of revision compared to rotating, and rotating-

sliding after two years. Rotating prostheses have a lower rate of revision than fixed bearings after eight years. This finding is being reported for the first time. There is no difference between fixed and sliding prostheses. However, the number of procedures where a sliding prosthesis has been used is small (Table KT15 and Figure KT15).


Moulded non-modular tibial prostheses have the lowest rate of revision. However, this only includes a limited number of prosthesis types. There is no difference when comparing allpolyethylene to fixed modular tibial prostheses (Table KT16 and Figure KT16).

Bearing Mobility	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Fixed	13968	420701	1.0 (0.9, 1.0)	2.5 (2.5, 2.6)	3.3 (3.3, 3.4)	5.0 (4.9, 5.1)	7.1 (6.9, 7.3)	7.6 (7.3, 8.0)
Rotating	5223	107325	1.2 (1.2, 1.3)	3.5 (3.3, 3.6)	4.6 (4.5, 4.8)	6.3 (6.2, 6.5)	8.2 (7.8, 8.5)	8.8 (8.3, 9.5)
Rotating - Sliding	358	5052	0.9 (0.6, 1.2)	3.0 (2.6, 3.5)	4.5 (3.9, 5.1)	7.2 (6.5, 8.0)	10.2 (9.1, 11.5)	
Sliding	72	948	1.7 (1.0, 2.8)	3.4 (2.4, 4.8)	4.4 (3.3, 6.0)	6.7 (5.2, 8.5)	8.0 (6.4, 10.1)	8.9 (6.9, 11.3)
TOTAL	19621	534026						

Table KT15 Cumulative Percent Revision of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA)

Note: Excludes 176 procedures with unknown bearing mobility

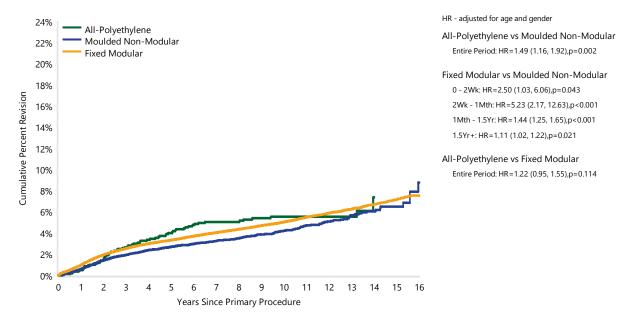
Figure KT15 Cumulative Percent Revision of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA)

HR - adjusted for age and gender Rotating vs Fixed 0 - 1Yr: HR=1.23 (1.16, 1.31),p<0.001 1Yr - 1.5Yr: HR=1.50 (1.38, 1.63),p<0.001 1.5Yr - 2Yr: HR=1.28 (1.16, 1.42),p<0.001 2Yr - 2.5Yr: HR=1.40 (1.25, 1.56),p<0.001 3Yr - 5Yr: HR=1.50 (1.32, 1.70),p<0.001 3Yr - 5Yr: HR=1.41 (1.31, 1.53),p<0.001 5Yr - 8Yr: HR=1.09 (1.00, 1.20),p=0.060 8Yr+: HR=0.81 (0.73, 0.91),p<0.001

Rotating - Sliding vs Fixed

0 - 2Yr: HR=1.12 (0.93, 1.35),p=0.242 2Yr+: HR=1.53 (1.34, 1.73),p<0.001

Sliding vs Fixed


Entire Period: HR=1.13 (0.89, 1.42),p=0.314

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Fixed	420701	369794	277613	200607	66495	5504	1288
Rotating	107325	98632	80271	63006	23505	1980	402
Rotating - Sliding	5052	4764	4419	4046	2592	118	6
Sliding	948	925	883	846	711	340	163

Fixed Bearing Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
All-Polyethylene	66	1496	0.5 (0.2, 1.0)	2.7 (1.9, 3.7)	4.0 (3.0, 5.3)	5.5 (4.3, 7.0)		
Moulded Non-Modular	675	21645	0.6 (0.5, 0.7)	1.9 (1.8, 2.1)	2.7 (2.5, 3.0)	4.2 (3.9, 4.6)	6.5 (5.7, 7.4)	8.8 (6.6, 11.6)
Fixed Modular	13227	397560	1.0 (1.0, 1.0)	2.5 (2.5, 2.6)	3.4 (3.3, 3.4)	5.0 (4.9, 5.1)	7.2 (6.9, 7.4)	7.5 (7.3, 7.8)
TOTAL	13968	420701						

Table KT16 Cumulative Percent Revision of Fixed Primary Total Knee Replacement by Bearing Type (Primary Diagnosis OA)

Figure KT16 Cumulative Percent Revision of Fixed Primary Total Knee Replacement by Bearing Type (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
All-Polyethylene	1496	1333	1128	1030	630	24	2
Moulded Non-Modular	21645	20469	17098	12830	4033	344	95
Fixed Modular	397560	347992	259387	186747	61832	5136	1191

Stability

Stability refers to particular prosthetic features intended to substitute for the intrinsic stability of knee ligaments. This year, the Registry has expanded the classification to include the medial pivot designs separately. The three major categories are now: minimally stabilised, medial pivot and posterior stabilised.

Medial pivot primary total knee replacement is included as a separate category for the first time.

The Registry defines minimally stabilised prostheses as those that have a flat or dished tibial articulation, regardless of congruency. Medial pivot prostheses are minimally stabilised, but have a ball-and-socket medial portion of the articulation. Posterior stabilised prostheses provide additional posterior stability, most commonly using a peg and box design, or less frequently, a cam and groove.

Comparing minimally stabilised, posterior stabilised and medial pivot primary total knee replacement, the use of minimally stabilised prostheses has remained relatively constant over the last 10 years. In 2016, these accounted for 67.4% of the three prosthesis types. The use of posterior stabilised prostheses has declined from 32.9% in 2008 to 25.6% in 2016. Medial pivot total knee replacements have been used in small numbers since the Registry began collecting data. In 2016 this has increased, accounting for 7.0% (Figure KT17).

Fully stabilised (large peg and box design) and hinged, are less used prostheses that provide

additional collateral, as well as posterior ligament stability. These prostheses are used in 0.5% of primary procedures (Table KT17). They are usually used in complex clinical situations and have therefore been excluded from any comparative outcome analysis for primary total knee replacement.

Posterior stabilised and medial pivot prostheses have a higher rate of revision compared to minimally stabilised (Table KT17 and Figure KT18). The cumulative incidence for the different reasons for revision varies depending on stability. Posterior stabilised prostheses have a higher cumulative incidence of infection compared to minimally stabilised and medial pivot prostheses. Posterior stabilised also have a higher cumulative incidence of loosening compared to minimally stabilised prostheses. Medial pivot prostheses have a higher cumulative incidence of revision for pain and instability compared to minimally stabilised prostheses (Figure KT19).

As with minimally stabilised and posterior stabilised prostheses, there is a variation in the rate of revision when different prostheses are compared within the medial pivot group. This group only contains five prostheses. One of these, the Advance, is identified as a prosthesis with a higher than anticipated rate of revision (Table KT18). When the Advance is excluded from the analysis comparing minimally stabilised and medial pivot prostheses, there is no difference between these two groups. However, the follow up for the medial pivot group is only four years when the Advance is excluded (Table KT19 and Figure KT20).

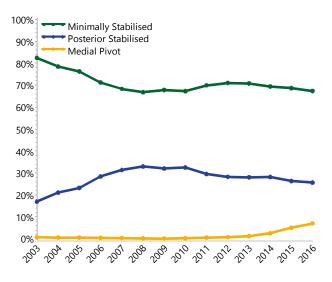
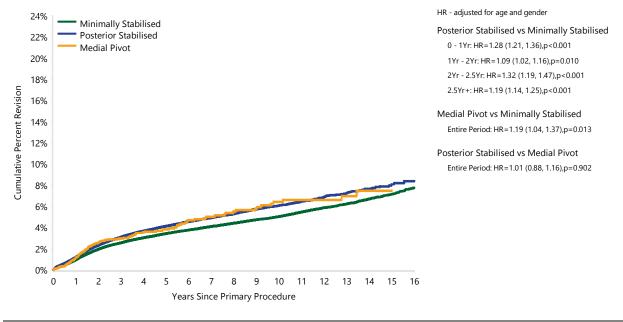
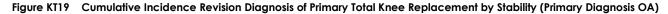
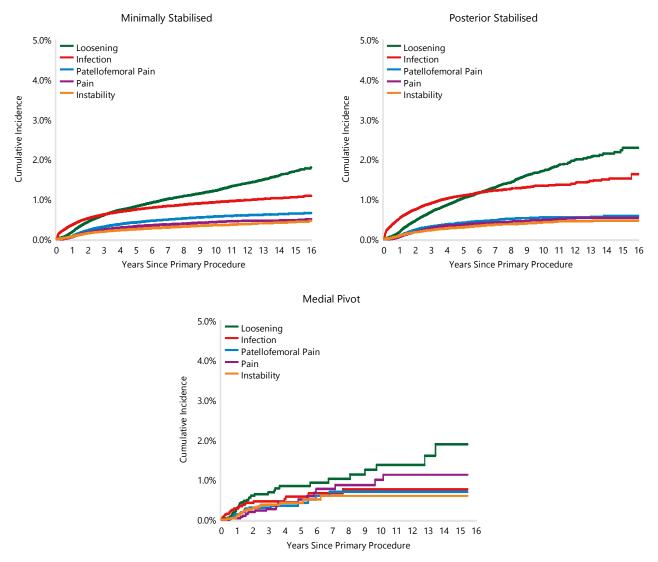



Table KT17 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)


Stability	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Minimally Stabilised	13511	379445	0.9 (0.9, 1.0)	2.6 (2.5, 2.6)	3.4 (3.3, 3.5)	5.0 (4.9, 5.1)	7.1 (6.9, 7.3)	7.7 (7.4, 8.1)
Posterior Stabilised	5786	142780	1.2 (1.2, 1.3)	3.1 (3.0, 3.2)	4.1 (4.0, 4.2)	6.1 (5.9, 6.3)	8.1 (7.6, 8.6)	8.4 (7.8, 9.1)
Medial Pivot	200	9390	1.2 (0.9, 1.4)	3.0 (2.5, 3.5)	3.8 (3.2, 4.6)	6.4 (5.3, 7.8)	7.5 (5.9, 9.5)	
Fully Stabilised	83	1777	2.3 (1.7, 3.2)	4.4 (3.5, 5.6)	5.8 (4.6, 7.3)	7.8 (6.0, 10.2)		
Hinged	41	634	2.5 (1.5, 4.1)	5.4 (3.7, 7.8)	7.1 (5.0, 10.0)			
TOTAL	19621	534026						


Note: Excludes 176 procedures with unknown stability

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Minimally Stabilised	379445	339252	262727	195578	73965	6970	1655
Posterior Stabilised	142780	127197	97163	70937	18639	875	196
Medial Pivot	9390	5727	2047	1191	531	77	7

Table KT18	Cumulative Percent Revision of Primary Total Knee Replacement with Medial Pivot by Insert (Primary Diagnosis
	OA)

Insert Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Advance I	5	15	6.7 (1.0, 38.7)	13.3 (3.5, 43.6)	13.3 (3.5, 43.6)	35.0 (16.3, 64.9)	35.0 (16.3, 64.9)	35.0 (16.3, 64.9)
Advance II	103	1610	1.9 (1.3, 2.7)	4.3 (3.4, 5.5)	5.3 (4.3, 6.5)	7.5 (6.2, 9.2)	8.6 (6.8, 10.8)	
Evolution	31	3087	0.7 (0.4, 1.2)	2.2 (1.5, 3.4)				
GMK Sphere Primary	50	3361	1.2 (0.9, 1.8)	2.7 (2.0, 3.7)				
SAIPH	11	1317	0.6 (0.2, 1.2)	1.6 (0.8, 3.1)				
TOTAL	200	9390						

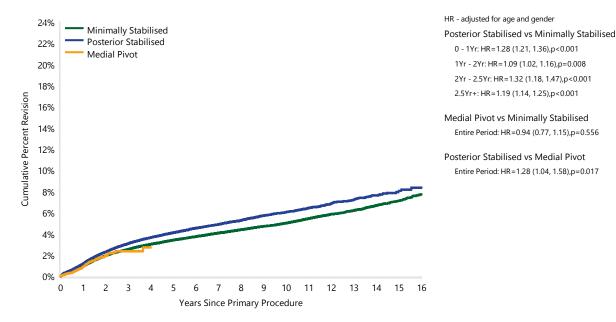

Note: See 2017 Annual Report Erratum #2 for corrected Table KT18

Table KT19 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA, Excluding Advance)

Stability	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Minimally Stabilised	13511	379445	0.9 (0.9, 1.0)	2.6 (2.5, 2.6)	3.4 (3.3, 3.5)	5.0 (4.9, 5.1)	7.1 (6.9, 7.3)	7.7 (7.4, 8.1)
Posterior Stabilised	5786	142780	1.2 (1.2, 1.3)	3.1 (3.0, 3.2)	4.1 (4.0, 4.2)	6.1 (5.9, 6.3)	8.1 (7.6, 8.6)	8.4 (7.8, 9.1)
Medial Pivot	92	7765	0.9 (0.7, 1.2)	2.4 (1.9, 3.0)				
Fully Stabilised	83	1777	2.3 (1.7, 3.2)	4.4 (3.5, 5.6)	5.8 (4.6, 7.3)	7.8 (6.0, 10.2)		
Hinged	41	634	2.5 (1.5, 4.1)	5.4 (3.7, 7.8)	7.1 (5.0, 10.0)			
TOTAL	19513	532401						

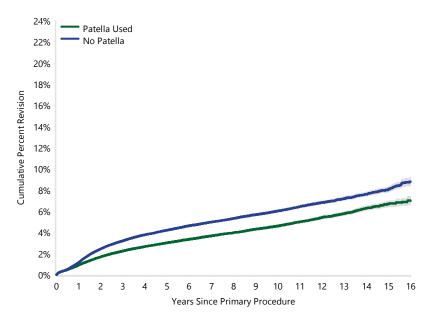
Note: Excludes 176 procedures with unknown stability

Figure KT20 Cumulative Percent Revision of Primary Total Knee Replacement by Stability (Primary Diagnosis OA, Excluding Advance)

Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 10 Yrs 15 Yrs 16 Yrs Minimally Stabilised 379445 195578 6970 1655 339252 262727 73965 **Posterior Stabilised** 142780 127197 97163 70937 18639 875 196 Medial Pivot 7765 4168 0 0 0 611 26

Patellar Resurfacing

Resurfacing the patella has a lower rate of revision compared to procedures without patellar resurfacing (Table KT20 and Figure KT21).

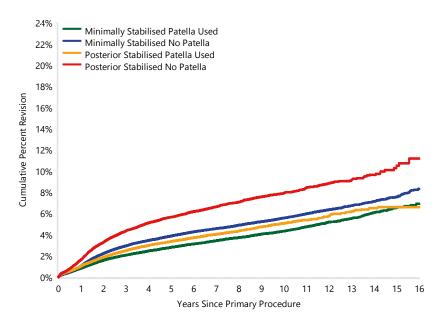

When resurfacing the patella, the rate of revision is lower for minimally stabilised compared to posterior stabilised prostheses within the first 3.5 years. Posterior stabilised without patellar resurfacing has the highest rate of revision (Table KT21 and Figure KT22). When the patella is resurfaced, there is no difference in the rate of revision of medial pivot prostheses compared to minimally stabilised prostheses. When the patella is not resurfaced, medial pivot knees have a higher rate of revision than minimally stabilised knees (Table KT21 and Figure KT23).

Outcomes related to the use of patellar resurfacing vary depending on the type of prosthesis used.

Patella Usage	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Patella Used	8058	275454	0.9 (0.9, 0.9)	2.2 (2.2, 2.3)	3.0 (2.9, 3.1)	4.6 (4.5, 4.7)	6.7 (6.4, 7.0)	7.0 (6.6, 7.4)
No Patella	11569	258748	1.1 (1.1, 1.2)	3.2 (3.1, 3.3)	4.2 (4.1, 4.3)	6.0 (5.9, 6.1)	8.0 (7.8, 8.3)	8.8 (8.4, 9.2)
TOTAL	19627	534202						

Table KT20 Cumulative Percent Revision of Primary Total Knee Replacement by Patella Usage (Primary Diagnosis OA)

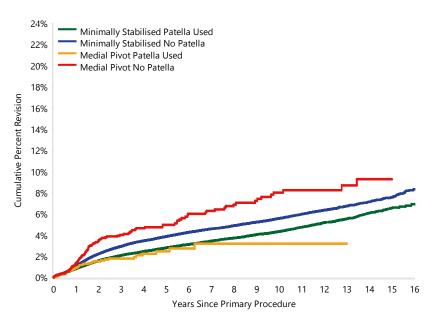
Figure KT21 Cumulative Percent Revision of Primary Total Knee Replacement by Patella Usage (Primary Diagnosis OA)


HR - adjusted for age and gender No Patella vs Patella Used Entire Period: HR=1.33 (1.29, 1.36),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Patella Used	275454	238631	174642	123650	40127	3194	599
No Patella	258748	235650	188679	144971	53231	4753	1262

Stability	Patella Usage	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Minimally Stabilised	Patella Used	4821	169427	0.8 (0.8, 0.9)	2.1 (2.0, 2.1)	2.8 (2.7, 2.9)	4.3 (4.2, 4.5)	6.5 (6.2, 6.9)	6.9 (6.4, 7.4)
	No Patella	8690	210018	1.0 (1.0, 1.1)	2.9 (2.9, 3.0)	3.9 (3.8, 4.0)	5.6 (5.4, 5.7)	7.5 (7.3, 7.8)	8.3 (7.9, 8.7)
Posterior Stabilised	Patella Used	3114	99747	1.0 (1.0, 1.1)	2.5 (2.4, 2.6)	3.4 (3.2, 3.5)	5.1 (4.9, 5.3)	6.6 (6.1, 7.0)	6.6 (6.1, 7.0)
	No Patella	2672	43033	1.6 (1.5, 1.8)	4.3 (4.2, 4.6)	5.7 (5.4, 5.9)	7.9 (7.6, 8.2)	10.5 (9.6, 11.5)	11.2 (9.9, 12.6)
Medial Pivot	Patella Used	56	4715	0.9 (0.7, 1.3)	1.8 (1.3, 2.4)	2.5 (1.7, 3.5)	3.2 (2.1, 4.9)		
	No Patella	144	4675	1.4 (1.0, 1.8)	4.0 (3.3, 4.9)	5.0 (4.1, 6.0)	8.0 (6.5, 9.8)	9.3 (7.3, 11.7)	
TOTAL		19497	531615						

 Table KT21
 Cumulative Percent Revision of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)


Figure KT22 Cumulative Percent Revision of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)

HR - adjusted for age and gender Minimally Stabilised Patella Used vs Minimally Stabilised No Patella Entire Period: HR=0.78 (0.75, 0.80),p<0.001 Minimally Stabilised No Patella vs Posterior Stabilised No Patella 0 - 1.5Yr: HR=0.64 (0.60, 0.68),p<0.001 1.5Yr - 2Yr: HR=0.72 (0.63, 0.82),p<0.001 2Yr - 3.5Yr: HR=0.67 (0.61, 0.73),p<0.001 3.5Yr - 4Yr: HR=0.57 (0.47, 0.69),p<0.001 4Yr+: HR=0.78 (0.72, 0.85),p<0.001 Minimally Stabilised Patella Used vs Posterior Stabilised Patella Used 0 - 2Yr: HR=0.82 (0.78, 0.87),p<0.001 2Yr - 2.5Yr: HR=0.74 (0.65, 0.83),p<0.001 2.5Yr - 3Yr: HR=0.86 (0.75, 0.99),p=0.035 3Yr - 3.5Yr: HR=0.80 (0.69, 0.94),p=0.005 3.5Yr - 4Yr: HR=0.91 (0.77, 1.08),p=0.296 4Yr - 4.5Yr: HR=0.88 (0.73, 1.06),p=0.169 4.5Yr+: HR=1.05 (0.97, 1.13),p=0.216 Posterior Stabilised Patella Used vs Posterior Stabilised No Patella Entire Period: HR=0.61 (0.58, 0.64),p<0.001

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Minimally Stabilised	Patella Used	169427	147740	109628	78942	29172	2703	496
	No Patella	210018	191512	153099	116636	44793	4267	1159
Posterior Stabilised	Patella Used	99747	86914	63411	43856	10755	474	102
	No Patella	43033	40283	33752	27081	7884	401	94

HR - adjusted for age and gender Minimally Stabilised Patella Used vs Minimally Stabilised No Patella Entire Period: HR=0.77 (0.75, 0.80),p<0.001 Minimally Stabilised No Patella vs

Medial Pivot No Patella Entire Period: HR=0.72 (0.61, 0.85),p<0.001

Minimally Stabilised Patella Used vs Medial Pivot Patella Used Entire Period: HR=1.13 (0.87, 1.47),p=0.360

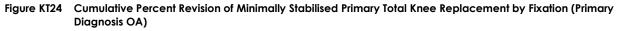
Medial Pivot Patella Used vs Medial Pivot No Patella Entire Period: HR=0.49 (0.36, 0.67),p<0.001

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Minimally Stabilise	ed Patella Used	169427	147740	109628	78942	29172	2703	496
	No Patella	210018	191512	153099	116636	44793	4267	1159
Medial Pivot	Patella Used	4715	2738	863	396	103	5	0
	No Patella	4675	2989	1184	795	428	72	7

Fixation

The effect of fixation varies depending on implant stability.

With a minimally stabilised prosthesis, there is no difference between cemented and hybrid fixation and both have a lower rate of revision compared to cementless fixation (Table KT22 and Figure KT24).


When a posterior stabilised knee is used, cemented fixation has a lower rate of revision compared to hybrid fixation and when compared to cementless fixation within the first 1.5 years. Hybrid fixation has a higher rate of revision compared to both cemented and cementless fixation (Table KT23 and Figure KT25). Cementing the tibial component gives the best outcome for minimally stabilised and medial pivot prostheses. Cementing both tibial and femoral components gives the best outcome for posterior stabilised prostheses.

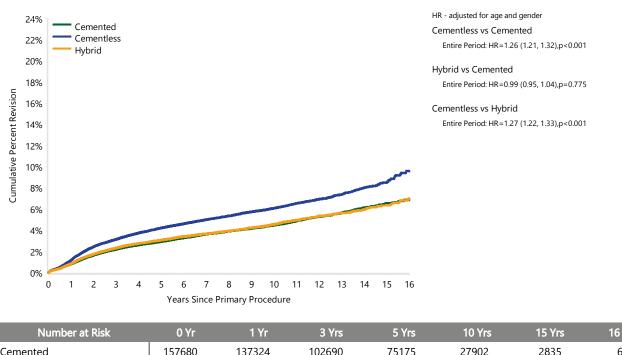
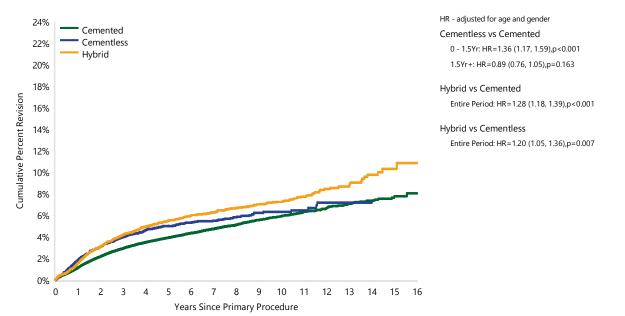

When a medial pivot prosthesis is used there is a similar outcome to minimally stabilised prostheses with respect to fixation. There is no difference between cemented and hybrid fixation and both have a lower rate of revision compared to cementless fixation (Table KT24 and Figure KT26).

Table KT22 Cumulative Percent Revision of Minimally Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	4712	157680	0.8 (0.8, 0.9)	2.2 (2.1, 2.3)	2.9 (2.9, 3.0)	4.5 (4.3, 4.6)	6.5 (6.2, 6.9)	6.9 (6.5, 7.3)
Cementless	4795	102625	1.2 (1.1, 1.2)	3.2 (3.0, 3.3)	4.2 (4.1, 4.4)	6.1 (5.9, 6.3)	8.5 (8.1, 8.9)	9.6 (8.9, 10.3)
Hybrid	3804	118721	0.8 (0.8, 0.9)	2.3 (2.2, 2.4)	3.1 (3.0, 3.2)	4.6 (4.4, 4.7)	6.4 (6.1, 6.7)	7.0 (6.4, 7.6)
TOTAL	13311	379026						

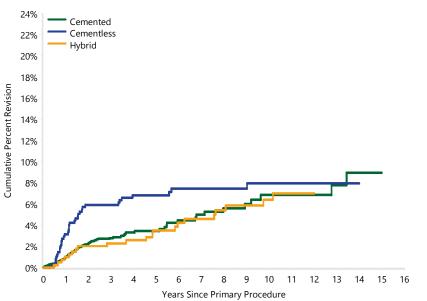
Note: Excluding cementless Genesis Oxinium and Profix Oxinium femoral prostheses



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	157680	137324	102690	75175	27902	2835	658
Cementless	102625	95177	78385	60395	22089	1754	451
Hybrid	118721	106395	81421	59789	23799	2381	546

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	4774	124375	1.1 (1.1, 1.2)	2.9 (2.8, 3.0)	3.9 (3.8, 4.1)	5.9 (5.8, 6.1)	7.8 (7.3, 8.3)	8.0 (7.3, 8.8)
Cementless	337	6947	1.9 (1.6, 2.2)	4.0 (3.5, 4.5)	5.0 (4.5, 5.6)	6.3 (5.6, 7.1)		
Hybrid	675	11458	1.6 (1.4, 1.8)	4.2 (3.8, 4.6)	5.5 (5.1, 6.0)	7.3 (6.7, 7.9)	10.3 (9.0, 11.8)	10.9 (9.3, 12.8)
TOTAL	5786	142780						

 Table KT23
 Cumulative Percent Revision of Posterior Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	124375	110276	83217	59991	15594	689	140
Cementless	6947	6351	5132	3930	769	12	2
Hybrid	11458	10570	8814	7016	2276	174	54

Fixation	N Revised		1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	144	8497	1.0 (0.8, 1.3)	2.8 (2.3, 3.4)	3.4 (2.8, 4.3)	6.9 (5.0, 9.3)	9.0 (6.0, 13.3)	
Cementless	35	483	3.2 (1.9, 5.2)	5.9 (4.1, 8.5)	6.8 (4.9, 9.5)	7.9 (5.7, 11.0)		
Hybrid	21	410	1.0 (0.4, 2.7)	2.3 (1.2, 4.4)	3.5 (2.1, 6.0)	6.4 (4.1, 9.9)		
TOTAL	200	9390						

Table KT24 Cumulative Percent Revision of Medial Pivot Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)

HR - adjusted for age and gender Cementless vs Cemented 0 - 6Mth: HR=0.56 (0.08, 4.10),p=0.567 6Mth - 2Yr: HR=3.11 (2.01, 4.79),p<0.001 2Yr+: HR=0.43 (0.19, 0.98),p=0.043

Hybrid vs Cemented

Entire Period: HR=0.95 (0.58, 1.54),p=0.822

Cementless vs Hybrid

0 - 9Mth: HR=2.91 (1.25, 6.80),p=0.013 9Mth - 2Yr: HR=2.76 (1.40, 5.44),p=0.003 2Yr+: HR=0.46 (0.19, 1.09),p=0.078

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Cemented	8497	4881	1263	547	197	42	6
Cementless	483	456	428	343	176	31	1
Hybrid	410	390	356	301	158	4	0

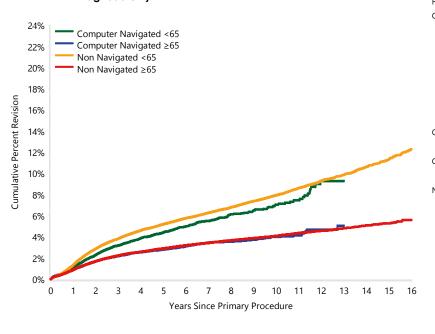
Computer Navigation

There have been 96,730 primary total knee replacement procedures reported to the Registry in which computer navigation was used. In 2016, computer navigation was used in 30.8% of all primary total knee replacement procedures.

Patients aged less than 65 years have a lower rate of revision when computer navigation is used. There is no difference in the rate of revision for the 65 years or older age group (Table KT25 and Figure KT27). However, there is a reduction in the rate of revision for navigated knee replacement due to loosening in both age groups (Figure KT28).

Image Derived Instrumentation (IDI)

There have been 20,931 primary total knee replacement procedures undertaken using IDI since 2009. In 2016, IDI was used in 10.4% of all primary total knee replacement procedures.


There is a lower rate of revision in the first three months when IDI is used compared to non IDI. From three months to 1.5 years this is reversed and there is a higher rate of revision. After this time, there is no difference in the rate of revision between IDI and non IDI (Table KT26 and Figure KT29).

The difference is age dependent and there is no difference in patients aged less than 65 years. However, there is an increased rate of revision for patients aged 65 years or older after three months (Table KT27 and Figure KT30).

Table KT25 Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation and Age (Primary Diagnosis OA)

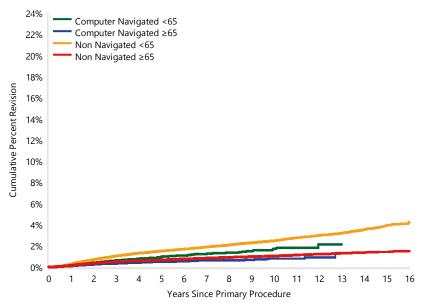

Navigation	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Computer Navigated		2582	96730	1.0 (0.9, 1.0)	2.6 (2.4, 2.7)	3.4 (3.3, 3.5)	5.1 (4.8, 5.4)		
	<65	1195	34089	1.1 (1.0, 1.2)	3.2 (3.0, 3.4)	4.4 (4.2, 4.7)	7.1 (6.5, 7.7)		
	≥65	1387	62641	0.9 (0.8, 1.0)	2.2 (2.1, 2.3)	2.8 (2.7, 3.0)	4.0 (3.7, 4.3)		
Non Navigated		17045	437472	1.0 (1.0, 1.1)	2.8 (2.7, 2.8)	3.7 (3.6, 3.7)	5.4 (5.3, 5.5)	7.4 (7.2, 7.6)	8.0 (7.7, 8.3)
	<65	8188	141524	1.4 (1.3, 1.4)	3.8 (3.7, 3.9)	5.2 (5.1, 5.3)	7.9 (7.7, 8.1)	11.3 (11.0, 11.7)	12.3 (11.7, 12.9)
	≥65	8857	295948	0.9 (0.8, 0.9)	2.2 (2.2, 2.3)	2.9 (2.8, 3.0)	4.1 (4.0, 4.2)	5.3 (5.1, 5.5)	5.6 (5.3, 5.9)
TOTAL		19627	534202						

Figure KT27 Cumulative Percent Revision of Primary Total Knee Replacement by Computer Navigation and Age (Primary Diagnosis OA)

Computer Navigated <65 vs Computer Navigated ≥65 0 - 3Mth: HR=1.10 (0.90, 1.35),p=0.367 3Mth - 9Mth: HR=1.26 (1.06, 1.50),p=0.010 9Mth - 1Yr: HR=1.54 (1.23, 1.92),p<0.001 1Yr - 2Yr: HR=1.44 (1.26, 1.63),p<0.001 2Yr - 2.5Yr: HR=1.98 (1.64, 2.40),p<0.001 2.5Yr - 3.5Yr: HR=1.60 (1.33, 1.93),p<0.001 3.5Yr+: HR=2.08 (1.82, 2.37),p<0.001 Computer Navigated ≥65 vs Non Navigated ≥65 Entire Period: HR=0.99 (0.93, 1.05),p=0.698 Computer Navigated <65 vs Non Navigated <65 Entire Period: HR=0.85 (0.80, 0.91),p<0.001 Non Navigated ≥65 vs Non Navigated <65 0 - 2Wk: HR=0.95 (0.75, 1.20),p=0.679 2Wk - 1Mth: HR=0.98 (0.83, 1.17),p=0.850 1Mth - 3Mth: HR=0.89 (0.77, 1.03),p=0.103 3Mth - 9Mth: HR=0.61 (0.56, 0.67),p<0.001 9Mth - 1.5Yr: HR=0.54 (0.50, 0.57),p<0.001 1.5Yr - 3Yr: HR=0.53 (0.50, 0.56),p<0.001 3Yr - 3.5Yr: HR=0.51 (0.45, 0.58),p<0.001 3.5Yr - 4.5Yr: HR=0.49 (0.44, 0.55),p<0.001 4.5Yr - 5Yr: HR=0.48 (0.40, 0.56),p<0.001 5Yr - 6.5Yr: HR=0.48 (0.43, 0.54),p<0.001 6.5Yr - 7Yr: HR=0.37 (0.29, 0.46),p<0.001 7Yr - 11Yr: HR=0.41 (0.37, 0.45),p<0.001 11Yr+: HR=0.33 (0.28, 0.39),p<0.001

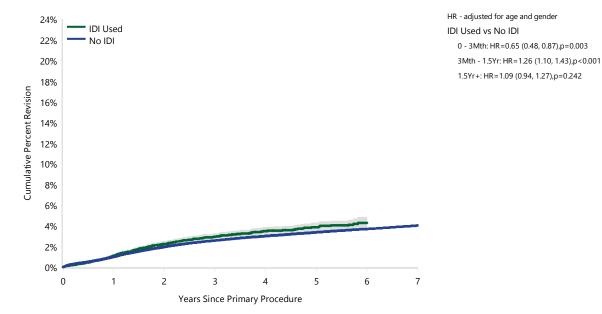
Figure KT28 Cumulative Percent Revision for Loosening of Primary Total Knee Replacement by Computer Navigation and Age (Primary Diagnosis OA)

HR - adjusted for gender

Computer Navigated <65 vs Computer Navigated ≥65 0 - 2.5Yr: HR=1.64 (1.33, 2.02),p<0.001 2.5Yr+: HR=2.47 (1.95, 3.12),p<0.001

Computer Navigated ≥65 vs Non Navigated ≥65 Entire Period: HR=0.73 (0.64, 0.83),p<0.001

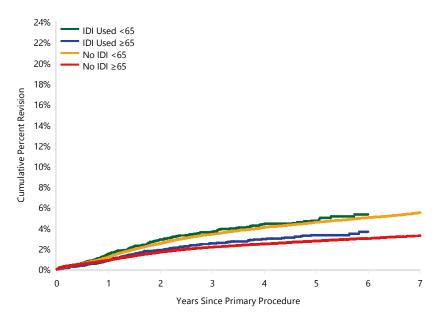
Computer Navigated <65 vs Non Navigated <65 Entire Period: HR=0.63 (0.55, 0.72),p<0.001


Non Navigated <65 vs Non Navigated \geq 65 0 - 1Mth: HR=0.82 (0.49, 1.35),p=0.426 1Mth - 6Mth: HR=1.75 (1.37, 2.25),p<0.001 6Mth - 9Mth: HR=1.90 (1.50, 2.41),p<0.001 9Mth - 1.5Yr: HR=2.18 (1.92, 2.47),p<0.001 1.5Yr - 2Yr: HR=2.00 (1.67, 2.39),p<0.001 2Yr - 3Yr: HR=2.16 (1.87, 2.50),p<0.001 3Yr+: HR=2.74 (2.51, 2.99),p<0.001

Number at Risk		0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Computer Navigate	d	96730	79680	51117	30907	3363	0	0
	<65	34089	28102	18327	11418	1284	0	0
	≥65	62641	51578	32790	19489	2079	0	0
Non Navigated		437472	394601	312204	237714	89995	7947	1861
	<65	141524	127436	100961	77521	30922	3142	759
	≥65	295948	267165	211243	160193	59073	4805	1102

IDI Usage	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
IDI Used	474	20931	1.1 (0.9, 1.3)	2.2 (2.0, 2.5)	2.9 (2.7, 3.2)	3.5 (3.2, 3.8)	3.9 (3.5, 4.3)	4.3 (3.8, 4.8)
No IDI	8263	321519	1.0 (0.9, 1.0)	1.9 (1.9, 2.0)	2.6 (2.5, 2.6)	3.0 (2.9, 3.1)	3.4 (3.3, 3.4)	3.7 (3.6, 3.8)
TOTAL	8737	342450						

Table KT26 Cumulative Percent Revision of Primary Total Knee Replacement since 2009 by IDI Usage (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
IDI Used	20931	15350	10842	7685	4819	2608	751
No IDI	321519	271171	222122	176743	135375	96671	61075

IDI Usage	Age	N Revised	N Total	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
IDI Used		474	20931	1.1 (0.9, 1.3)	2.2 (2.0, 2.5)	2.9 (2.7, 3.2)	3.5 (3.2, 3.8)	3.9 (3.5, 4.3)	4.3 (3.8, 4.8)
	<65	230	7890	1.5 (1.2, 1.8)	2.9 (2.5, 3.3)	3.6 (3.2, 4.2)	4.4 (3.8, 5.0)	4.7 (4.1, 5.4)	5.3 (4.5, 6.2)
	≥65	244	13041	0.8 (0.7, 1.0)	1.9 (1.6, 2.1)	2.5 (2.2, 2.9)	2.9 (2.5, 3.3)	3.3 (2.9, 3.8)	3.6 (3.0, 4.3)
No IDI		8263	321519	1.0 (0.9, 1.0)	1.9 (1.9, 2.0)	2.6 (2.5, 2.6)	3.0 (2.9, 3.1)	3.4 (3.3, 3.4)	3.7 (3.6, 3.8)
	<65	3812	109761	1.2 (1.1, 1.3)	2.5 (2.4, 2.6)	3.4 (3.3, 3.5)	4.0 (3.9, 4.2)	4.5 (4.4, 4.7)	5.0 (4.8, 5.2)
	≥65	4451	211758	0.9 (0.8, 0.9)	1.7 (1.6, 1.7)	2.1 (2.1, 2.2)	2.5 (2.4, 2.5)	2.7 (2.7, 2.8)	3.0 (2.9, 3.1)
TOTAL		8737	342450						

Table KT27 Cumulative Percent Revision of Primary Total Knee Replacement since 2009 by IDI Usage and Age (Primary Diagnosis OA)

Figure KT30 Cumulative Percent Revision of Primary Total Knee Replacement since 2009 by IDI Usage and Age (Primary Diagnosis OA)

HR - adjusted for gender IDI Used <65 vs IDI Used ≥65 Entire Period: HR=1.50 (1.25, 1.80),p<0.001 IDI Used ≥65 vs No IDI ≥65 0 - 3Mth: HR=0.65 (0.55, 0.77),p<0.001

3Mth - 1.5Yr: HR=1.22 (1.06, 1.40),p=0.004 1.5Yr+: HR=1.31 (1.15, 1.51),p<0.001

IDI Used <65 vs No IDI <65 Entire Period: HR=1.08 (0.95, 1.24),p=0.239

No IDI <65 vs No IDI ≥65 0 - 3Mth: HR=0.90 (0.79, 1.02),p=0.093 3Mth - 2Yr: HR=1.68 (1.58, 1.78),p<0.001 2Yr+: HR=1.89 (1.76, 2.03),p<0.001

N	lumber at Risk	0 Yr	1 Yr	2 Yrs	3 Yrs	4 Yrs	5 Yrs	6 Yrs
IDI Used		20931	15350	10842	7685	4819	2608	751
	<65	7890	5881	4213	3073	1925	1066	326
	≥65	13041	9469	6629	4612	2894	1542	425
No IDI		321519	271171	222122	176743	135375	96671	61075
	<65	109761	92770	76352	61429	47580	34657	22020
	≥65	211758	178401	145770	115314	87795	62014	39055

Bearing Surface

There are two tibial bearing surfaces used in primary total knee replacement procedures: cross-linked polyethylene (XLPE) and non cross-linked polyethylene (non XLPE). XLPE has been classified as ultrahigh molecular weight polyethylene that has been irradiated by high dose (≥50kGy) gamma or electron beam radiation. XLPE also includes 10,091 procedures that have used XLPE with the addition of an antioxidant. XLPE is now used more frequently (57.0% in 2016) than non XLPE.

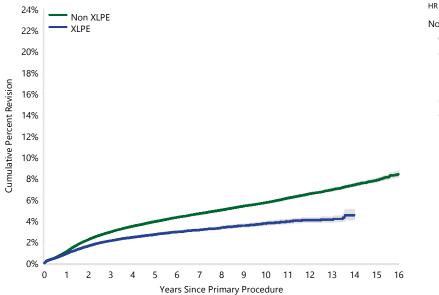
It has previously been reported that when comparing all prostheses using XLPE to those using non XLPE, the XLPE group has a lower rate of revision. This year's analysis again confirms that finding. Prostheses using XLPE have a cumulative percent revision rate of 3.7% at 10 years, compared to 5.7% for non XLPE (Table KT28 and Figure KT31). The major reason for this difference is a reduced cumulative incidence for loosening (0.7% at 10 years for XLPE compared to 1.5% for non XLPE) (Figure KT32).

The overall difference between XLPE and non XLPE is more evident in younger patients. The 10 year cumulative percent revision rate for those aged less than 65 years for XLPE is 5.2% and for non XLPE is 8.4%. For those aged 65 years or older the 10 year cumulative percent revision for XLPE is 2.9% and for non XLPE is 4.4% (Table KT29 and Figure KT33).

There is the potential for the difference between XLPE and non XLPE to be confounded by prosthesis use. To address this issue, an analysis was undertaken to compare the rate of revision for specific prostheses that have used both XLPE and non XLPE bearings in at least 500 procedures.

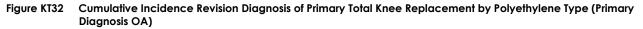
There were 16 prosthesis combinations in this analysis. The rate of revision was lower when XLPE was used for three of these prostheses. There was no difference in rate of revision for the remaining prostheses (Tables KT30 and KT31).

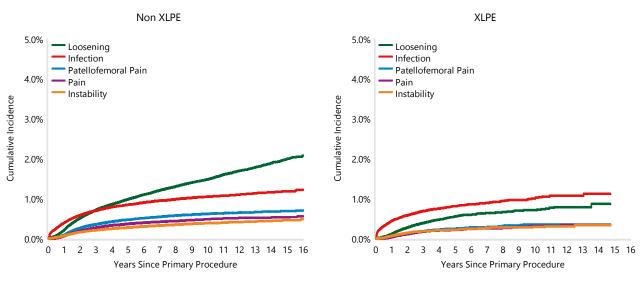
Prosthesis Specific (Antioxidant)


For the first time, an analysis comparing the rate of revision of XLPE and XLPE + antioxidant has been undertaken. The follow up for XLPE + antioxidant is relatively short (five years). XLPE + antioxidant has a lower rate of revision (Table KT32 and Figure KT34). However, there are only a small number of prostheses that use this bearing. The Attune was used in over 80% of these procedures. When the Attune is excluded from the analysis, there is no difference between XLPE and XLPE + antioxidant (Figure KT35).

Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Non XLPE	16332	370987	1.1 (1.0, 1.1)	2.9 (2.9, 3.0)	3.9 (3.8, 4.0)	5.7 (5.6, 5.8)	7.8 (7.6, 8.0)	8.4 (8.1, 8.7)
XLPE	3290	163042	0.9 (0.8, 0.9)	2.1 (2.0, 2.2)	2.7 (2.6, 2.8)	3.7 (3.5, 3.9)		
TOTAL	19622	534029						

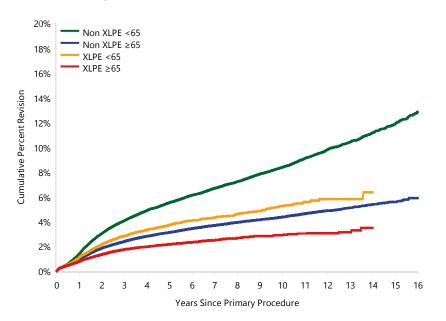
Table KT28 Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)


Note: Includes 10,091 procedures using XLPE + Antioxidant Excludes 173 procedures with unknown bearing surface


Figure KT31 Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)

HR - adjusted for age and gender Non XLPE vs XLPE 0 - 6Mth: HR=1.09 (1.00, 1.18),p=0.052 6Mth - 1Yr: HR=1.40 (1.28, 1.54),p<0.001 1Yr - 1.5Yr: HR=1.65 (1.50, 1.82),p<0.001 1.5Yr - 2Yr: HR=1.56 (1.39, 1.74),p<0.001 2Yr - 2.5Yr: HR=1.40 (1.23, 1.59),p<0.001 2.5Yr+: HR=1.73 (1.60, 1.86),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Non XLPE	370987	342318	283174	223427	86828	7941	1859
XLPE	163042	131797	80012	45078	6475	1	0



Polyethylene Type	Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Non XLPE	<65	7851	120129	1.4 (1.3, 1.5)	4.1 (3.9, 4.2)	5.5 (5.4, 5.7)	8.4 (8.2, 8.6)	11.9 (11.5, 12.3)	12.8 (12.3, 13.4)
	≥65	8481	250858	0.9 (0.9, 1.0)	2.4 (2.3, 2.5)	3.1 (3.1, 3.2)	4.4 (4.3, 4.5)	5.6 (5.4, 5.8)	5.9 (5.6, 6.2)
XLPE	<65	1529	55436	1.1 (1.0, 1.2)	2.8 (2.7, 3.0)	3.7 (3.5, 3.9)	5.2 (4.9, 5.6)		
	≥65	1761	107606	0.8 (0.7, 0.8)	1.7 (1.7, 1.8)	2.2 (2.1, 2.3)	2.9 (2.7, 3.1)		
TOTAL		19622	534029						

 Table KT29
 Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA)

Figure KT33 Cumulative Percent Revision of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA)

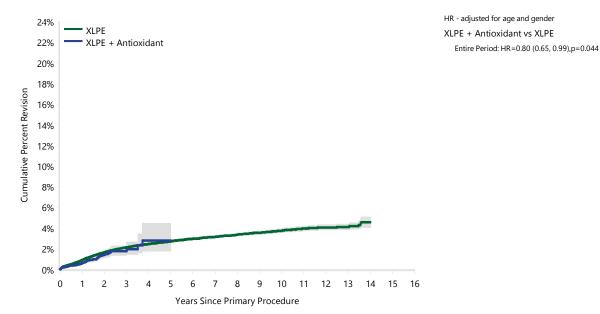
HR - adjusted for gender Non XLPE <65 vs Non XLPE \geq 65 0 - 3Mth: HR=1.07 (0.94, 1.20),p=0.301 3Mth - 9Mth: HR=1.60 (1.46, 1.75),p<0.001 9Mth - 2Yr: HR=1.83 (1.73, 1.93),p<0.001 2Yr - 3.5Yr: HR=1.85 (1.73, 1.98),p<0.001 3.5Yr - 4Yr: HR=2.21 (1.91, 2.55),p<0.001 4Yr - 6.5Yr: HR=2.01 (1.86, 2.18),p<0.001 6.5Yr+: HR=2.69 (2.49, 2.90),p<0.001 Non XLPE ≥65 vs XLPE ≥65 0 - 3Mth: HR=0.95 (0.83, 1.07),p=0.382 3Mth - 6Mth: HR=1.23 (1.02, 1.48),p=0.027 6Mth - 2Yr: HR=1.54 (1.42, 1.67).p<0.001 2Yr+: HR=1.59 (1.45, 1.74),p<0.001 Non XLPE <65 vs XLPE <65 0 - 9Mth: HR=1.16 (1.07, 1.27),p<0.001 9Mth - 1Yr: HR=1.58 (1.40, 1.78),p<0.001 1Yr - 1.5Yr: HR=1.57 (1.43, 1.72),p<0.001 1.5Yr - 2.5Yr: HR=1.54 (1.41, 1.67),p<0.001 2.5Yr - 3.5Yr: HR=1.59 (1.44, 1.76),p<0.001 3.5Yr - 6.5Yr: HR=1.75 (1.61, 1.90),p<0.001 6.5Yr+: HR=2.29 (2.09, 2.51),p<0.001 XLPE <65 vs XLPE ≥65 0 - 3Mth: HR=1.03 (0.90, 1.17),p=0.687 3Mth - 1Yr: HR=1.70 (1.52, 1.90),p<0.001 1Yr - 1.5Yr: HR=1.83 (1.59, 2.10),p<0.001

1.5Yr+: HR=1.88 (1.71, 2.06),p<0.001

Number	at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	10 Yrs	15 Yrs	16 Yrs
Non XLPE	<65	120129	110707	91679	73219	29865	3141	758
	≥65	250858	231611	191495	150208	56963	4800	1101
XLPE	<65	55436	44784	27572	15690	2326	0	0
	≥65	107606	87013	52440	29388	4149	1	0

(nary Diagnos								
Femoral/Tibial Combination	Polyethylene Type	N Revised	N Total	4 Yr	5 Yrs	8 Yrs	10 Yrs	12 Yrs	14 Yrs
Genesis II CR/Genesis II	Non XLPE	739	19793	3.0 (2.8, 3.3)	3.4 (3.1, 3.7)	4.4 (4.1, 4.7)	4.7 (4.3, 5.0)	5.1 (4.7, 5.6)	5.6 (5.1, 6.1)
	XLPE	20	1144	2.6 (1.5, 4.3)					
Genesis II Oxinium CR/Genesis II	Non XLPE	368	6171	3.8 (3.4, 4.3)	4.3 (3.8, 4.9)	5.8 (5.2, 6.5)	6.8 (6.1, 7.6)	8.2 (7.3, 9.2)	8.9 (7.8, 10.2)
	XLPE	30	1402	3.9 (2.6, 5.8)	3.9 (2.6, 5.8)				
Genesis II Oxinium PS/Genesis II	Non XLPE	662	11256	4.9 (4.5, 5.3)	5.4 (5.0, 5.9)	6.9 (6.4, 7.4)	7.7 (7.1, 8.4)	8.3 (7.6, 9.1)	
	XLPE	122	4265	3.9 (3.2, 4.7)	4.9 (3.9, 6.1)				
Genesis II PS/Genesis II	Non XLPE	571	14287	3.3 (3.0, 3.6)	3.7 (3.4, 4.1)	4.7 (4.3, 5.1)	5.2 (4.8, 5.7)	5.6 (5.1, 6.3)	6.2 (5.5, 7.0)
	XLPE	60	2166	4.3 (3.2, 5.6)	4.3 (3.2, 5.6)				
Legion CR/Genesis II	Non XLPE	44	1610	3.6 (2.6, 4.9)	3.7 (2.7, 5.1)				
	XLPE	30	1102	5.0 (3.2, 7.5)					
Legion Oxinium CR/Genesis II	Non XLPE	39	1499	2.8 (2.0, 3.9)	3.1 (2.2, 4.3)	3.4 (2.4, 4.9)			
	XLPE	20	1158	3.0 (1.9, 4.7)	3.0 (1.9, 4.7)				
Legion Oxinium PS/Genesis II	Non XLPE	173	4776	4.2 (3.6, 4.9)	4.9 (4.2, 5.8)	6.1 (4.9, 7.7)			
	XLPE	86	5036	3.1 (2.4, 3.9)	3.2 (2.5, 4.1)				
Legion PS/Genesis II	Non XLPE	34	1941	1.8 (1.2, 2.5)	2.0 (1.4, 2.9)				
	XLPE	37	1906	3.2 (2.3, 4.6)	3.2 (2.3, 4.6)				
Natural Knee II/Natural Knee II	Non XLPE	252	2865	2.4 (1.9, 3.1)	3.0 (2.5, 3.8)	4.9 (4.1, 5.8)	7.0 (6.1, 8.1)	9.8 (8.6, 11.2)	12.0 (10.6, 13.6)
	XLPE	105	3576	2.2 (1.8, 2.8)	2.5 (2.1, 3.1)	2.9 (2.4, 3.6)	3.3 (2.7, 4.0)	3.7 (3.0, 4.6)	4.6 (3.0, 6.9)
Nexgen CR Flex/Nexgen	Non XLPE	84	3733	2.1 (1.7, 2.7)	2.4 (1.9, 3.0)	2.7 (2.2, 3.4)	3.2 (2.5, 4.1)	3.2 (2.5, 4.1)	
	XLPE	711	38386	2.0 (1.9, 2.2)	2.3 (2.1, 2.4)	2.7 (2.5, 2.9)	3.0 (2.8, 3.3)	3.3 (3.0, 3.7)	
Nexgen CR/Nexgen	Non XLPE	199	5890	1.8 (1.5, 2.2)	2.0 (1.7, 2.4)	2.7 (2.3, 3.2)	3.1 (2.7, 3.7)	3.7 (3.2, 4.3)	4.3 (3.7, 5.0)
	XLPE	133	5081	1.9 (1.6, 2.3)	2.1 (1.7, 2.5)	2.6 (2.1, 3.1)	2.9 (2.5, 3.5)	3.2 (2.7, 3.9)	3.6 (3.0, 4.4)
Nexgen LPS Flex/Nexgen	Non XLPE	590	14815	2.7 (2.4, 3.0)	3.1 (2.9, 3.5)	4.4 (4.0, 4.8)	5.1 (4.7, 5.6)	5.9 (5.3, 6.5)	6.1 (5.4, 6.9)
	XLPE	388	15444	2.9 (2.6, 3.3)	3.3 (3.0, 3.7)	4.3 (3.8, 4.8)	4.6 (4.0, 5.2)		
PFC Sigma CR/PFC Sigma	Non XLPE	575	20412	2.2 (2.0, 2.4)	2.4 (2.2, 2.7)	3.0 (2.8, 3.3)	3.5 (3.2, 3.9)	4.2 (3.8, 4.6)	5.2 (4.5, 5.9)
	XLPE	24	2223	1.6 (1.1, 2.4)	1.6 (1.1, 2.4)				
Scorpio NRG PS/Series 7000	Non XLPE	18	504	2.4 (1.4, 4.2)	3.1 (1.9, 5.0)	3.1 (1.9, 5.0)			
	XLPE	124	3322	3.5 (2.9, 4.3)	4.0 (3.3, 4.8)	4.4 (3.7, 5.3)			
Triathlon CR/Triathlon	Non XLPE	253	9618	2.3 (2.0, 2.6)	2.5 (2.2, 2.8)	3.1 (2.7, 3.5)	3.5 (3.1, 4.0)		
	XLPE	921	50201	2.3 (2.1, 2.4)	2.5 (2.3, 2.7)	3.4 (3.0, 3.7)			
Triathlon PS/Triathlon	Non XLPE	174	3753	4.2 (3.6, 4.9)	4.6 (4.0, 5.4)	5.2 (4.5, 6.1)	5.8 (4.9, 6.8)		
	XLPE	149	5794	3.1 (2.6, 3.7)	3.5 (3.0, 4.2)	3.7 (3.1, 4.4)			
TOTAL		7735	265129						

Table KT30 Cumulative Percent Revision of Primary Total Knee Replacement by Prosthesis Combination and Polyethylene Type (Primary Diagnosis OA)


Table KT31 Hazard Ratios of XLPE vs Non XLPE in Primary Total Knee Replacement by Prosthesis Combination (Primary Diagnosis OA)

Femoral/Tibial Combination	Haza	rd Ratio	p-value
Genesis II CR/Genesis II	Entire Period	1.00 (0.64, 1.57)	0.994
Genesis II Oxinium CR/Genesis II	Entire Period	1.01 (0.69, 1.48)	0.950
Genesis II Oxinium PS/Genesis II	Entire Period	0.87 (0.71, 1.06)	0.177
Genesis II PS/Genesis II	Entire Period	1.26 (0.96, 1.65)	0.098
Legion CR/Genesis II	Entire Period	1.50 (0.93, 2.40)	0.094
Legion Oxinium CR/Genesis II	Entire Period	0.96 (0.55, 1.68)	0.894
Legion Oxinium PS/Genesis II	Entire Period	0.65 (0.50, 0.84)	0.001
Legion PS/Genesis II	Entire Period	1.58 (0.98, 2.56)	0.061
Natural Knee II/Natural Knee II	0-3.5Yr	0.98 (0.70, 1.37)	0.908
	3.5Yr – 9 Yr	0.26 (0.17, 0.41)	<0.001
	9Yr+	0.11 (0.04, 0.27)	<0.001
Nexgen CR Flex/Nexgen	Entire Period	0.88 (0.70, 1.11)	0.275
Nexgen CR/Nexgen	Entire Period	0.79 (0.63, 0.98)	0.35
Nexgen LPS Flex/Nexgen	0-6Mth	1.37 (1.00, 1.88)	0.050
	6Mth – 1.5Yr	0.81 (0.62, 1.06)	0.119
	1.5Yr – 2Yr	1.13 (0.75, 1.71)	0.558
	2Yr – 2.5Yr	1.51 (0.98, 2.32)	0.059
	2.5Yr+	0.87 (0.70, 1.09)	0.222
PFC Sigma CR/PFC Sigma	Entire Period	0.80 (0.53, 1.20)	0.278
Scorpio NRG PS/Series 7000	Entire Period	1.32 (0.78, 2.23)	0.306
Triathlon CR/Triathlon	Entire Period	1.02 (0.88, 1.18)	0.796
Triathlon PS/Triathlon	Entire Period	0.72 (0.57, 0.90)	0.003

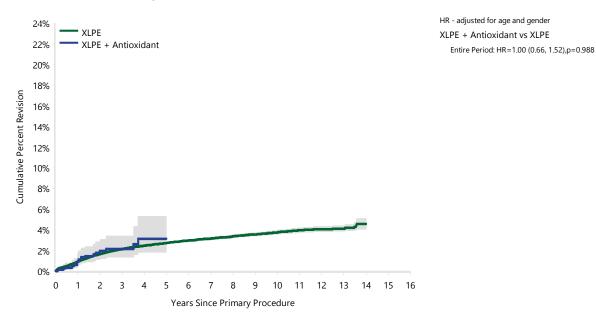

Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	4 Yrs	5 Yrs	7 Yrs	10 Yrs
XLPE	3202	152951	0.9 (0.9, 1.0)	2.1 (2.0, 2.2)	2.4 (2.4, 2.5)	2.7 (2.6, 2.8)	3.1 (3.0, 3.3)	3.7 (3.5, 3.9)
XLPE + Antioxidant	88	10091	0.6 (0.4, 0.8)	1.8 (1.4, 2.3)	2.8 (1.7, 4.5)	2.8 (1.7, 4.5)		
TOTAL	3290	163042						

Table KT32 Cumulative Percent Revision of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	4 Yrs	5 Yrs	7 Yrs	10 Yrs
XLPE	152951	126087	79503	60736	44971	21951	6475
XLPE + Antioxidant	10091	5710	509	161	107	0	0

Figure KT35 Cumulative Percent Revision of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA, Excluding Attune)

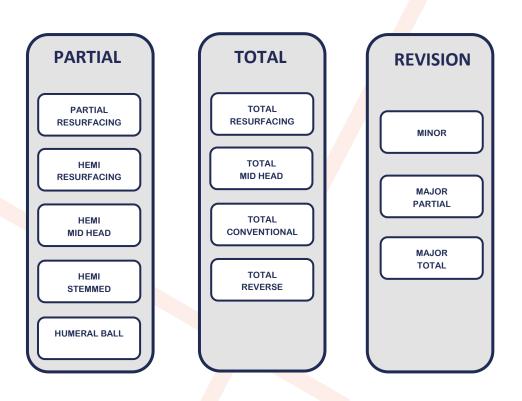
Number at Risk	0 Yr	1 Yr	3 Yrs	4 Yrs	5 Yrs	7 Yrs	10 Yrs
XLPE	152951	126087	79503	60736	44971	21951	6475
XLPE + Antioxidant	1838	969	279	161	107	0	0

Shoulder Replacement

Shoulder Replacement

CATEGORIES OF SHOULDER REPLACEMENT

The Registry groups shoulder replacement into three broad categories: primary partial, primary total and revision shoulder replacement.


A primary replacement is an initial procedure undertaken on a joint and involves replacing either part (partial) or all (total) of the articular surface.

Primary partial and primary total shoulder replacements are further sub-categorised into classes depending on the type of prosthesis used. Partial shoulder classes include: partial resurfacing, hemi resurfacing, hemi mid head, hemi stemmed and humeral ball replacement. Total shoulder classes include: total resurfacing, total mid head, total conventional and total reverse shoulder replacement. Definitions for each of these are detailed in the subsequent sections.

Revision shoulder replacements are reoperations of previous shoulder replacements where one or more of the prosthetic components are replaced, removed, or another component is added. Revision procedures include re-operations of primary partial, primary total, or previous revision procedures.

Shoulder revision procedures are subcategorised into three classes: minor, major partial and major total shoulder replacement.

SHOULDER REPLACEMENT

USE OF SHOULDER REPLACEMENT

This report is an analysis of 38,265 shoulder replacement procedures reported to the Registry with a procedure date up to and including 31 December 2016. This is an additional 5,859 shoulder procedures since the last report.

Registry shoulder data collection commenced in 2004 and full national collection was implemented by 2008.

The number of shoulder replacement procedures undertaken in 2016 increased by 569 (11.1%) compared to the previous year and by 115.5% since 2008.

Shoulder replacement procedures increased by 11.1% in 2016 and increased by 115.5% since 2008.

When considering all shoulder replacement procedures currently recorded by the Registry, primary total shoulder replacement is the most common category (73.7%), followed by primary partial (16.2%) and revision procedures (10.1%) (Table S1).

Table S1 Number of Shoulder Replacements

Shoulder Category	Number	Percent
Partial	6191	16.2
Total	28193	73.7
Revision	3881	10.1
TOTAL	38265	100.0

The proportion of total shoulder replacements has increased from 57.6% in 2008 to 84.7% in 2016. Since 2008, partial shoulder replacement has decreased from 32.6% to 6.2% in 2016. In 2008, the proportion of revision procedures was 9.8%. This peaked at 10.8% in 2012 and 2015. In 2016, the proportion of revision procedures has declined to 9.1%. This equates to 96 less revision procedures in 2016 than would have been expected if the proportion of revision procedures had remained at the peak of 10.8% (Figure S1).

The proportion of revision procedures of 9.1% equates to 96 fewer revision procedures in 2016 than if the proportion of revision procedures had remained at 10.8%.

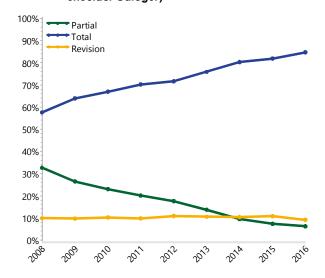


Figure S1 Proportion of Shoulder Replacement by Shoulder Category

ASA SCORE AND BMI

Data is reported on shoulder replacement procedures for both the American Society of Anaesthesiologists - Physical Status Classification (ASA score) and Body Mass Index (BMI). The Registry commenced collecting ASA score in 2012 and BMI data in 2015.

There is ASA score data on 17,146 procedures and BMI data on 8,153 shoulder replacement procedures.

In 2016, the ASA score is reported in 97.4% of procedures and BMI is reported in 80.6% of shoulder replacement procedures.

In 2016, the percentage of procedures where the ASA score was reported for primary partial shoulders is 95.7%, primary total shoulder 97.5% and revision shoulder replacement 97.3%. There is some variation in reporting of BMI based on procedure type. BMI is reported for 67.3% of primary partial shoulders, 81.8% of primary total shoulders and 79.3% of revision shoulder replacements.

In the future, this data will be used to risk adjust in a range of analyses.

ASA SCORE

There are five ASA score classifications (https://www.asahq.org/resources/clinicalinformation/asa-physical-status-classificationsystem):

- 1. A normal healthy patient.
- 2. A patient with mild systemic disease.
- 3. A patient with severe systemic disease.
- 4. A patient with severe systemic disease that is a constant threat to life.
- 5. A moribund patient who is not expected to survive without the operation.

Overall, in 92.0% of procedures, patients have an ASA score of 2 or 3, 5.1% have a score of 1 and 2.9% have a score of 4. In three procedures, patients have a score of 5.

There is a difference depending on the class of shoulder replacement. Revision shoulder replacement procedures have a higher proportion of patients with an ASA score of 3 (53.2%) compared to primary partial shoulder replacement (43.8%), or total shoulder replacement (45.4%) (Table S1).

BMI

BMI for adults is classified by the World Health Organisation into six main categories (http://apps.who.int/bmi/index.jsp?introPage=i ntro_3.html):

1.	Underweight	<18.50
2.	Normal	18.50 - 24.99
3.	Pre-obese	25.00 - 29.99
4.	Obese Class 1	30.00 - 34.99
5.	Obese Class 2	35.00 - 39.99
6.	Obese Class 3	≥40.00

For all shoulder replacements, the majority of procedures are undertaken in patients who are pre-obese or obese class 1 (61.3%). There is a higher proportion of primary total shoulder replacement procedures where the patients are pre-obese or obese class 1 (61.8%), compared to partial shoulder replacement (59.2%), and revision shoulder replacement (58.1%) (Table S2).

There is a gender difference, with a higher proportion of females in obese categories for all procedure groups (Figure S2).

Table S2 ASA Score by Shoulder Category

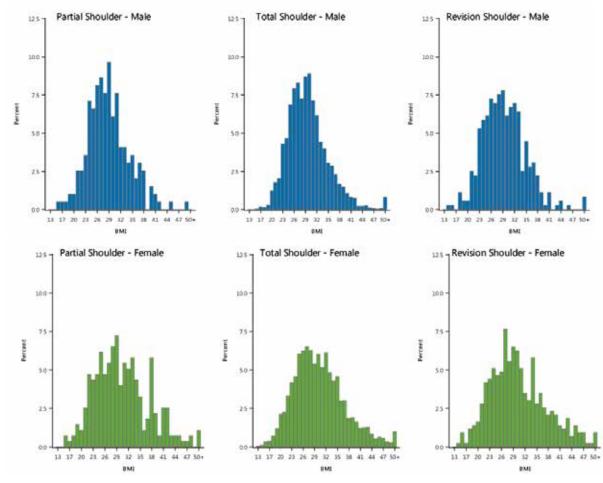

	Partial		Т	Total		Revision		TAL
ASA Score	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%
1	133	9.4	669	4.8	68	3.9	870	5.1
2	608	42.8	6592	47.1	675	39.1	7875	45.9
3	622	43.8	6355	45.4	919	53.2	7896	46.1
4	57	4.0	379	2.7	66	3.8	502	2.9
5			3	0.0			3	0.0
TOTAL	1420	100.0	13998	100.0	1728	100.0	17146	100.0

Table S3 BMI Category for Shoulder Replacement by Shoulder Category

	Partial		T	Total		Revision		TAL
BMI Category	Ν	Col%	Ν	Col%	Ν	Col%	Ν	Col%
Underweight	6	1.3	58	0.8	10	1.3	74	0.9
Normal	89	18.8	1144	16.6	152	19.2	1385	17.0
Pre-obese	163	34.5	2331	33.8	254	32.2	2748	33.7
Obese Class 1	117	24.7	1932	28.0	205	25.9	2254	27.6
Obese Class 2	61	12.9	907	13.2	106	13.4	1074	13.2
Obese Class 3	37	7.8	518	7.5	63	8.0	618	7.6
TOTAL	473	100.0	6890	100.0	790	100.0	8153	100.0

Note: BMI has not been presented for patients aged 19 years or less

Figure S2 BMI Distribution by Gender and Shoulder Category

Note: BMI has not been presented for patients aged 19 years or less

Primary Partial Shoulder Replacement

CLASSES OF PARTIAL SHOULDER REPLACEMENT

The Registry sub-categorises primary partial shoulder replacement into four main classes. These are defined by the type of prosthesis used.

Partial resurfacing involves the use of one or more button prostheses to replace part of the natural articulating surface, on one or both sides of the shoulder joint.

Hemi resurfacing involves the use of a humeral prosthesis that replaces the humeral articular surface only, without resecting the head. Hemi mid head involves resection of part of the humeral head and replacement with a cone stemmed humeral head prosthesis.

Hemi stemmed involves the resection of the humeral head and replacement with a stemmed humeral prosthesis and humeral head prosthesis.

There is a fifth class of partial shoulder replacement reported to the Registry. This is a spherical non-stemmed humeral head prosthesis referred to as the Humeral Ball. It is used following partial resection of the humeral head. Only two procedures using this device have been reported to the Registry. Both of these procedures have now been revised.

USE OF PARTIAL SHOULDER REPLACEMENT

There have been 6,191 primary partial shoulder replacements reported to the Registry up to 31 December 2016. This is an additional 379 procedures compared to the number reported last year.

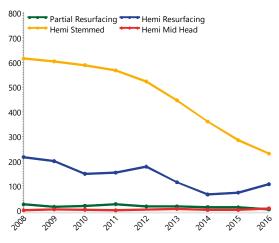

The most common class of primary partial shoulder replacement is hemi stemmed. This accounts for 74.2% of all partial shoulder replacements, followed by hemi resurfacing (22.7%), partial resurfacing (2.6%) and hemi mid head (0.5%) (Table SP1).

Table SP1 Primary Partial Shoulder Replacement by Class

Shoulder Class	Number	Percent
Partial Resurfacing	159	2.6
Hemi Resurfacing	1405	22.7
Hemi Stemmed	4594	74.2
Hemi Mid Head	33	0.5
TOTAL	6191	100.0

The use of the two main classes of partial shoulder replacement has declined over recent years. The number of hemi resurfacing procedures decreased from 178 in 2012 to 107 in 2016. The number of hemi stemmed procedures decreased from 523 in 2012 to 231 in 2016 (Figure SP1).

Figure SP1 Primary Partial Shoulder Replacement by Class

Primary partial shoulder replacement is more common in females (65.0%). However, there is gender variation depending on the class of primary partial shoulder replacement. The proportions of primary partial shoulder replacement for females are: hemi stemmed (73.3%), hemi mid head (54.5%), hemi resurfacing (43.3%) and partial resurfacing (21.4%) (Table SP2).

Most patients are aged 65 years or older (65.6%). The proportion of patients in this age group varies depending on the class of primary partial shoulder replacement: hemi stemmed (71.3%), hemi resurfacing (52.4%), hemi mid head (48.5%) and partial resurfacing (21.4%) (Table SP3).

Overall, males undergoing a partial shoulder replacement are younger (mean age 62.2 years compared to 71.7 years for females) (Table SP4).

The most common primary diagnoses are fracture (45.8%) and osteoarthritis (39.9%) (Table SP5).

The five year cumulative percent revision varies depending on class. Partial resurfacing and

hemi mid head have only been used in small numbers (159 and 33, respectively). This makes any assessment of comparative performance difficult. However, there is a clear difference in the two more commonly used classes. These devices have longer follow up and the cumulative percent revision at nine years for hemi resurfacing is greater than for hemi stemmed replacement (15.1% compared to 10.5%) (Table SP6 and Figure SP2).

When the diagnosis of osteoarthritis is considered, hemi resurfacing has a higher rate of revision compared to hemi stemmed after 2.5 years (Table SP7 and Figure SP3).

Table SP2 Primary Partial Shoulder Replacement by Gender and Class

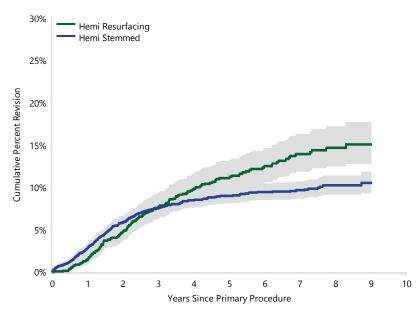
	Male	•	Female	
Shoulder Class	N	Row%	Ν	Row%
Partial Resurfacing	125	78.6	34	21.4
Hemi Resurfacing	796	56.7	609	43.3
Hemi Stemmed	1228	26.7	3366	73.3
Hemi Mid Head	15	45.5	18	54.5
TOTAL	2164	35.0	4027	65.0

Table SP3 Primary Partial Shoulder Replacement by Age and Class

	<55		55-	55-64		65-74		≥75	
Shoulder Class	Ν	Row%	Ν	Row%	Ν	Row%	Ν	Row%	
Partial Resurfacing	111	69.8	14	8.8	18	11.3	16	10.1	
Hemi Resurfacing	281	20.0	387	27.5	436	31.0	301	21.4	
Hemi Stemmed	432	9.4	886	19.3	1388	30.2	1888	41.1	
Hemi Mid Head	9	27.3	8	24.2	11	33.3	5	15.2	
TOTAL	833	13.5	1295	20.9	1853	29.9	2210	35.7	

Table SP4 Primary Partial Shoulder Replacement by Age and Gender

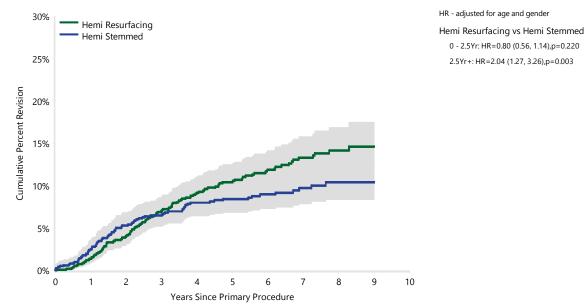
Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	2164	35.0%	14	93	64	62.2	14.5
Female	4027	65.0%	13	101	73	71.7	11.2
TOTAL	6191	100.0%	13	101	70	68.4	13.2


Table SP5 Primary Partial Shoulder Replacement by Primary Diagnosis and Gender

	Male		Fem	ale	TOTAL	
Primary Diagnosis	N	Col%	N	Col%	Ν	Col%
Fracture	615	28.4	2222	55.2	2837	45.8
Osteoarthritis	1165	53.8	1304	32.4	2469	39.9
Rotator Cuff Arthropathy	114	5.3	176	4.4	290	4.7
Osteonecrosis	72	3.3	107	2.7	179	2.9
Instability	98	4.5	56	1.4	154	2.5
Tumour	70	3.2	56	1.4	126	2.0
Rheumatoid Arthritis	18	0.8	91	2.3	109	1.8
Other Inflammatory Arthritis	10	0.5	15	0.4	25	0.4
Osteochondritis Dissecans	2	0.1	•	•	2	0.0
TOTAL	2164	100.0	4027	100.0	6191	100.0

Note: Instability includes instability, dislocation and Hills-Sachs Defect

Shoulder Category	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Partial Resurfacing	6	159	0.6 (0.1, 4.5)	1.3 (0.3, 5.2)	1.3 (0.3, 5.2)	5.5 (2.2, 13.8)		
Hemi Resurfacing	152	1405	1.5 (1.0, 2.3)	7.7 (6.3, 9.3)	11.1 (9.4, 13.1)	13.9 (11.9, 16.2)	15.1 (12.8, 17.7)	
Hemi Stemmed	364	4594	2.9 (2.4, 3.4)	7.6 (6.8, 8.4)	9.0 (8.1, 10.0)	9.7 (8.7, 10.7)	10.5 (9.3, 11.8)	
Hemi Mid Head	5	33	3.8 (0.6, 24.3)	24.0 (10.6, 48.9)	24.0 (10.6, 48.9)			
TOTAL	527	6191						


HR - adjusted for age and gender Hemi Resurfacing vs Hemi Stemmed 0 - 1Yr: HR=0.48 (0.30, 0.77),p=0.002 1Yr - 1.5Yr: HR=1.16 (0.75, 1.80),p=0.509 1.5Yr - 2Yr: HR=0.75 (0.41, 1.39),p=0.368 2Yr+: HR=2.04 (1.54, 2.70),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Hemi Resurfacing	1405	1271	1044	715	418	105	17
Hemi Stemmed	4594	4059	3031	1986	1012	204	23

Shoulder Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Hemi Resurfacing	125	1225	1.4 (0.8, 2.2)	7.0 (5.6, 8.7)	10.4 (8.7, 12.5)	13.3 (11.2, 15.8)	14.6 (12.2, 17.5)	
Hemi Stemmed	91	1161	2.5 (1.7, 3.6)	6.5 (5.2, 8.2)	8.4 (6.8, 10.4)	9.7 (7.9, 11.9)	10.4 (8.4, 12.9)	
TOTAL	216	2386						

Table SP7 Cumulative Percent Revision of Primary Partial Shoulder Replacement by Class (Primary Diagnosis OA)

Figure SP3 Cumulative Percent Revision of Primary Partial Shoulder Replacement by Class (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Hemi Resurfacing	1225	1106	909	616	365	97	14
Hemi Stemmed	1161	1049	806	582	321	74	6

PRIMARY PARTIAL RESURFACING SHOULDER REPLACEMENT

DEMOGRAPHICS AND OUTCOMES

There have been 159 primary partial resurfacing shoulder replacement procedures reported to the Registry. This is an additional 10 procedures compared to the previous report.

This procedure is undertaken more commonly in males (78.6%). The mean age for males is 40.2 years compared to 60.1 years for females (Table SP8).

The most common primary diagnosis is instability (48.4%), followed by osteoarthritis (39.6%) (Table SP9).

The cumulative percent revision at seven years is 5.5% (Table SP6). Of the six revisions, four were for glenoid erosion and two were for instability/dislocation. All were revised to a total conventional shoulder replacement.

Table SP8 Primary Partial Resurfacing Shoulder Replacement by Age and Gender

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	125	78.6%	14	87	37	40.2	18.0
Female	34	21.4%	17	88	64	60.1	18.5
TOTAL	159	100.0%	14	88	43	44.5	19.8

Table SP9 Primary Partial Resurfacing Shoulder Replacement by Primary Diagnosis and Gender

	Male		Fem	ale	TOTAL	
Primary Diagnosis	N	Col%	Ν	Col%	N	Col%
Instability	65	52.0	12	35.3	77	48.4
Osteoarthritis	45	36.0	18	52.9	63	39.6
Fracture	8	6.4	2	5.9	10	6.3
Osteonecrosis	2	1.6	2	5.9	4	2.5
Osteochondritis Dissecans	2	1.6			2	1.3
Rotator Cuff Arthropathy	2	1.6			2	1.3
Tumour	1	0.8		•	1	0.6
TOTAL	125	100.0	34	100.0	159	100.0

Note: Instability includes instability, dislocation and Hill-Sachs Defect

PRIMARY HEMI RESURFACING SHOULDER REPLACEMENT

DEMOGRAPHICS

There have been 1,405 primary hemi resurfacing shoulder replacements reported to the Registry. This is an additional 113 procedures compared to the previous report. The use of primary hemi resurfacing has declined by 50.7% since 2008.

This procedure is more common in males (56.7%). The mean age is 61.3 years for males and 68.5 years for females (Table SP10).

Osteoarthritis is the most common primary diagnosis (87.2%). The range of diagnoses is similar for males and females (Table SP11).

The three most used prostheses in 2016 were the PyroTITAN, Copeland and Global CAP (Table \$P12).

Table SP10 Primary Hemi Resurfacing Shoulder Replacement by Age and Gender

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	796	56.7%	19	90	62	61.3	12.0
Female	609	43.3%	27	93	70	68.5	11.2
TOTAL	1405	100.0%	19	93	65	64.4	12.2

Table SP11 Primary Hemi Resurfacing Shoulder Replacement by Primary Diagnosis and Gender

	Male		Fen	nale	TOTAL	
Primary Diagnosis	N	Col%	N	Col%	Ν	Col%
Osteoarthritis	698	87.7	527	86.5	1225	87.2
Rotator Cuff Arthropathy	49	6.2	34	5.6	83	5.9
Osteonecrosis	16	2.0	17	2.8	33	2.3
Rheumatoid Arthritis	7	0.9	16	2.6	23	1.6
Instability	13	1.6	5	0.8	18	1.3
Fracture	10	1.3	4	0.7	14	1.0
Other Inflammatory Arthritis	3	0.4	6	1.0	9	0.6
TOTAL	796	100.0	609	100.0	1405	100.0

Note: Instability includes instability and dislocation

Table SP12 Most Used Humeral Head Prostheses in Primary Hemi Resurfacing Shoulder Replacement

2008	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
124 Copeland	35 Copeland	31 Copeland	26 Copeland	81 PyroTITAN
45 Global CAP	33 PyroTITAN	19 Global CAP	21 PyroTITAN	14 Copeland
34 SMR	19 Global CAP	9 SMR	16 Global CAP	8 Global CAP
11 Aequalis	14 Aequalis	4 Aequalis	6 SMR	4 SMR
2 Epoca RH	14 SMR	Custom Made (Copeland)	4 Aequalis	
1 Buechel-Pappas		1 Epoca RH		
Most Used				
217 (6) 100.0%	115 (5) 100.0%	65 (6) 100.0%	73 (5) 100.0%	107 (4) 100.0%

OUTCOME FOR ALL DIAGNOSES

Reason for Revision

The main reasons for revision of hemi resurfacing shoulder replacement are glenoid erosion (25.7%), pain (23.7%), rotator cuff insufficiency (13.8%) and loosening (11.2%) (Table SP13 and Figure SP4). There were three reported humeral head breakages. All of them were reported in the PyroTITAN prosthesis. In addition, a further three breakages of this prosthesis were associated with loosening.

Type of Revision

The most common type of revision is to a total shoulder replacement (90.1%). Of these, 72 (52.6%) were revised to a total reverse shoulder and 65 (47.5%) to a total conventional shoulder replacement (Table SP14).

OUTCOME FOR OSTEOARTHRITIS

Age and Gender

Patients aged 75 years or older have a lower rate of revision after 3.5 years compared to patients aged less than 55 years (Table SP15 and Figure SP5).

Gender is not a risk factor for revision (Table SP16 and Figure SP6).

The outcomes of the most commonly used prostheses are listed in Table SP17.

Glenoid erosion or pain are the reasons for 49% of all hemi resurfacing shoulder revisions.

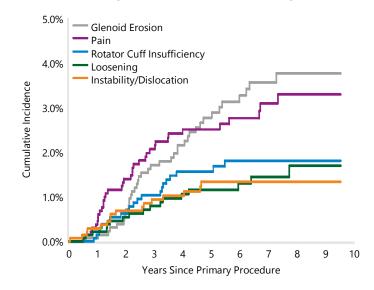
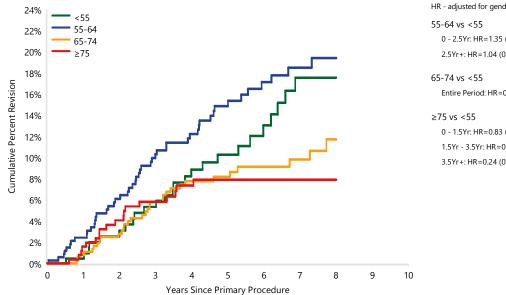

Reason for Revision	Number	Percent
Glenoid Erosion	39	25.7
Pain	36	23.7
Rotator Cuff Insufficiency	21	13.8
Loosening	17	11.2
Instability/Dislocation	16	10.5
Lysis	5	3.3
Infection	4	2.6
Implant Breakage Head	3	2.0
Malposition	2	1.3
Incorrect Sizing	2	1.3
Fracture	2	1.3
Metal Related Pathology	2	1.3
Arthrofibrosis	1	0.7
Osteonecrosis	1	0.7
Implant Breakage Humeral	1	0.7
TOTAL	152	100.0

Table SP13 Primary Hemi Resurfacing Shoulder Replacement by Reason for Revision

Table SP14 Primary Hemi Resurfacing Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Humeral/Glenoid	137	90.1
Glenoid Component	6	3.9
Humeral Component	6	3.9
Removal of Prostheses	1	0.7
Reoperation	1	0.7
Head Only	1	0.7
TOTAL	152	100.0

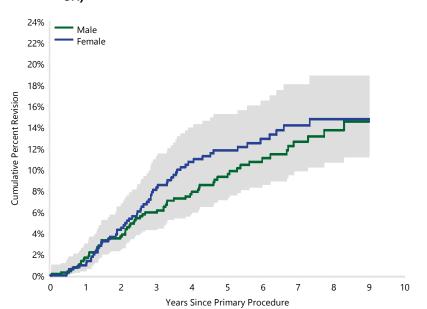

Figure SP4 Cumulative Incidence Revision Diagnosis of Primary Hemi Resurfacing Shoulder Replacement (All Diagnoses)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	26	231	0.5 (0.1, 3.3)	5.3 (2.9, 9.7)	10.3 (6.6, 15.9)	17.6 (11.9, 25.5)		
55-64	49	341	2.4 (1.2, 4.8)	10.3 (7.4, 14.4)	14.9 (11.2, 19.6)	18.5 (14.1, 24.1)		
65-74	32	390	0.8 (0.3, 2.5)	5.8 (3.8, 8.9)	8.2 (5.7, 11.8)	9.8 (6.9, 13.9)		
≥75	18	263	1.6 (0.6, 4.2)	5.8 (3.5, 9.7)	7.9 (5.0, 12.3)	7.9 (5.0, 12.3)		
TOTAL	125	1225						

Table SP15 Cumulative Percent Revision of Primary Hemi Resurfacing Shoulder Replacement by Age (Primary Diagnosis OA)

HR - adjusted for gender
55-64 vs <55
0 - 2.5Yr: HR=1.35 (0.73, 2.49),p=0.345
2.5Yr+: HR=1.04 (0.57, 1.89),p=0.897

Entire Period: HR=0.61 (0.36, 1.04),p=0.070


0 - 1.5Yr: HR=0.83 (0.34, 2.03),p=0.682 1.5Yr - 3.5Yr: HR=0.47 (0.19, 1.14),p=0.093 3.5Yr+: HR=0.24 (0.07, 0.82),p=0.023

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	231	196	167	115	59	21	3
55-64	341	304	246	165	103	26	6
65-74	390	359	300	203	123	37	4
≥75	263	247	196	133	80	13	1

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	65	698	1.7 (0.9, 3.0)	6.0 (4.3, 8.2)	9.3 (7.1, 12.1)	12.6 (9.9, 16.2)	14.6 (11.2, 18.8)	
Female	60	527	1.0 (0.4, 2.3)	8.3 (6.1, 11.2)	11.8 (9.1, 15.2)	14.2 (11.1, 18.1)	14.8 (11.5, 18.9)	
TOTAL	125	1225						

 Table SP16
 Cumulative Percent Revision of Primary Hemi Resurfacing Shoulder Replacement by Gender (Primary Diagnosis OA)

Figure SP6 Cumulative Percent Revision of Primary Hemi Resurfacing Shoulder Replacement by Gender (Primary Diagnosis OA)

HR - adjusted for age Female vs Male Entire Period: HR=1.39 (0.95, 2.02),p=0.087

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	698	613	513	331	198	55	8
Female	527	493	396	285	167	42	6

Table SP17	Cumulative Percent Revision of Primary Hemi Resurfacing Shoulder Replacement by Humeral Head (Primary
	Diagnosis OA)

Humeral Head	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	10	78	1.3 (0.2, 8.9)	9.4 (4.6, 18.7)	11.1 (5.7, 21.1)	19.4 (9.8, 36.2)		
Copeland	50	531	1.5 (0.8, 3.0)	5.9 (4.1, 8.3)	9.1 (6.9, 12.2)	10.7 (8.1, 14.0)	11.7 (8.9, 15.4)	
Global CAP	25	205	0.5 (0.1, 3.5)	8.8 (5.5, 14.0)	12.1 (8.1, 18.1)	13.8 (9.3, 20.1)		
PyroTITAN	12	242	2.4 (1.0, 5.8)	5.8 (3.1, 10.6)				
SMR	23	146	0.0 (0.0, 0.0)	6.7 (3.5, 12.5)	13.8 (8.8, 21.3)	22.1 (14.9, 32.0)		
Other (3)	5	23	4.3 (0.6, 27.1)	17.4 (6.9, 39.9)	17.4 (6.9, 39.9)	23.3 (10.3, 47.7)	23.3 (10.3, 47.7)	
TOTAL	125	1225						

Note: Only prostheses with over 50 procedures have been listed

PRIMARY HEMI MID HEAD SHOULDER REPLACEMENT

DEMOGRAPHICS AND OUTCOME

There have been 33 primary hemi mid head shoulder replacement procedures reported to the Registry. This is an additional nine procedures compared to the previous report.

This procedure is undertaken more commonly in females (54.5%). The mean age is 65.3 years for females and 59.1 years for males (Table SP18).

Osteoarthritis is the most common primary diagnosis (60.6%) (Table SP19).

There have been an additional two revisions reported in 2016. Of the five revisions reported overall, there was one for each of the following reasons: fracture, pain, loosening, rotator cuff insufficiency and glenoid erosion (Table SP20).

The most common type of revision is to a total shoulder replacement (Table SP21).

The most common humeral head and stem prosthesis combinations are the Affinis (11), the Eclipse (10) and the Affiniti (7).

Table SP18 Primary Hemi Mid Head Shoulder Replacement by Age and Gender

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	15	45.5%	44	83	59	59.1	12.1
Female	18	54.5%	30	85	66	65.3	12.8
TOTAL	33	100.0%	30	85	64	62.5	12.7

Table SP19 Primary Hemi Mid Head Shoulder Replacement by Primary Diagnosis and Gender

	Male		Fem	ale	TOTAL	
Primary Diagnosis	Ν	Col%	Ν	Col%	N	Col%
Osteoarthritis	9	60.0	11	61.1	20	60.6
Osteonecrosis	4	26.7	4	22.2	8	24.2
Fracture			2	11.1	2	6.1
Rotator Cuff Arthropathy	2	13.3			2	6.1
Rheumatoid Arthritis			1	5.6	1	3.0
TOTAL	15	100.0	18	100.0	33	100.0

Table SP20 Primary Hemi Mid Head Shoulder Replacement by Reason for Revision

Reason for Revision	Number	Percent
Fracture	1	20.0
Pain	1	20.0
Loosening	1	20.0
Rotator Cuff Insufficiency	1	20.0
Glenoid Erosion	1	20.0
TOTAL	5	100.0

Table SP21 Primary Hemi Mid Head Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Humeral/Glenoid	3	60.0
Humeral Component	1	20.0
Glenoid Component	1	20.0
TOTAL	5	100.0

PRIMARY HEMI STEMMED SHOULDER REPLACEMENT

DEMOGRAPHICS

There have been 4,594 primary hemi stemmed shoulder replacement procedures reported to the Registry. This is an additional 249 procedures compared to the previous report.

This procedure is more common in females (73.3%). The mean age is 72.4 years for females and 65.1 years for males (Table SP22).

The most common primary diagnosis is fracture (61.2%), followed by osteoarthritis (25.3%) (Table SP23). In 2016, the number of primary hemi stemmed shoulder replacements undertaken for fracture decreased by 70.4% compared to 2008. In 2016, the number of primary hemi stemmed shoulder replacements undertaken for osteoarthritis decreased by 64.6% compared to 2008 (Figure SP7).

The most common humeral head prostheses used in 2016 were the Aequalis, Global Unite and SMR. The 10 most used humeral head prostheses accounted for 86.1% of all primary hemi stemmed procedures in 2016. This has decreased from 98.2% in 2008 (Table SP24).

The most common humeral stem prostheses used in 2016 were the SMR, Global Unite and Aequalis Ascend. The 10 most used stem prostheses accounted for 92.2% of all primary hemi stemmed procedures in 2016. This has decreased from 97.2% in 2008 (Table SP25).

There has been a major decline in the use of primary hemi stemmed shoulder replacement for the management of osteoarthritis and fracture.

Table SP22 Primary Hemi Stemmed Shoulder Replacement by Age and Gender

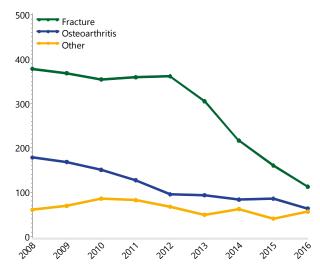

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	1228	26.7%	14	93	66	65.1	13.5
Female	3366	73.3%	13	101	74	72.4	10.9
TOTAL	4594	100.0%	13	101	72	70.4	12.1

Table SP23 Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis and Gender

	Ma	Male Female		TOTAL		
Primary Diagnosis	Ν	Col%	N	Col%	Ν	Col%
Fracture	597	48.6	2214	65.8	2811	61.2
Osteoarthritis	413	33.6	748	22.2	1161	25.3
Rotator Cuff Arthropathy	61	5.0	142	4.2	203	4.4
Osteonecrosis	50	4.1	84	2.5	134	2.9
Tumour	69	5.6	56	1.7	125	2.7
Rheumatoid Arthritis	11	0.9	74	2.2	85	1.9
Instability	20	1.6	39	1.2	59	1.3
Other Inflammatory Arthritis	7	0.6	9	0.3	16	0.3
TOTAL	1228	100.0	3366	100.0	4594	100.0

Note: Instability includes instability and dislocation

Figure SP7 Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis

Table SP24 10 Most Used Humeral Head Prostheses in Primary Hemi Stemmed Shoulder Replacement

2008	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
197 Global Advantage	109 SMR	83 SMR	47 SMR	40 Aequalis	
177 SMR	71 Global Advantage	73 Aequalis	44 Aequalis	35 Global Unite	
98 Aequalis	64 Aequalis	47 Global Advantage	38 Global Unite	31 SMR	
38 Bigliani/Flatow	37 Global Unite	31 Global AP	31 Global Advantage	20 Global AP	
31 SMR CTA	33 Bigliani/Flatow	29 Bigliani/Flatow	28 Bigliani/Flatow	15 Comprehensive	
22 Global Advantage CTA	26 Global AP	25 Global Unite	26 Global AP	14 Bigliani/Flatow	
15 Bio-Modular	19 SMR CTA	20 SMR CTA	10 SMR CTA	12 SMR CTA	
13 Solar	16 Global AP CTA	9 Global AP CTA	9 Bio-Modular	11 Bio-Modular	
8 Global AP	14 Comprehensive	7 Bio-Modular	7 Ascend	11 Global Advantage	
6 Univers 3D	12 Bio-Modular	6 Delta Xtend	7 Global AP CTA	10 Global Advantage CTA	
10 Most Used					
605 (10) 98.2%	401 (10) 89.7%	330 (10) 91.4%	247 (10) 86.7%	199 (10) 86.1%	
Remainder					
11 (4) 1.8%	46 (14) 10.3%	31 (10) 8.6%	38 (11) 13.3%	32 (8) 13.9%	
TOTAL					
616 (14) 100.0%	447 (24) 100.0%	361 (20) 100.0%	285 (21) 100.0%	231 (18) 100.0%	

2008	2013	2014	2015	2016	
N Model					
207 SMR	128 SMR	104 SMR	58 SMR	43 SMR	
138 Global FX	66 Global FX	49 Aequalis	38 Global Unite	35 Global Unite	
98 Aequalis	64 Aequalis	44 Global FX	33 Global AP	27 Aequalis Ascend	
81 Global Advantage	42 Global AP	40 Global AP	31 Aequalis Ascend	26 Comprehensive	
26 Bigliani/Flatow TM	37 Global Unite	29 Aequalis Ascend	30 Global FX	25 Global AP	
13 Solar	27 Bigliani/Flatow TM	26 Bigliani/Flatow TM	21 Bigliani/Flatow TM	17 Aequalis	
11 Bigliani/Flatow	26 Comprehensive	25 Global Unite	18 Aequalis	12 Global Advantage	
11 Bio-Modular	15 Global Advantage	11 Comprehensive	14 Comprehensive	11 Bigliani/Flatow TM	
8 Global AP	7 Delta Xtend	7 Global Advantage	5 Delta Xtend	9 Global FX	
6 Univers 3D	4 Ascend	6 Delta Xtend	5 Equinoxe	8 Mutars	
10 Most Used					
599 (10) 97.2%	416 (10) 93.1%	341 (10) 94.5%	253 (10) 88.8%	213 (10) 92.2%	
Remainder					
17 (7) 2.8%	31 (13) 6.9%	20 (8) 5.5%	32 (10) 11.2%	18 (7) 7.8%	
TOTAL					
616 (17) 100.0%	447 (23) 100.0%	361 (18) 100.0%	285 (20) 100.0%	231 (17) 100.0%	

OUTCOME FOR ALL DIAGNOSES

Primary Diagnosis

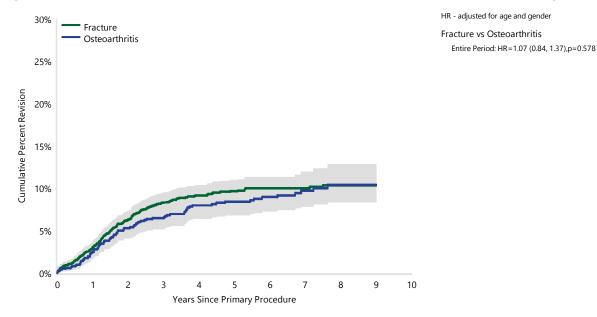
There is no difference in the rate of revision when primary hemi stemmed shoulder replacement is performed for fracture or osteoarthritis (Table SP26 and Figure SP8).

There is no difference in the rate of revision when primary hemi stemmed shoulder replacement is performed for fracture or osteoarthritis.

Reason for Revision

Reasons for revision vary depending on primary diagnosis. Rotator cuff insufficiency occurs more frequently in hemi stemmed shoulder replacement undertaken for fracture (27.0%), whereas glenoid erosion occurs more frequently in procedures undertaken for osteoarthritis (28.6%) (Table SP27 and Figure SP9).

Type of Revision

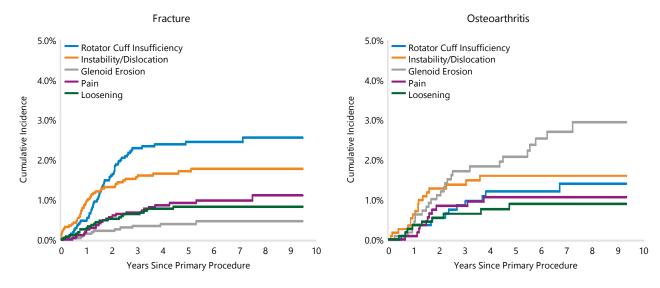

The most common type of revision is to a total shoulder replacement for both primary diagnoses (71.7% for osteoarthritis and 54.9% for fracture). Most were revised to a total reverse shoulder replacement (97.1% when used for fracture and 84.0% for osteoarthritis). Glenoid component only revision occurs more commonly in procedures undertaken for osteoarthritis (28.6% compared to 4.6% for fracture) (Table SP28).

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Fracture	237	2811	3.0 (2.5, 3.8)	8.3 (7.3, 9.5)	9.7 (8.5, 11.0)	10.0 (8.8, 11.3)	10.4 (9.1, 11.8)	
Osteoarthritis	91	1161	2.5 (1.7, 3.6)	6.5 (5.2, 8.2)	8.4 (6.8, 10.4)	9.7 (7.9, 11.9)	10.4 (8.4, 12.9)	
Rotator Cuff Arthropathy	12	203	2.1 (0.8, 5.5)	5.8 (3.2, 10.6)	7.4 (4.2, 12.9)			
Osteonecrosis	7	134	1.6 (0.4, 6.2)	4.1 (1.7, 9.7)	5.3 (2.4, 11.6)			
Tumour	9	125	5.3 (2.2, 12.3)					
Other (4)	8	160	2.6 (1.0, 6.8)	4.6 (2.2, 9.5)	4.6 (2.2, 9.5)	4.6 (2.2, 9.5)		
TOTAL	364	4594						

Table SP26 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis

Note: Only primary diagnoses with over 100 procedures have been listed

Figure SP8 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Fracture	2811	2505	1871	1159	582	103	10
Osteoarthritis	1161	1049	806	582	321	74	6

		Fracture			Osteoarthritis	
Reason for Revision	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions
Rotator Cuff Insufficiency	64	2.3	27.0	13	1.1	14.3
Instability/Dislocation	46	1.6	19.4	17	1.5	18.7
Glenoid Erosion	11	0.4	4.6	26	2.2	28.6
Pain	25	0.9	10.5	11	0.9	12.1
Fracture	22	0.8	9.3	4	0.3	4.4
Loosening	21	0.7	8.9	9	0.8	9.9
Infection	20	0.7	8.4	4	0.3	4.4
Arthrofibrosis	7	0.2	3.0	2	0.2	2.2
Malposition	7	0.2	3.0	1	0.1	1.1
Dissociation	3	0.1	1.3	1	0.1	1.1
Lysis	2	0.1	0.8			
Heterotopic Bone	1	0.0	0.4			
Incorrect Sizing	1	0.0	0.4	1	0.1	1.1
Osteonecrosis				1	0.1	1.1
Other	7	0.2	3.0	1	0.1	1.1
N Revision	237	8.4	100.0	91	7.8	100.0
N Primary	2811			1161		

Table SP27 Primary Hemi Stemmed Shoulder Replacement by Reason for Revision and Primary Diagnosis

Figure SP9 Cumulative Incidence Revision Diagnosis of Primary Hemi Stemmed Shoulder by Primary Diagnosis

Table SP28 Primary Hemi Stemmed Shoulder Replacement by Type of Revision and Primary Diagnosis

		Fracture			Osteoarthritis	
Type of Revision	Number	% Primaries Revised	% Revisions	Number	% Primaries Revised	% Revisions
Humeral/Glenoid	170	6.0	71.7	50	4.3	54.9
Glenoid Component	11	0.4	4.6	26	2.2	28.6
Humeral Component	24	0.9	10.1	6	0.5	6.6
Head Only	14	0.5	5.9	3	0.3	3.3
Cement Spacer	7	0.2	3.0	1	0.1	1.1
Removal of Prostheses	5	0.2	2.1	1	0.1	1.1
Cement Only	4	0.1	1.7			
Reoperation	2	0.1	0.8	2	0.2	2.2
Head/Insert				1	0.1	1.1
Minor Components				1	0.1	1.1
N Revision	237	8.4	100.0	91	7.8	100.0
N Primary	2811			1161		

OUTCOME FOR FRACTURE

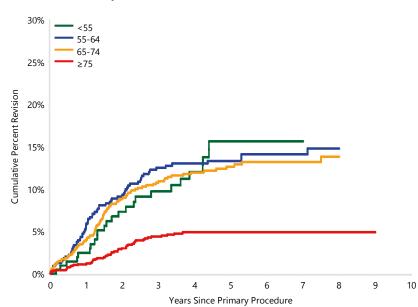
Age and Gender

The rate of revision is lower for those aged 75 years or older compared to all other age groups (Table SP29 and Figure SP10).

Females have a higher rate of revision compared to males (Table SP30 and Figure SP11).

Humeral Stem

There is no difference in the rate of revision for fracture humeral stems compared to non fracture humeral stems (Table SP31 and Figure SP12).


The use of cement for stem fixation in fracture hemiarthroplasty has a lower rate of revision when a non-fracture stem is used (Table SP32 and Figure SP13). Cemented stem fixation for fracture has a lower rate of revision when a non-fracture stem is used.

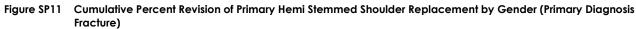
The outcomes for the most used prosthesis combinations in the treatment of fracture are listed in Table SP33. The outcomes for individual fracture stems are presented separately in Table SP34 and non fracture humeral stems in Table SP35.

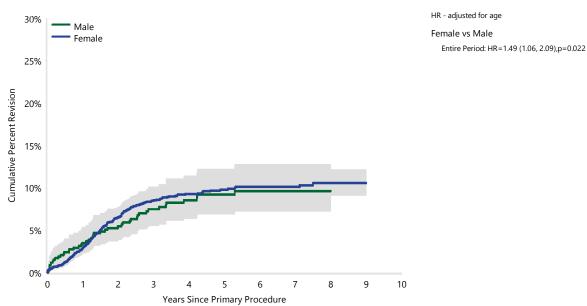
Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	25	214	2.4 (1.0, 5.8)	9.7 (6.2, 15.0)	15.6 (10.7, 22.5)	15.6 (10.7, 22.5)		
55-64	68	549	5.9 (4.2, 8.3)	12.5 (9.9, 15.8)	13.3 (10.6, 16.7)	14.1 (11.2, 17.6)		
65-74	94	825	4.0 (2.8, 5.6)	10.9 (8.9, 13.4)	12.6 (10.4, 15.4)	13.2 (10.8, 16.0)		
≥75	50	1223	1.2 (0.7, 2.0)	4.4 (3.3, 5.8)	4.9 (3.7, 6.4)	4.9 (3.7, 6.4)	4.9 (3.7, 6.4)	
TOTAL	237	2811						

Table SP29 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis Fracture)

Figure SP10 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis Fracture)

HR - adjusted for gender <55 vs ≥75 0 - 1.5Yr: HR=2.51 (1.28, 4.94),p=0.007 1.5Yr+: HR=4.39 (2.35, 8.21),p<0.001

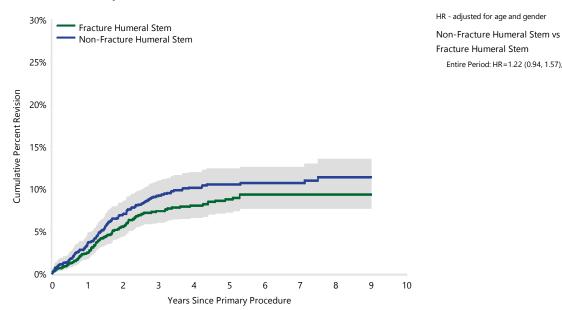

55-64 vs ≥75 Entire Period: HR=3.15 (2.19, 4.55),p<0.001


65-74 vs ≥75 Entire Period: HR=2.84 (2.01, 4.00),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	214	186	139	76	44	10	0
55-64	549	479	363	248	134	16	0
65-74	825	738	552	348	177	37	7
≥75	1223	1102	817	487	227	40	3

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	46	597	3.5 (2.3, 5.4)	7.5 (5.5, 10.1)	9.2 (6.9, 12.2)	9.6 (7.2, 12.8)		
Female	191	2214	2.9 (2.3, 3.7)	8.5 (7.4, 9.9)	9.8 (8.5, 11.2)	10.1 (8.8, 11.6)	10.6 (9.1, 12.2)	
TOTAL	237	2811						

Table SP30 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Gender (Primary Diagnosis Fracture)

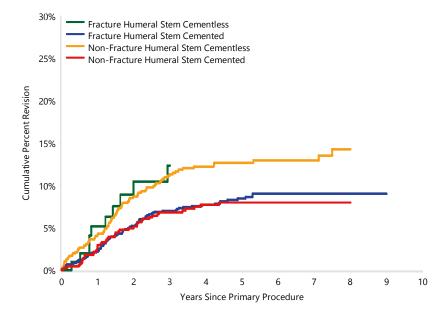

Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 7 Yrs 9 Yrs 10 Yrs Male 597 509 381 225 119 19 1 9 Female 2214 1996 1490 934 463 84

Entire Period: HR=1.22 (0.94, 1.57),p=0.136

Fracture	N Revised		1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Fracture Humeral Stem	103	1369	2.4 (1.7, 3.4)	7.4 (6.0, 9.0)	8.8 (7.2, 10.6)	9.3 (7.7, 11.3)	9.3 (7.7, 11.3)	
Non-Fracture Humeral Stem	134	1442	3.6 (2.7, 4.7)	9.2 (7.8, 11.0)	10.5 (8.9, 12.4)	10.7 (9.0, 12.6)	11.4 (9.5, 13.5)	
TOTAL	237	2811						

Table SP31 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Stem Type (Primary Diagnosis Fracture)

Figure SP12 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Stem Type (Primary Diagnosis Fracture)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Fracture Humeral Stem	1369	1222	901	546	278	59	4
Non-Fracture Humeral Stem	1442	1283	970	613	304	44	6

Table SP32 Yearly Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Stem Type and Humeral Fixation (Primary Diagnosis Fracture)

Fracture	Humeral Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Fracture Humeral Stem	Cementless	10	101	5.2 (2.2, 12.0)	12.4 (6.7, 22.2)				
	Cemented	93	1268	2.2 (1.5, 3.2)	7.0 (5.7, 8.7)	8.5 (6.9, 10.4)	9.0 (7.4, 11.0)	9.0 (7.4, 11.0)	
Non-Fracture Humeral Stem	Cementless	88	761	4.2 (3.0, 5.9)	11.3 (9.2, 13.9)	12.7 (10.4, 15.5)	13.0 (10.6, 15.8)		
	Cemented	46	681	3.0 (1.9, 4.6)	6.8 (5.1, 9.2)	8.0 (6.0, 10.6)	8.0 (6.0, 10.6)		
TOTAL		237	2811						

Figure SP13 Cumulative Percent Revisionof Primary Hemi Stemmed Shoulder Replacement by Stem Type and Humeral Fixation (Primary Diagnosis Fracture)

HR - adjusted for age and gender Fracture Humeral Stem Cementless vs Fracture Humeral Stem Cemented Entire Period: HR=1.31 (0.68, 2.53),p=0.419

Fracture Humeral Stem Cemented vs Non-Fracture Humeral Stem Cemented Entire Period: HR=1.08 (0.76, 1.53),p=0.677

Fracture Humeral Stem Cementless vs Non-Fracture Humeral Stem Cementless Entire Period: HR=0.86 (0.45, 1.67),p=0.664

Non-Fracture Humeral Stem Cementless vs Non-Fracture Humeral Stem Cemented Entire Period: HR=1.63 (1.14, 2.34),p=0.007

Number	at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Fracture Humeral Stem	Cementless	101	86	45	14	3	1	0
	Cemented	1268	1136	856	532	275	58	4
Non-Fracture Humeral Stem	Cementless	761	679	505	326	165	19	3
	Cemented	681	604	465	287	139	25	3

Humeral Head	Humeral Stem	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	28	429	2.6 (1.5, 4.7)	6.5 (4.5, 9.5)	7.2 (5.0, 10.3)	7.2 (5.0, 10.3)		
Bigliani/Flatow	Bigliani/Flatow TM	8	284	1.5 (0.6, 3.9)	3.1 (1.6, 6.1)	3.1 (1.6, 6.1)	3.1 (1.6, 6.1)		
Bio-Modular	Comprehensive	3	70	1.6 (0.2, 10.7)	3.5 (0.9, 13.3)	7.1 (2.1, 21.9)	7.1 (2.1, 21.9)		
Comprehensive	Comprehensive	0	34	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Global Advantage	Global Advantage	9	53	7.7 (2.9, 19.1)	15.9 (8.3, 29.3)	18.2 (9.9, 32.1)	18.2 (9.9, 32.1)		
Global Advantage	Global FX	49	685	2.1 (1.3, 3.5)	6.2 (4.6, 8.5)	7.8 (5.9, 10.4)	8.7 (6.6, 11.4)	8.7 (6.6, 11.4)	
Global Unite	Global Unite	19	129	5.2 (2.4, 11.2)					
SMR	SMR	97	858	4.0 (2.8, 5.5)	10.9 (8.9, 13.3)	12.6 (10.4, 15.3)	12.9 (10.6, 15.6)		
SMR CTA	SMR	2	33	3.3 (0.5, 21.4)	7.4 (1.9, 26.5)	7.4 (1.9, 26.5)	7.4 (1.9, 26.5)		
Solar	Solar	5	40	7.9 (2.6, 22.5)	10.5 (4.1, 25.7)	14.3 (6.1, 31.3)	14.3 (6.1, 31.3)		
Other (24)		17	196	2.8 (1.2, 6.7)	10.1 (6.3, 16.0)	11.0 (6.9, 17.2)	11.0 (6.9, 17.2)		
TOTAL		237	2811						

Table SP33 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Stem (Primary Diagnosis Fracture)

Note: Only combinations with over 30 procedures have been listed

Table SP34 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Fracture Stem (Primary Diagnosis Fracture)

Humeral Head	Fracture Stem	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	27	412	2.5 (1.3, 4.6)	6.6 (4.5, 9.6)	7.3 (5.0, 10.4)	7.3 (5.0, 10.4)		
Bio-Modular	Comprehensive	3	70	1.6 (0.2, 10.7)	3.5 (0.9, 13.3)	7.1 (2.1, 21.9)	7.1 (2.1, 21.9)		
Comprehensive	Comprehensive	0	30	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Global Advantage	Global FX	49	685	2.1 (1.3, 3.5)	6.2 (4.6, 8.5)	7.8 (5.9, 10.4)	8.7 (6.6, 11.4)	8.7 (6.6, 11.4)	
Global Unite	Global Unite	19	128	5.2 (2.4, 11.2)					
Other (5)		5	44	2.6 (0.4, 17.2)	10.7 (4.2, 26.2)	16.7 (6.8, 37.9)	16.7 (6.8, 37.9)		
TOTAL		103	1369						

Note: Only combinations with over 30 procedures have been listed

Table SP35 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Non Fracture Stem (Primary Diagnosis Fracture)

Humeral Head	Non Fracture Stem	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Bigliani/Flatow	Bigliani/Flatow TM	8	284	1.5 (0.6, 3.9)	3.1 (1.6, 6.1)	3.1 (1.6, 6.1)	3.1 (1.6, 6.1)		
Global Advantage	Global Advantage	9	53	7.7 (2.9, 19.1)	15.9 (8.3, 29.3)	18.2 (9.9, 32.1)	18.2 (9.9, 32.1)		
SMR	SMR	97	858	4.0 (2.8, 5.5)	10.9 (8.9, 13.3)	12.6 (10.4, 15.3)	12.9 (10.6, 15.6)		
SMR CTA	SMR	2	33	3.3 (0.5, 21.4)	7.4 (1.9, 26.5)	7.4 (1.9, 26.5)	7.4 (1.9, 26.5)		
Solar	Solar	5	40	7.9 (2.6, 22.5)	10.5 (4.1, 25.7)	14.3 (6.1, 31.3)	14.3 (6.1, 31.3)		
Other (25)		13	174	3.2 (1.3, 7.5)	9.1 (5.4, 15.3)	9.1 (5.4, 15.3)	9.1 (5.4, 15.3)		
TOTAL		134	1442						

Note: Only combinations with over 30 procedures have been listed

OUTCOME FOR OSTEOARTHRITIS

Age and Gender

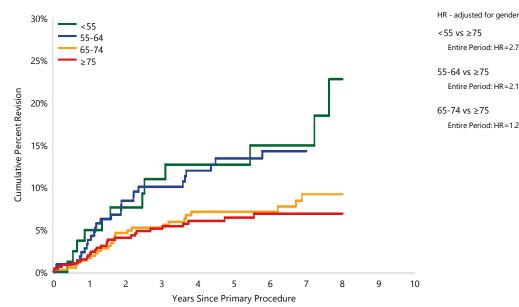
The rate of revision is lower for those aged 75 years or older compared to patients aged less than 55 years and 55 to 64 years (Table SP36 and Figure SP14).

Gender is not a risk factor for revision (Table SP37 and Figure SP15).

The outcomes of the most used prosthesis combinations for osteoarthritis are listed in Table SP38.

<55 vs ≥75

Entire Period: HR=2.75 (1.36, 5.55),p=0.004

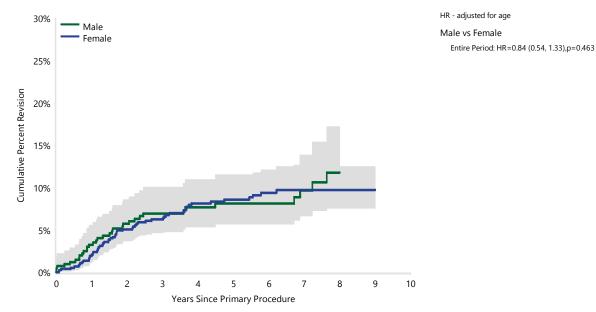

Entire Period: HR=2.19 (1.26, 3.82),p=0.005

Entire Period: HR=1.20 (0.70, 2.07),p=0.502

Table SP36 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis OA)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	12	88	4.9 (1.9, 12.6)	10.9 (5.6, 20.9)	12.7 (6.7, 23.2)	14.9 (8.2, 26.4)		
55-64	26	223	3.8 (1.9, 7.4)	10.1 (6.6, 15.2)	13.4 (9.2, 19.3)	14.3 (9.9, 20.4)		
65-74	26	374	1.7 (0.7, 3.7)	5.2 (3.3, 8.2)	7.1 (4.8, 10.6)	9.2 (6.2, 13.5)		
≥75	27	476	2.2 (1.2, 4.0)	5.1 (3.4, 7.7)	6.4 (4.4, 9.4)	6.9 (4.7, 10.0)		
TOTAL	91	1161						

Figure SP14 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis OA)



Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 7 Yrs 9 Yrs 10 Yrs <55 88 76 51 41 28 7 0 59 12 55-64 223 197 156 113 2 65-74 374 347 270 193 116 24 1 476 429 235 31 ≥75 329 118 3

Table SP37 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Gender (Primary Diagnosis OA)

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	33	413	3.3 (1.9, 5.6)	7.0 (4.8, 10.1)	8.1 (5.7, 11.5)	9.7 (6.7, 13.9)		
Female	58	748	2.1 (1.3, 3.5)	6.3 (4.7, 8.4)	8.6 (6.6, 11.1)	9.7 (7.5, 12.5)	9.7 (7.5, 12.5)	
TOTAL	91	1161						

Figure SP15 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Gender (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	413	373	280	193	105	20	3
Female	748	676	526	389	216	54	3

Humeral Head	Humeral Stem	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	9	138	1.5 (0.4, 5.8)	5.3 (2.5, 10.7)	6.2 (3.2, 12.1)	8.3 (4.1, 16.4)		
Aequalis	Aequalis Ascend	1	53	2.4 (0.3, 15.7)					
Bigliani/Flatow	Bigliani/Flatow TM	3	52	3.9 (1.0, 14.8)	5.9 (1.9, 17.3)	5.9 (1.9, 17.3)	5.9 (1.9, 17.3)		
Delta Xtend	Delta Xtend	1	26	0.0 (0.0, 0.0)	5.0 (0.7, 30.5)	5.0 (0.7, 30.5)	5.0 (0.7, 30.5)		
Global AP	Global AP	7	155	0.7 (0.1, 4.8)	3.8 (1.6, 9.0)	6.4 (3.0, 13.3)			
Global AP CTA	Global AP	5	40	2.5 (0.4, 16.5)	13.2 (5.7, 28.9)	13.2 (5.7, 28.9)			
Global Advantage	Global Advantage	11	144	0.7 (0.1, 4.8)	5.1 (2.4, 10.3)	7.4 (4.1, 13.4)	8.3 (4.7, 14.6)		
Global Advantage	Global FX	4	31	3.3 (0.5, 21.4)	10.8 (3.6, 30.1)	10.8 (3.6, 30.1)	10.8 (3.6, 30.1)		
Global Advantage CTA	Global Advantage	1	39	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	4.0 (0.6, 25.2)	4.0 (0.6, 25.2)	
SMR	SMR	34	269	4.2 (2.4, 7.5)	8.6 (5.7, 12.7)	12.2 (8.7, 17.0)	14.1 (10.2, 19.4)		
SMR CTA	SMR	6	85	4.9 (1.8, 12.4)	7.7 (3.5, 16.3)	7.7 (3.5, 16.3)	7.7 (3.5, 16.3)		
Other (25)		9	129	3.3 (1.2, 8.5)	7.2 (3.7, 14.0)	8.7 (4.5, 16.2)			
TOTAL		91	1161						

Table SP38 Cumulative Percent Revision of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Stem Prostheses (Primary Diagnosis OA)

Note: Only combinations with over 20 procedures have been listed

Primary Total Shoulder Replacement

CLASSES OF TOTAL SHOULDER REPLACEMENT

The Registry sub-categorises primary total shoulder replacement into four classes. These are defined by the type of prosthesis used.

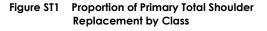
Total resurfacing involves glenoid replacement and the use of a humeral prosthesis that replaces the humeral articular surface without resecting the head.

Total mid head involves glenoid replacement combined with resection of part of the humeral head and replacement with a cone stemmed humeral head prosthesis.

Total conventional involves glenoid replacement combined with resection of the humeral head and replacement with a stemmed humeral prosthesis and humeral head prosthesis.

Total reverse involves glenoid replacement with a glenoid head prosthesis combined with resection of the humeral head and replacement with a stemmed humeral prosthesis and humeral cup prosthesis.

USE OF TOTAL SHOULDER REPLACEMENT


There have been 28,193 total shoulder replacements reported to the Registry. This is an additional 4,941 procedures compared to the previous report.

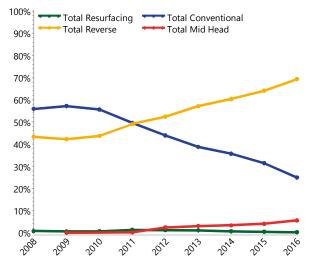

The two main classes of primary total shoulder replacement are total conventional (40.7%) and total reverse (56.0%). Total mid head and total resurfacing shoulder replacement are used infrequently (2.6% and 0.7%, respectively) (Table ST1). The proportion of total reverse shoulder replacements has increased from 42.2% in 2009 to 69.3% in 2016 (Figure ST1).

Table ST1	Primary Total Shoulder Replacement by Class
-----------	---

Shoulder Class	N	Percent
Total Resurfacing	211	0.7
Total Conventional	11468	40.7
Total Reverse	15781	56.0
Total Mid Head	733	2.6
TOTAL	28193	100.0

Primary total shoulder replacement is more common in females (62.1%). However, there is gender variation depending on the class of primary total shoulder replacement. The proportions of primary total shoulder replacement for females are: total reverse (65.6%), total conventional (58.1%), total mid head (55.1%), and total resurfacing (39.3%) (Table ST2).

Most patients are aged 65 years or older (82.2%). The proportion of patients in this age group varies depending on the class of shoulder replacement: total reverse (90.3%), total conventional (72.5%), total mid head (66.5%) and total resurfacing (51.7%) (Table ST3).

The mean age for total shoulder replacement is 73.5 years for females and 70.1 years for males (Table ST4).

The most common primary diagnoses are osteoarthritis (67.0%), rotator cuff arthropathy (19.2%) and fracture (8.8%). Rheumatoid arthritis and osteonecrosis account for 2.0% and 1.3%, respectively (Table ST5). Only 211 total resurfacing shoulder replacements have been reported to the Registry, 15 of which have been revised. The cumulative percent revision at five years is 6.9% (Table ST6).

Total mid head shoulder replacement has been used in 733 procedures. There have been 11 revisions and the three year cumulative percent revision is 2.1% (Table ST6).

At nine years, the cumulative percent revision for total conventional and total reverse shoulder replacement is 11.3% and 7.0%, respectively. Total reverse shoulder replacement has a higher rate of revision compared to total conventional in the first three months. However, after three months, total reverse shoulder replacement has a lower rate of revision (Table ST6 and Figure ST2). An additional analysis has been undertaken with both the SMR L2 total conventional and the SMR L2 total reverse shoulder prostheses excluded. These prostheses have been withdrawn.

After excluding the SMR L2 prosthesis from both total conventional and reverse shoulder procedures, the nine year cumulative percent revision for total conventional and total reverse shoulder replacement is 8.6% and 6.9%, respectively. The total reverse shoulder replacement continues to have a higher rate of revision in the first three months. After this time, total conventional shoulder replacement has a higher rate of revision (Table ST7 and Figure ST3).

Table ST2 Primary Total Shoulder Replacement by Gender and Class

	Male	•	Female	9
Shoulder Class	Ν	Row%	Ν	Row%
Total Resurfacing	128	60.7	83	39.3
Total Conventional	4806	41.9	6662	58.1
Total Reverse	5434	34.4	10347	65.6
Total Mid Head	329	44.9	404	55.1
TOTAL	10697	37.9	17496	62.1

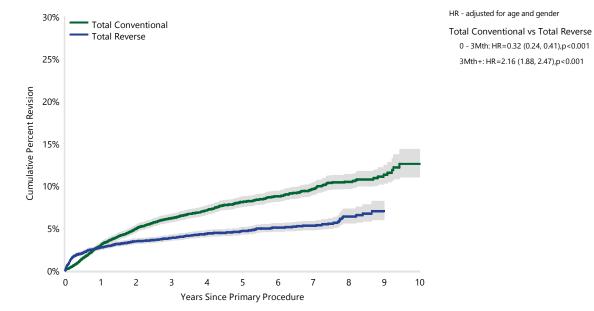
Table ST3 Primary Total Shoulder Replacement by Age and Class

	<55		5!	55-64		65-74		≥75	
Shoulder Class	Ν	Row%	Ν	Row%	Ν	Row%	Ν	Row%	
Total Resurfacing	31	14.7	71	33.6	93	44.1	16	7.6	
Total Conventional	587	5.1	2565	22.4	5017	43.7	3299	28.8	
Total Reverse	213	1.3	1311	8.3	5748	36.4	8509	53.9	
Total Mid Head	57	7.8	189	25.8	326	44.5	161	22.0	
TOTAL	888	3.1	4136	14.7	11184	39.7	11985	42.5	

Table ST4 Primary Total Shoulder Replacement by Age and Gender

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	10697	37.9%	21	96	71	70.1	9.1
Female	17496	62.1%	14	102	74	73.5	8.5
TOTAL	28193	100.0%	14	102	73	72.2	8.9

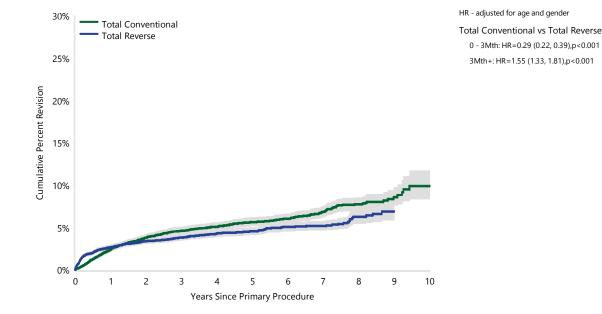
Table ST5 Primary Total Shoulder Replacement by Primary Diagnosis and Gender


	N	Male		Female		TOTAL	
Primary Diagnosis	N	Col%	N	Col%	N	Col%	
Osteoarthritis	7670	71.7	11213	64.1	18883	67.0	
Rotator Cuff Arthropathy	2259	21.1	3163	18.1	5422	19.2	
Fracture	383	3.6	2095	12.0	2478	8.8	
Rheumatoid Arthritis	119	1.1	441	2.5	560	2.0	
Osteonecrosis	78	0.7	286	1.6	364	1.3	
Instability	85	0.8	143	0.8	228	0.8	
Other Inflammatory Arthritis	40	0.4	89	0.5	129	0.5	
Tumour	56	0.5	59	0.3	115	0.4	
Other	7	0.1	7	0.0	14	0.0	
TOTAL	10697	100.0	17496	100.0	28193	100.0	

Note: Instability includes instability and dislocation

Shoulder Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Total Resurfacing	15	211	2.0 (0.7, 5.1)	4.7 (2.5, 8.9)	6.9 (3.9, 11.9)			
Total Conventional	802	11468	3.0 (2.7, 3.3)	6.2 (5.7, 6.7)	8.1 (7.5, 8.7)	9.6 (8.9, 10.4)	11.3 (10.3, 12.4)	12.6 (11.0, 14.3)
Total Reverse	582	15781	2.7 (2.5, 3.0)	3.9 (3.5, 4.2)	4.7 (4.3, 5.1)	5.3 (4.8, 5.8)	7.0 (6.0, 8.2)	
Total Mid Head	11	733	1.6 (0.8, 3.1)	2.1 (1.2, 3.8)				
TOTAL	1410	28193						

Table ST6 Cumulative Percent Revision of Primary Total Shoulder Replacement by Class (All Prostheses)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Total Conventional	11468	9869	6870	4263	2020	403	68
Total Reverse	15781	11856	6643	3268	1295	227	38

Shoulder Class	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Total Conventional	537	10610	2.4 (2.1, 2.7)	4.6 (4.2, 5.1)	5.6 (5.2, 6.2)	6.8 (6.2, 7.5)	8.6 (7.6, 9.7)	9.9 (8.4, 11.7)
Total Reverse	521	14641	2.7 (2.4, 3.0)	3.8 (3.5, 4.2)	4.6 (4.2, 5.0)	5.2 (4.6, 5.7)	6.9 (5.8, 8.1)	
TOTAL	1058	25251						

Table ST7 Cumulative Percent Revision of Primary Total Shoulder Replacement by Class (excluding SMR L2)

Note: The SMR L2 total reverse shoulder prosthesis and the SMR L2 total conventional shoulder prosthesis have both been excluded

Figure ST3 Cumulative Percent Revision of Primary Total Shoulder Replacement by Class (excluding SMR L2)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Total Conventional	10610	9100	6221	3795	1997	403	68
Total Reverse	14641	10781	5640	2571	1271	227	38

Note: The SMR L2 total reverse shoulder prosthesis and the SMR L2 total conventional shoulder prosthesis have both been excluded

PRIMARY TOTAL RESURFACING SHOULDER REPLACEMENT

DEMOGRAPHICS AND OUTCOME

There have been 211 primary total resurfacing shoulder replacements reported to the Registry. This is an additional 13 procedures compared to the previous report.

Primary total resurfacing shoulder replacement is undertaken more often in males (60.7%). The mean age is 62.1 years for males and 66.5 years for females (Table ST8).

Osteoarthritis is the most common primary diagnosis (95.7%) (Table ST9).

There were three different types of total resurfacing prosthesis combinations used in 2016. The Global CAP/Global Advantage combination was used in nine of the 11 procedures reported in 2016 (Tables ST10 and ST11).

The cumulative percent revision at five years is 6.9% (Table ST6). There have been 15 revisions. The main reasons for revision are presented in Table ST12. The most common type of revision is to a total shoulder replacement (40.0%) (Table ST13).

Table ST8 Primary Total Resurfacing Shoulder Replacement by Age and Gender

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	128	60.7%	35	83	63	62.1	9.7
Female	83	39.3%	46	86	67	66.5	6.8
TOTAL	211	100.0%	35	86	65	63.8	8.9

Table ST9	Primary Total Resurfacing Shoulder Replacement by Primary Diagnosis and Gender
	Thinking for a key a contact he placement by Thinking Diagnosis and Ochact

	Male		Fem	ale	TOTAL	
Primary Diagnosis	N	Col%	Ν	Col%	N	Col%
Osteoarthritis	124	96.9	78	94.0	202	95.7
Rheumatoid Arthritis	1	0.8	2	2.4	3	1.4
Fracture	1	0.8	1	1.2	2	0.9
Other Inflammatory Arthritis			1	1.2	1	0.5
Instability	1	0.8			1	0.5
Rotator Cuff Arthropathy			1	1.2	1	0.5
Osteonecrosis	1	0.8	•	•	1	0.5
TOTAL	128	100.0	83	100.0	211	100.0

Note: Instability includes instability and dislocation

2008	2013	2014	2015	2016	
N Model					
5 SMR	27 Global CAP	17 Global CAP	12 Global CAP	9 Global CAP	
4 Aequalis	5 Aequalis	6 Aequalis	4 Epoca RH	1 Epoca RH	
2 Copeland	3 Epoca RH	1 Epoca RH	2 Aequalis	1 SMR	
1 Global CAP	1 SMR		1 SMR		
Most Used					
12 (4) 100.0%	36 (4) 100.0%	24 (3) 100.0%	19 (4) 100.0%	11 (3) 100.0%	

Table ST10 Most Used Humeral Head Prostheses in Primary Total Resurfacing Shoulder Replacement

Table ST11 Most Used Glenoid Prostheses in Primary Total Resurfacing Shoulder Replacement

2008	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
4 Aequalis	27 Global Advantage	17 Global Advantage	12 Global Advantage	9 Global Advantage
3 SMR L1	5 Aequalis	6 Aequalis	4 Epoca	1 Epoca
2 Copeland	3 Epoca	1 Epoca	2 Aequalis	1 SMR
2 SMR	1 SMR L1		1 SMR	
1 Global Advantage				
Most Used				
12 (5) 100.0%	36 (4) 100.0%	24 (3) 100.0%	19 (4) 100.0%	11 (3) 100.0%

Table ST12 Primary Total Resurfacing Shoulder Replacement by Reason for Revision

Reason for Revision	Number	Percent
Loosening	5	33.3
Instability/Dislocation	2	13.3
Infection	2	13.3
Implant Breakage Glenoid Insert	2	13.3
Wear Glenoid Insert	1	6.7
Fracture	1	6.7
Implant Breakage Glenoid	1	6.7
Rotator Cuff Insufficiency	1	6.7
TOTAL	15	100.0

Table ST13 Primary Total Resurfacing Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Humeral/Glenoid	6	40.0
Humeral Component	5	33.3
Insert Only	2	13.3
Cement Spacer	1	6.7
Head Only	1	6.7
TOTAL	15	100.0

Note: Humeral heads are replaced when the humeral component is revised

PRIMARY TOTAL MID HEAD SHOULDER REPLACEMENT

DEMOGRAPHICS AND OUTCOME

There have been 733 primary total mid head shoulder replacements reported to the Registry. This is an additional 271 procedures compared to the previous report. The use of primary mid head shoulder replacement has increased by 273.2% since its first full year of use in 2012.

Primary total mid head shoulder replacement is undertaken more often in females (55.1%). The mean age is 69.8 years for females and 65.3 years for males (Table ST14).

Osteoarthritis is the most common primary diagnosis (95.8%) (Table ST15).

The cumulative percent revision at three years is 2.1% (Table ST6). There have been 11 revisions in this class. The main reasons for revision are instability/dislocation, loosening, and infection (Table ST16). The most common types of revision involve replacement of the humeral component only and replacement of the humeral component and glenoid. The latter were all revised to a total reverse shoulder replacement (Table ST17).

The Affinis is the most used total mid head shoulder prosthesis in 2016 (Tables ST18 and ST19).

Table ST14 Primary Total Mid Head Shoulder Replacement by Age and Gender

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	329	44.9%	37	89	66	65.3	9.4
Female	404	55.1%	45	94	70	69.8	8.0
TOTAL	733	100.0%	37	94	68	67.8	8.9

Table ST15 Primary Total Mid Head Shoulder Replacement by Primary Diagnosis and Gender

	Ma	le	Fem	ale	TOT	AL
Primary Diagnosis	Ν	Col%	N	Col%	N	Col%
Osteoarthritis	317	96.4	385	95.3	702	95.8
Osteonecrosis	5	1.5	9	2.2	14	1.9
Rheumatoid Arthritis	1	0.3	3	0.7	4	0.5
Other Inflammatory Arthritis			4	1.0	4	0.5
Rotator Cuff Arthropathy	2	0.6	1	0.2	3	0.4
Fracture	1	0.3	2	0.5	3	0.4
Instability	2	0.6			2	0.3
Other	1	0.3		•	1	0.1
TOTAL	329	100.0	404	100.0	733	100.0

Table ST16Primary Total Mid Head Shoulder
Replacement by Reason for Revision

Reason for Revision	Number	Percent
Instability/Dislocation	4	36.4
Loosening	3	27.3
Infection	2	18.2
Pain	1	9.1
Malposition	1	9.1
TOTAL	11	100.0

Table ST17 Primary Total Mid Head Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Humeral Component	3	27.3
Humeral/Glenoid	3	27.3
Removal of Prostheses	2	18.2
Head Only	1	9.1
Cement Spacer	1	9.1
Cup Only	1	9.1
TOTAL	11	100.0

Table ST18 Most Used Humeral Stem Prostheses in Primary Total Mid Head Shoulder Replacement

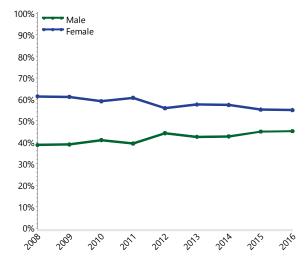
2011	2013	2014	2015	2016
N Model	N Model	N Model	N Model	N Model
2 Simpliciti	60 Affinis	61 Simpliciti	108 Affinis	217 Affinis
2 TESS	36 Simpliciti	52 Affinis	45 Sidus	18 Simpliciti
1 Affinis	3 Sidus	12 Sidus	11 Simpliciti	12 Sidus
			3 SMR	10 SMR
				8 Comprehensive
Most Used				
5 (3) 100.0%	99 (3) 100.0%	125 (3) 100.0%	167 (4) 100.0%	265 (5) 100.0%

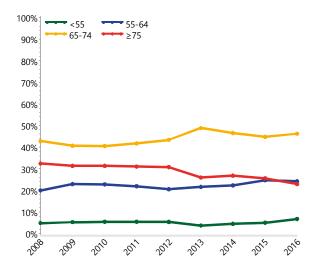
Table ST19 Most Used Glenoid Prostheses in Primary Total Mid Head Shoulder Replacement

2011	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
2 Aequalis	60 Affinis	61 Aequalis	108 Affinis	215 Affinis	
1 Affinis	36 Aequalis	52 Affinis	18 Anatomical Shoulder	18 Aequalis	
1 Comprehensive	2 Bigliani/Flatow T	M 7 Bigliani/Flatow TM	15 Bigliani/Flatow	12 Comprehensive	
1 TESS	1 Bigliani/Flatow	3 Bigliani/Flatow	11 Aequalis	6 SMR L1	
		2 Anatomical Shoulder	11 Bigliani/Flatow TM	4 SMR	
			3 SMR L1	3 Bigliani/Flatow	
			1 Global	2 Anatomical Shoulder	
				2 Bigliani/Flatow TM	
				2 Global	
				1 Custom Made (Lima)	
Most Used					
5 (4) 100.0%	99 (4) 100.0%	125 (5) 100.0%	167 (7) 100.0%	265 (10) 100.0%	

PRIMARY TOTAL CONVENTIONAL SHOULDER REPLACEMENT

DEMOGRAPHICS


There have been 11,468 total conventional shoulder replacements reported to the Registry. This is an additional 1,238 procedures compared to the previous report.


The use of total conventional shoulder replacement has declined from 55.9% of all total shoulder replacements in 2008 to 24.9% in 2016.

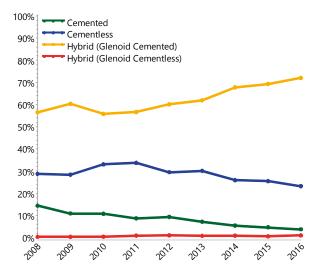
The use of total conventional shoulder replacement has declined from 55.9% of all total shoulder replacements in 2008 to 24.9% in 2016.

This procedure is most commonly undertaken in females (58.1%) (Table ST20). The proportion of males has increased slightly from 38.7% in 2008 to 45.1% in 2016 (Figure ST4).

The mean age is 70.7 years for females and 67.2 years for males (Table ST20). In 2016, most procedures were undertaken in the 65 to 74 year age group, which accounted for 46.2% of all patients (Figure ST5).

Osteoarthritis is the most common primary diagnosis, accounting for 94.2% of all procedures (Table ST21).

Table ST20 Prin	imary Total Conventional SI	houlder Replacement by	Age and Gender
-----------------	-----------------------------	------------------------	----------------


Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	4806	41.9%	21	93	67	67.2	9.0
Female	6662	58.1%	21	96	71	70.7	8.5
TOTAL	11468	100.0%	21	96	70	69.2	8.9

In 2016, 72.1% of procedures used hybrid fixation (cementless humerus and cemented glenoid). This has increased from a low of 55.8% in 2010. In 2016, cementless fiaxtion was used in 23.2% of procedures, declining from a peak of 33.7% in 2011 (Figure ST6).

Hybrid fixation with a cemented glenoid has increased from 55.8% in 2010 to 72.1% in 2016.

The 10 most used humeral stem and glenoid prostheses are listed in Tables ST22 and ST23. The Global Unite, SMR, and Global AP are the most commonly used humeral stem prostheses in 2016. The 10 most used humeral stem prostheses accounted for 97.7% of all primary total conventional shoulder procedures.

The Global Advantage, Aequalis, and SMR L1 are the most commonly used glenoid prostheses in 2016. The 10 most used glenoid prostheses account for 98.4% of all primary total conventional shoulder procedures.

Figure ST6 Proportion of Primary Total Conventional Shoulder Replacement by Fixation

Table ST21 Primary Total Conventional Shoulder Replacement by Primary Diagnosis and Gender

	Male		Fem	ale	TOTAL	
Primary Diagnosis	Ν	Col%	N	Col%	N	Col%
Osteoarthritis	4603	95.8	6202	93.1	10805	94.2
Rheumatoid Arthritis	53	1.1	159	2.4	212	1.8
Osteonecrosis	41	0.9	129	1.9	170	1.5
Fracture	26	0.5	82	1.2	108	0.9
Other Inflammatory Arthritis	23	0.5	44	0.7	67	0.6
Rotator Cuff Arthropathy	32	0.7	23	0.3	55	0.5
Instability	20	0.4	14	0.2	34	0.3
Tumour	4	0.1	6	0.1	10	0.1
Other	4	0.1	3	0.0	7	0.1
TOTAL	4806	100.0	6662	100.0	11468	100.0

Note: Instability includes dislocation

2008	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
298 SMR	373 Global AP	388 Global AP	275 SMR	233 Global Unite	
167 Aequalis	334 SMR	292 SMR	258 Global AP	228 SMR	
117 Global Advantage	192 Aequalis	146 Aequalis Ascend	202 Global Unite	185 Global AP	
91 Global AP	120 Bigliani/Flatow TM	145 Aequalis	119 Bigliani/Flatow TM	109 Bigliani/Flatow TM	
40 Bigliani/Flatow	103 Ascend	132 Bigliani/Flatow TM	104 Aequalis	91 Comprehensive	
37 Bigliani/Flatow TM	51 Global Advantage	77 Global Advantage	81 Ascend	88 Aequalis	
32 Solar	26 Equinoxe	44 Comprehensive	72 Comprehensive	84 Aequalis Ascend	
27 Affinis	21 Comprehensive	32 Equinoxe	68 Aequalis Ascend	67 Ascend	
11 Univers 3D	13 Solar	26 Turon	50 Global Advantage	45 Global Advantage	
10 Cofield 2	7 Epoca	22 Ascend	45 Equinoxe	41 Equinoxe	
10 Most Used					
830 (10) 97.9%	1240 (10) 98.3%	1304 (10) 97.5%	1274 (10) 97.0%	1171 (10) 97.7%	
Remainder					
18 (7) 2.1%	22 (8) 1.7%	34 (9) 2.5%	40 (4) 3.0%	28 (8) 2.3%	
TOTAL					
848 (17) 100.0%	1262 (18) 100.0%	1338 (19) 100.0%	1314 (14) 100.0%	1199 (18) 100.0%	

Table ST22	10 Most Used Humeral Stem Prostheses in Primary Total Conventional Shoulder Replacement
------------	---

Table ST23 10 Most Used Glenoid Prostheses in Primary Total Conventional Shoulder Replacement

2008	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
237 SMR L1	367 Global Advantage	397 Global Advantage	458 Global Advantage	421 Global Advantage	
167 Aequalis	301 SMR L1	311 Aequalis	253 Aequalis	236 Aequalis	
157 Global	295 Aequalis	256 SMR L1	239 SMR L1	194 SMR L1	
79 Bigliani/Flatow	81 Bigliani/Flatow TM	94 Bigliani/Flatow TM	85 Bigliani/Flatow TM	92 Comprehensive	
57 SMR	61 Global	81 Global	73 Comprehensive	84 Bigliani/Flatow TM	
52 Global Advantage	40 Bigliani/Flatow	44 Bigliani/Flatow	53 Global	44 Global	
32 Solar	33 SMR	44 Comprehensive	45 Equinoxe	41 Equinoxe	
27 Affinis	26 Equinoxe	32 Equinoxe	36 Bigliani/Flatow	32 SMR	
11 Univers 3D	20 Comprehensive	31 SMR	30 SMR	26 Bigliani/Flatow	
10 Cofield 2	13 Solar	26 Turon	24 Turon	10 Turon	
10 Most Used					
829 (10) 97.8%	1237 (10) 98.0%	1316 (10) 98.4%	1296 (10) 98.6%	1180 (10) 98.4%	
Remainder					
19 (7) 2.2%	25 (7) 2.0%	22 (7) 1.6%	18 (3) 1.4%	19 (8) 1.6%	
TOTAL					
848 (17) 100.0%	1262 (17) 100.0%	1338 (17) 100.0%	1314 (13) 100.0%	1199 (18) 100.0%	

OUTCOME FOR ALL DIAGNOSES

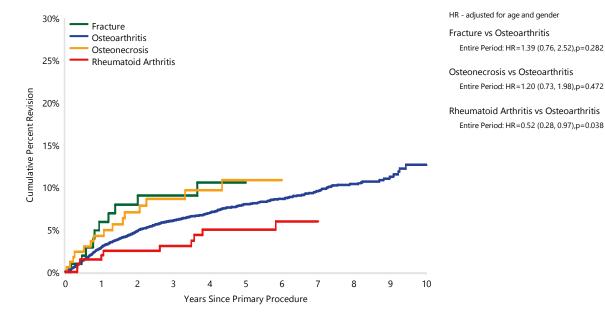
Primary Diagnosis

The cumulative percent revision of primary total conventional shoulder replacement for osteoarthritis is 12.7% at 10 years. There is no difference in the rate of revision when osteoarthritis is compared to fracture and osteonecrosis. Rheumatoid arthritis has a lower rate of revision compared to osteoarthritis (Table ST24 and Figure ST7).

Reason for Revision

Instability/dislocation is the most common reason for revision of primary total conventional shoulder replacement. This accounts for 24.2% of all revisions, followed by rotator cuff insufficiency (22.6%), and loosening (16.5%) (Table ST25). The cumulative incidence of the five most common reasons for revision are presented in Figure ST8.

Type of Revision


The most common type of revision is of the humeral component only (55.4%). This may include the revision of a humeral component (epiphysis and/or humeral stem) and additional minor components, such as the humeral head and/or removal of the glenoid component (Table ST26). Of the 444 humeral component revisions, 384 (86.5%) were revised to a total reverse shoulder replacement. The humeral stem was not revised in 367 (82.7%) procedures.

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Osteoarthritis	745	10805	2.9 (2.6, 3.3)	6.1 (5.6, 6.6)	8.0 (7.4, 8.6)	9.6 (8.8, 10.3)	11.3 (10.2, 12.5)	12.7 (11.0, 14.5)
Rheumatoid Arthritis	10	212	2.0 (0.7, 5.2)	3.1 (1.4, 6.7)	5.0 (2.6, 9.5)	6.0 (3.2, 11.0)		
Osteonecrosis	16	170	4.3 (2.1, 8.8)	8.7 (5.1, 14.5)	10.9 (6.6, 17.7)			
Fracture	11	108	5.9 (2.7, 12.7)	9.0 (4.8, 16.7)	10.6 (5.8, 18.9)			
Other Inflammatory Arthritis	5	67	1.5 (0.2, 10.4)	3.4 (0.9, 13.1)	9.4 (3.4, 24.3)	9.4 (3.4, 24.3)		
Rotator Cuff Arthropathy	9	55	7.6 (2.9, 19.1)	17.0 (8.8, 31.3)	19.5 (10.6, 34.4)	19.5 (10.6, 34.4)		
Other (4)	6	51	6.4 (2.1, 18.5)	16.4 (7.5, 33.8)	16.4 (7.5, 33.8)			
TOTAL	802	11468						

Table ST24 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Primary Diagnosis

Note: Only primary diagnoses with over 30 procedures have been listed

Figure ST7 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Primary Diagnosis

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Fracture	108	94	67	42	17	3	1
Osteoarthritis	10805	9301	6455	3985	1884	378	62
Osteonecrosis	170	145	94	59	34	6	1
Rheumatoid Arthritis	212	192	157	117	59	9	2

 Table ST25
 Primary Total Conventional Shoulder Replacement by Reason for Revision

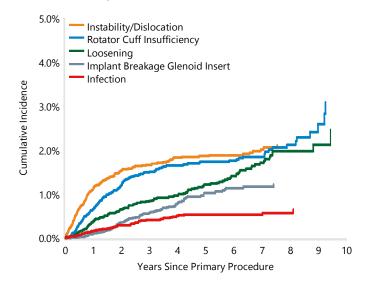

Reason for Revision	Number	Percent
Instability/Dislocation	194	24.2
Rotator Cuff Insufficiency	181	22.6
Loosening	132	16.5
Implant Breakage Glenoid Insert	88	11.0
Infection	50	6.2
Dissociation	29	3.6
Fracture	20	2.5
Incorrect Sizing	16	2.0
Pain	15	1.9
Arthrofibrosis	13	1.6
Metal Related Pathology	11	1.4
Wear Glenoid Insert	9	1.1
Malposition	8	1.0
Lysis	4	0.5
Other	32	4.0
TOTAL	802	100.0

Table ST26 Primary Total Conventional Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Humeral Component	444	55.4
Humeral/Glenoid	141	17.6
Head Only	83	10.3
Glenoid Component	59	7.4
Head/Insert	31	3.9
Cement Spacer	24	3.0
Removal of Prostheses	11	1.4
Minor Components	5	0.6
Reoperation	3	0.4
Reinsertion of Components	1	0.1
TOTAL	802	100.0

Note: Humeral heads are replaced when the humeral component is revised

Figure ST8 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Shoulder Replacement

OUTCOME FOR OSTEOARTHRITIS

Age and Gender

There is no difference in the rate of revision between patients aged less than 55 years compared to those aged 55 to 64 years. Patients aged 65 to 74 years and 75 years or older have a lower rate of revision compared to patients aged less than 55 years (Table ST27 and Figure ST9).

There is no difference in the rate of revision between males and females (Table ST28 and Figure ST10).

Fixation

Cementless fixation has a higher rate of revision compared to both cemented and hybrid fixation (glenoid cemented). There is no difference between cemented and hybrid fixation (glenoid cemented) (Table ST29 and Figure ST11).

The fixation analysis was repeated excluding the SMR L2 prosthesis as it has been withdrawn. The outcome of fixation remained the same, with cementless fixation of the glenoid being associated with a higher rate of revision when the SMR L2 was excluded (Table ST30 and Figure ST12).

The rate of revision is increased if the glenoid is not cemented.

Glenoid Type and Design

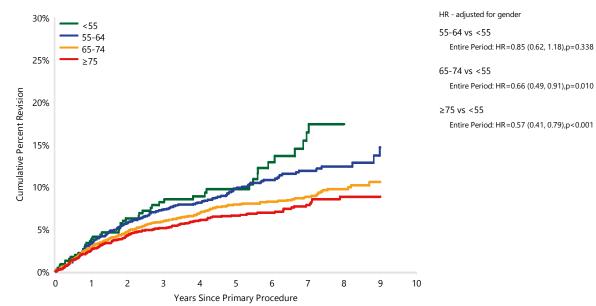
A further analysis was undertaken to determine the impact of glenoid type. There are three broad glenoid types: modular metal backed, non modular metal backed and all polyethylene. All polyethylene glenoid prostheses were used in 70.7% of primary total conventional shoulder replacements. These prostheses have a lower rate of revision compared to modular and non modular metal backed glenoid prostheses. A modular metal backed glenoid has a higher rate of revision compared to a non modular metal backed glenoid (Table ST31 and Figure ST13). When a modular metal backed glenoid was revised, 78.4% retained the metal glenoid component and replaced the modular insert with a glenosphere. The humeral stem was also revised in only a small number of these revisions (15 out of the total 360 procedures).

The above analysis was repeated excluding the SMR L2 and the results remained consistent (Table ST32 and Figure ST14).

Pegged and keeled all polyethylene glenoid prostheses were also compared. The majority of all polyethylene glenoid prostheses are pegged (84.9%). There is no difference in the rate of revision between these prostheses (Table ST33 and Figure ST15).

The use of cross-linked polyethylene (XLPE) glenoids has increased from 11.1% in 2008 to 38.6% in 2016 (Figure ST16). XLPE glenoids have a lower cumulative percent revision at seven years compared to non XLPE glenoids (2.6% compared to 11.4%) (Table ST34 and Figure ST17). This is also the case when all polyethylene glenoids are compared (Table ST35 and Figure ST18). However, it remains uncertain if these differences are due to the XLPE or the prosthesis it is used with.

Humeral Heads

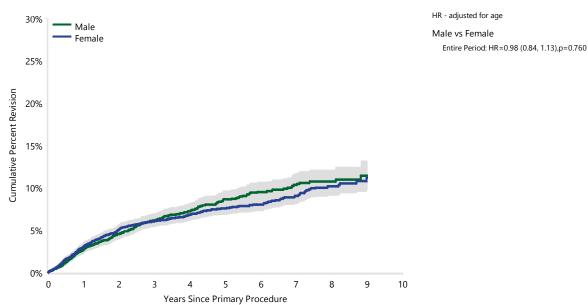

Humeral head sizes less than 44 mm have the highest rate of revision. This decreases with increasing head size, with humeral heads larger than 50mm having the lowest rate of revision (Table ST36 and Figure ST19). A comparison of revision diagnoses is shown in Figure ST20.

The outcomes of the most commonly used prosthesis combinations are listed in Table ST37. The most commonly used cementless prosthesis combinations are listed in Table ST38. The most commonly used prosthesis combinations with hybrid (glenoid cemented) fixation are listed in Table ST39.

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	46	481	3.9 (2.4, 6.1)	8.2 (5.8, 11.4)	9.7 (7.1, 13.3)	16.4 (11.9, 22.3)		
55-64	200	2377	3.3 (2.7, 4.2)	7.3 (6.3, 8.6)	9.8 (8.5, 11.3)	11.9 (10.3, 13.8)	14.6 (11.8, 18.2)	
65-74	314	4786	2.9 (2.4, 3.4)	5.9 (5.3, 6.7)	7.9 (7.0, 8.8)	8.8 (7.8, 10.0)	10.6 (9.1, 12.2)	
≥75	185	3161	2.5 (2.0, 3.2)	5.1 (4.4, 6.0)	6.6 (5.7, 7.7)	7.9 (6.7, 9.2)	8.8 (7.4, 10.5)	
TOTAL	745	10805						

Table ST27 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Age (Primary Diagnosis OA)

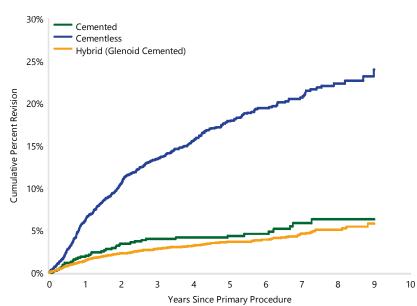
Figure ST9 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Age (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	481	391	269	173	85	19	2
55-64	2377	2025	1383	892	433	89	14
65-74	4786	4103	2827	1707	815	162	27
≥75	3161	2782	1976	1213	551	108	19

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	321	4603	2.7 (2.3, 3.3)	6.1 (5.4, 6.9)	8.6 (7.7, 9.7)	10.3 (9.2, 11.6)	11.4 (9.9, 13.2)	
Female	424	6202	3.0 (2.6, 3.5)	6.1 (5.5, 6.8)	7.6 (6.9, 8.4)	9.1 (8.2, 10.0)	11.2 (9.7, 12.8)	
TOTAL	745	10805						

 Table ST28
 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Gender (Primary Diagnosis OA)



Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 7 Yrs 9 Yrs 10 Yrs Male 4603 3925 2661 1576 742 155 24 Female 6202 5376 3794 2409 1142 223 38

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	42	862	1.9 (1.2, 3.1)	4.0 (2.8, 5.6)	4.4 (3.1, 6.1)	5.8 (4.2, 8.1)	6.3 (4.5, 8.8)	
Cementless	482	3094	6.2 (5.4, 7.1)	13.4 (12.2, 14.8)	17.9 (16.4, 19.6)	20.7 (18.9, 22.6)	24.0 (21.3, 27.0)	
Hybrid (Glenoid Cemented)	213	6784	1.4 (1.2, 1.8)	2.8 (2.4, 3.3)	3.7 (3.2, 4.2)	4.6 (3.9, 5.4)	5.8 (4.7, 7.1)	
Hybrid (Glenoid Cementless)	8	65	9.6 (4.4, 20.1)	11.7 (5.7, 23.2)	15.2 (7.6, 29.4)			
TOTAL	745	10805						

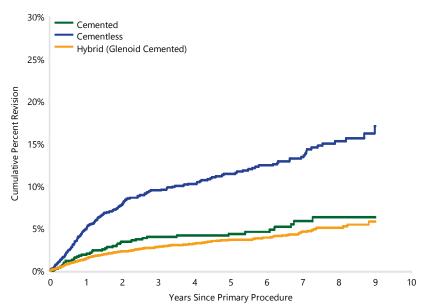
 Table ST29
 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA)

Figure ST11 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA)

HR - adjusted for age and gender

Cemented vs Hybrid (Glenoid Cemented) Entire Period: HR=1.34 (0.96, 1.87),p=0.083

Cementless vs Hybrid (Glenoid Cemented) 0 - 6Mth: HR=3.35 (2.41, 4.66),p<0.001 6Mth+: HR=5.53 (4.62, 6.63),p<0.001


Cementless vs Cemented Entire Period: HR=3.75 (2.74, 5.15),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	862	797	647	456	241	52	6
Cementless	3094	2634	1809	1092	500	96	18
Hybrid (Glenoid Cemented)	6784	5821	3964	2420	1138	227	38

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	42	862	1.9 (1.2, 3.1)	4.0 (2.8, 5.6)	4.4 (3.1, 6.1)	5.8 (4.2, 8.1)	6.3 (4.5, 8.8)	
Cementless	234	2308	5.0 (4.1, 6.0)	9.5 (8.3, 10.9)	11.4 (10.0, 13.1)	13.4 (11.7, 15.4)	17.1 (14.3, 20.3)	
Hybrid (Glenoid Cemented)	213	6784	1.4 (1.2, 1.8)	2.8 (2.4, 3.3)	3.7 (3.2, 4.2)	4.6 (3.9, 5.4)	5.8 (4.7, 7.1)	
Hybrid (Glenoid Cementless)	5	52	7.9 (3.1, 19.8)	10.9 (4.6, 24.6)	10.9 (4.6, 24.6)			
TOTAL	494	10006						

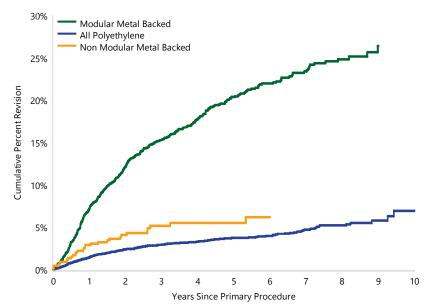
Table ST30 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)

Figure ST12 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)

HR - adjusted for age and gender

Cemented vs Hybrid (Glenoid Cemented) Entire Period: HR=1.33 (0.96, 1.85),p=0.090

Cementless vs Hybrid (Glenoid Cemented) Entire Period: HR=3.29 (2.74, 3.97),p<0.001


Cementless vs Cemented Entire Period: HR=2.47 (1.78, 3.44),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	862	797	647	456	241	52	6
Cementless	2308	1930	1217	666	481	96	18
Hybrid (Glenoid Cemented)	6784	5821	3964	2420	1138	227	38

Glenoid Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Modular Metal Backed	459	2509	7.2 (6.2, 8.3)	15.3 (13.9, 16.9)	20.4 (18.7, 22.3)	23.4 (21.4, 25.5)	26.4 (23.6, 29.4)	
All Polyethylene	255	7634	1.5 (1.2, 1.8)	3.0 (2.6, 3.4)	3.8 (3.3, 4.3)	4.7 (4.1, 5.5)	5.8 (4.8, 6.9)	7.0 (5.3, 9.2)
Non Modular Metal Backed	31	662	2.9 (1.8, 4.6)	5.2 (3.6, 7.5)	5.5 (3.8, 7.9)			
TOTAL	745	10805						

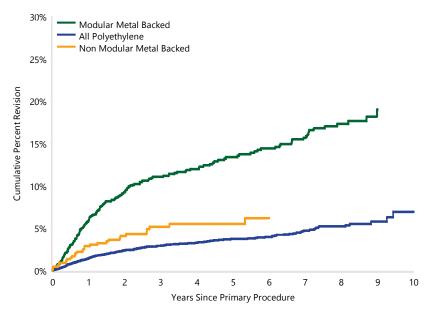
Table ST31 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)

Figure ST13 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)

HR - adjusted for age and gender Modular Metal Backed vs All Polyethylene

Entire Period: HR=5.48 (4.70, 6.39),p<0.001

Non Modular Metal Backed vs All Polyethylene Entire Period: HR=1.64 (1.13, 2.39),p=0.009


Modular Metal Backed vs Non Modular Metal Backed 0 - 3Mth: HR=1.87 (1.04, 3.37),p=0.037 3Mth - 9Mth: HR=3.29 (2.09, 5.18),p<0.001 9Mth - 1Yr: HR=3.62 (2.02, 6.51),p<0.001 1Yr - 2Yr: HR=3.58 (2.28, 5.62),p<0.001 2Yr+: HR=3.73 (2.44, 5.69),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Modular Metal Backed	2509	2143	1514	947	480	99	18
All Polyethylene	7634	6616	4631	2882	1379	279	44
Non Modular Metal Backed	662	542	310	156	25	0	0

Glenoid Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Modular Metal Backed	208	1710	6.0 (4.9, 7.2)	11.1 (9.6, 12.8)	13.4 (11.6, 15.5)	15.7 (13.6, 18.1)	19.0 (16.1, 22.4)	
All Polyethylene	255	7634	1.5 (1.2, 1.8)	3.0 (2.6, 3.4)	3.8 (3.3, 4.3)	4.7 (4.1, 5.5)	5.8 (4.8, 6.9)	7.0 (5.3, 9.2)
Non Modular Metal Backed	31	662	2.9 (1.8, 4.6)	5.2 (3.6, 7.5)	5.5 (3.8, 7.9)			
TOTAL	494	10006						

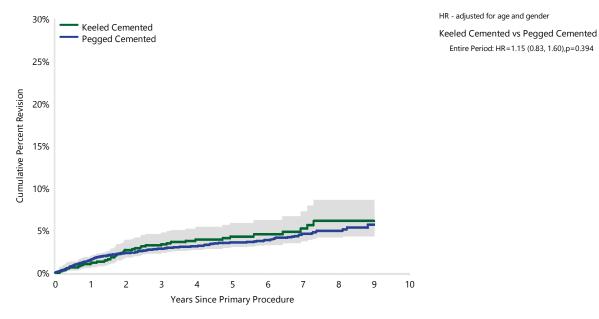
 Table ST32
 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA, excluding SMR L2)

Figure ST14 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA, excluding SMR L2)

HR - adjusted for age and gender

Modular Metal Backed vs All Polyethylene Entire Period: HR=3.69 (3.07, 4.43),p<0.001

Non Modular Metal Backed vs All Polyethylene Entire Period: HR=1.65 (1.13, 2.39),p=0.009


Modular Metal Backed vs Non Modular Metal Backed Entire Period: HR=2.24 (1.54, 3.27),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Modular Metal Backed	1710	1428	911	513	461	99	18
All Polyethylene	7634	6616	4631	2882	1379	279	44
Non Modular Metal Backed	662	542	310	156	25	0	0

Table ST33 Cumulative Percent Revision of All Polyethylene Cemented Primary Total Conventional Shoulder Replacement by Glenoid Design (Primary Diagnosis OA)

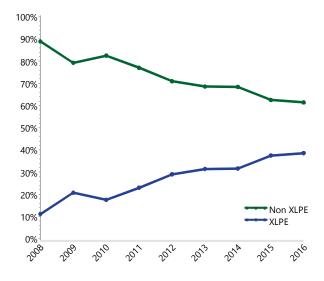
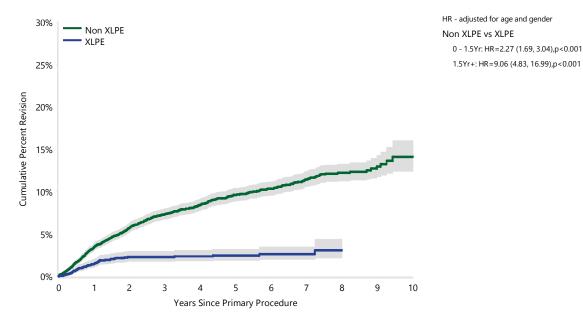

Glenoid Design	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Keeled Cemented	44	1115	1.1 (0.6, 2.0)	3.4 (2.4, 4.7)	4.3 (3.1, 5.9)	5.2 (3.8, 7.3)	6.1 (4.3, 8.6)	
Pegged Cemented	208	6478	1.5 (1.3, 1.9)	2.9 (2.5, 3.4)	3.6 (3.1, 4.2)	4.6 (3.9, 5.4)	5.7 (4.6, 7.0)	
TOTAL	252	7593						

Figure ST15 Cumulative Percent Revision of All Polyethylene Cemented Primary Total Conventional Shoulder Replacement by Glenoid Design (Primary Diagnosis OA)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Keeled Cemented	1115	1015	762	494	231	62	9
Pegged Cemented	6478	5565	3841	2376	1146	217	35

Figure ST16 Proportion of Primary Total Conventional Shoulder Replacement by Polyethylene Type (All Diagnoses)



	· ·	/						
Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Non XLPE	671	7868	3.4 (3.0, 3.9)	7.3 (6.7, 8.0)	9.6 (8.9, 10.4)	11.4 (10.6, 12.4)	13.0 (11.8, 14.3)	14.1 (12.4, 16.0)
XLPE	62	2855	1.5 (1.1, 2.0)	2.3 (1.8, 3.0)	2.5 (1.9, 3.2)	2.6 (2.0, 3.5)		
TOTAL	733	10723						

Table ST34 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement using All Types of Glenoid by Polyethylene Type (Primary Diagnosis OA)

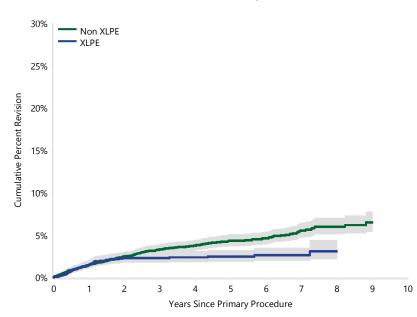
Note: Excludes 82 procedures with unknown bearing surface, most of which are customised prostheses where the type of polyethylene used has not been defined

Figure ST17 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement using All Types of Glenoid by Polyethylene Type (Primary Diagnosis OA)

Number at Risk 0 Yr 3 Yrs 9 Yrs 10 Yrs 1 Yr 5 Yrs 7 Yrs Non XLPE 7868 6861 4927 3197 1557 343 56 XLPE 2855 2363 1465 733 276 27 6

HR - adjusted for age and gender

Entire Period: HR=1.53 (1.15, 2.04),p=0.003

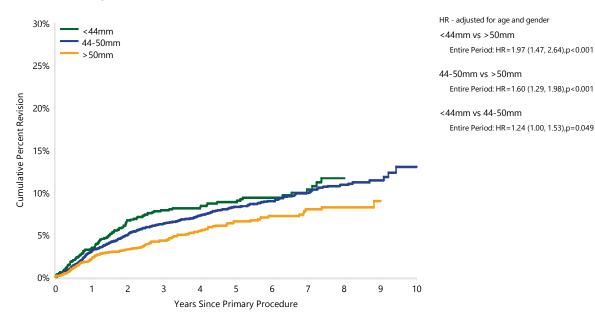

Non XLPE vs XLPE

Polyethylene Type	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Non XLPE	193	4767	1.5 (1.2, 1.9)	3.3 (2.8, 3.9)	4.3 (3.7, 5.0)	5.5 (4.7, 6.4)	6.5 (5.4, 7.7)	
XLPE	62	2855	1.5 (1.1, 2.0)	2.3 (1.8, 3.0)	2.5 (1.9, 3.2)	2.6 (2.0, 3.5)		
TOTAL	255	7622						

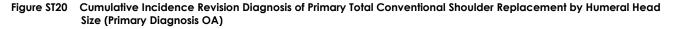
Table ST35 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement using All Polyethylene Glenoids by Polyethylene Type (Primary Diagnosis OA)

Note: Excludes 12 procedures with unknown bearing surface most of which are customised prostheses where the type of polyethylene used has not been defined

Figure ST18 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement using All Polyethylene Glenoids by Polyethylene Type (Primary Diagnosis OA)


Number at Risk 1 Yr 3 Yrs 5 Yrs 7 Yrs 9 Yrs 10 Yrs 0 Yr Non XLPE 4767 4243 3166 2149 1103 252 38 XLPE 2855 2363 1465 733 276 27 6

Head Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<44mm	115	1417	3.5 (2.6, 4.6)	7.9 (6.5, 9.6)	8.9 (7.3, 10.7)	10.4 (8.5, 12.6)		
44-50mm	496	6891	3.1 (2.7, 3.5)	6.4 (5.8, 7.0)	8.3 (7.6, 9.1)	10.0 (9.1, 10.9)	11.5 (10.3, 12.8)	13.0 (11.0, 15.4)
>50mm	133	2493	2.1 (1.6, 2.8)	4.3 (3.5, 5.3)	6.6 (5.5, 7.9)	8.0 (6.6, 9.7)	9.0 (7.1, 11.4)	
TOTAL	744	10801						


Table ST36 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)

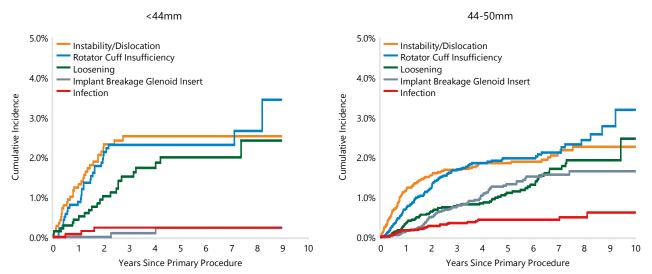
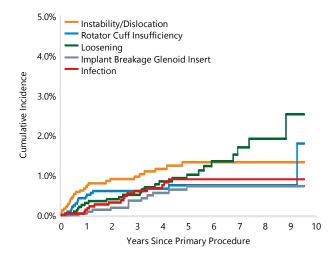

Note: Excludes four procedures with unknown humeral head size

Figure ST19 Cumulative Percent Revision of Primary Total Conventional Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<44mm	1417	1220	823	517	232	38	4
44-50mm	6891	5941	4146	2542	1218	239	40
>50mm	2493	2137	1484	924	433	101	18

Humeral Stem	Glenoid	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	52	1630	1.4 (0.9, 2.1)	2.6 (1.9, 3.6)	3.3 (2.5, 4.3)	4.2 (3.1, 5.7)	4.2 (3.1, 5.7)	
Aequalis Ascend	Aequalis	2	276	0.4 (0.1, 3.0)					
Affinis	Affinis	11	173	0.0 (0.0, 0.0)	1.8 (0.6, 5.5)	5.1 (2.6, 10.0)	6.2 (3.2, 11.7)		
Ascend	Aequalis	10	331	1.6 (0.7, 3.8)	3.6 (1.9, 7.0)				
Bigliani/Flatow	Bigliani/Flatow	9	141	2.1 (0.7, 6.5)	3.6 (1.5, 8.5)	3.6 (1.5, 8.5)	5.6 (2.7, 11.5)		
Bigliani/ Flatow TM	Bigliani/ Flatow	22	365	2.2 (1.1, 4.4)	5.2 (3.3, 8.3)	6.5 (4.2, 9.9)	7.1 (4.6, 10.9)		
Bigliani/Flatow TM	Bigliani/Flatow TM	26	583	2.5 (1.5, 4.2)	5.0 (3.3, 7.4)	5.3 (3.6, 7.8)			
Comprehensive	Comprehensive	12	257	4.5 (2.5, 8.3)	5.1 (2.9, 9.2)				
Ероса	Ероса	3	50	0.0 (0.0, 0.0)	4.8 (1.2, 17.7)	7.9 (2.6, 22.9)	7.9 (2.6, 22.9)		
Equinoxe	Equinoxe	6	155	3.0 (1.1, 7.8)					
Global AP	Global	22	439	1.2 (0.5, 2.8)	3.7 (2.2, 6.1)	4.3 (2.7, 6.8)	6.6 (4.2, 10.4)		
Global AP	Global Advantage	46	1977	1.6 (1.2, 2.3)	2.3 (1.7, 3.1)	2.5 (1.8, 3.3)	2.7 (2.0, 3.7)		
Global Advantage	Global	21	495	1.7 (0.8, 3.3)	3.4 (2.1, 5.5)	3.4 (2.1, 5.5)	4.9 (3.2, 7.7)	4.9 (3.2, 7.7)	
Global Advantage	Global Advantage	3	158	0.0 (0.0, 0.0)	2.3 (0.6, 9.2)	2.3 (0.6, 9.2)			
Global Unite	Global Advantage	0	404	0.0 (0.0, 0.0)					
SMR	SMR	16	398	1.8 (0.9, 3.8)	3.8 (2.3, 6.4)	4.2 (2.5, 6.8)	4.2 (2.5, 6.8)		
SMR	SMR L1	183	1648	5.7 (4.6, 6.9)	10.6 (9.1, 12.3)	12.4 (10.7, 14.4)	13.9 (12.0, 16.2)	17.4 (14.4, 20.9)	
SMR	SMR L2	250	798	9.7 (7.8, 12.0)	22.6 (19.8, 25.6)	30.2 (27.1, 33.6)			
Solar	Solar	6	169	0.6 (0.1, 4.1)	2.4 (0.9, 6.2)	3.2 (1.3, 7.5)	3.2 (1.3, 7.5)		
Turon	Turon	1	70	1.5 (0.2, 10.0)	1.5 (0.2, 10.0)				
Other (35)		44	288	4.4 (2.5, 7.6)	9.1 (6.1, 13.4)	15.5 (11.3, 21.1)	19.6 (14.7, 26.0)		
TOTAL		745	10805						

Table ST37	Cumulative Percent Revision of All Primary Total Conventional Shoulder Replacement by Prosthesis Combination
	(Primary Diagnosis OA)

Note: Only combinations with over 50 procedures have been listed

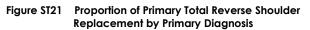
Table ST38 Cumulative Percent Revision of Cementless Primary Total Conventional Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Humeral Stem	Glenoid	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Bigliani/ Flatow TM	Bigliani/ Flatow TM	24	556	2.3 (1.3, 4.0)	4.8 (3.2, 7.3)	5.2 (3.4, 7.8)			
Ероса	Ероса	3	36	0.0 (0.0, 0.0)	7.1 (1.8, 25.7)	12.6 (4.1, 35.1)			
Equinoxe	Equinoxe	3	27	12.0 (4.0, 32.8)					
SMR	SMR L1	180	1618	5.6 (4.6, 6.9)	10.6 (9.0, 12.3)	12.4 (10.6, 14.4)	13.9 (11.9, 16.2)	17.4 (14.4, 21.0)	
SMR	SMR L2	247	785	9.6 (7.7, 11.9)	22.7 (19.9, 25.8)	30.3 (27.2, 33.7)			
Univers 3D	Univers 3D	11	26	7.7 (2.0, 27.4)	19.2 (8.5, 40.2)	23.3 (11.2, 44.7)	35.4 (20.2, 57.1)	39.4 (23.5, 60.9) 4	45.5 (27.8, 67.7)
Vaios	Vaios	11	24	16.7 (6.6, 38.5)	29.2 (15.1, 51.6)	44.3 (26.4, 67.3)			
Other (14)		3	22	5.3 (0.8, 31.9)	5.3 (0.8, 31.9)	17.1 (4.1, 57.1)	17.1 (4.1, 57.1)		
TOTAL		482	3094						

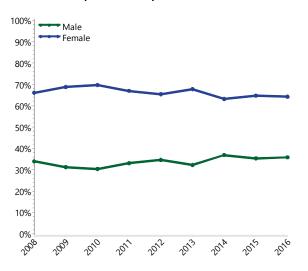
Note: Only combinations with over 10 procedures have been listed

Table ST39 Cumulative Percent Revision of Hybrid (Glenoid Cemented) Primary Total Conventional Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Humeral Stem	Glenoid	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	41	1423	1.2 (0.8, 2.0)	2.3 (1.6, 3.2)	2.9 (2.1, 4.0)	4.0 (2.9, 5.7)		
Aequalis Ascend	Aequalis	2	265	0.4 (0.1, 3.1)					
Affinis	Affinis	11	171	0.0 (0.0, 0.0)	1.8 (0.6, 5.6)	5.2 (2.6, 10.1)	6.2 (3.2, 11.8)		
Ascend	Aequalis	9	314	1.7 (0.7, 4.0)	3.3 (1.6, 6.6)				
Bigliani/Flatow	Bigliani/Flatow	7	120	2.5 (0.8, 7.6)	4.3 (1.8, 9.9)	4.3 (1.8, 9.9)	5.4 (2.5, 11.7)		
Bigliani/Flatow TM	Bigliani/Flatow	16	337	1.5 (0.6, 3.6)	4.0 (2.3, 7.0)	5.4 (3.3, 8.8)	5.4 (3.3, 8.8)		
Comprehensive	Comprehensive	12	250	4.7 (2.5, 8.6)	5.3 (2.9, 9.4)				
Equinoxe	Equinoxe	3	125	0.8 (0.1, 5.8)					
Global AP	Global	21	385	1.3 (0.6, 3.1)	4.3 (2.6, 7.0)	5.0 (3.1, 7.9)	7.8 (4.9, 12.2)		
Global AP	Global Advantage	42	1748	1.7 (1.2, 2.4)	2.4 (1.8, 3.3)	2.6 (1.9, 3.5)	2.9 (2.0, 4.0)		
Global Advantage	Global	14	404	1.5 (0.7, 3.4)	3.5 (2.0, 5.9)	3.5 (2.0, 5.9)	4.0 (2.3, 6.7)	4.0 (2.3, 6.7)	
Global Advantage	Global Advantage	3	133	0.0 (0.0, 0.0)	2.8 (0.7, 11.1)				
Global Unite	Global Advantage	0	370	0.0 (0.0, 0.0)					
SMR	SMR	14	382	1.9 (0.9, 4.0)	3.4 (1.9, 5.9)	3.8 (2.2, 6.4)	3.8 (2.2, 6.4)		
Solar	Solar	4	114	0.9 (0.1, 6.1)	1.8 (0.4, 6.9)	2.9 (0.9, 8.8)	2.9 (0.9, 8.8)		
Turon	Turon	0	64	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Other (26)		14	179	1.7 (0.6, 5.3)	4.0 (1.8, 8.8)	9.5 (5.5, 16.4)	11.9 (7.1, 19.6)		
TOTAL		213	6784						


Note: Only combinations with over 50 procedures have been listed

PRIMARY TOTAL REVERSE SHOULDER REPLACEMENT

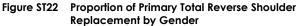

DEMOGRAPHICS

There have been 15,781 primary total reverse shoulder replacement procedures reported to the Registry. This is an increase of 3,419 procedures compared to the previous report. Primary total reverse shoulder replacement has increased from 43.3% of all total shoulder replacements in 2008 to 69.3% in 2016.

The proportion of total reverse shoulder replacements for osteoarthritis declined from 57.8% in 2008 to 40.6% in 2013, increasing to 45.1% in 2016. The diagnosis of rotator cuff arthropathy was added to the procedure form in 2008. The proportion of primary total reverse shoulder procedures undertaken for rotator cuff arthropathy increased from 21.0% in 2008 to 37.9% in 2013, and is 33.9% in 2016. The proportion of total reverse shoulder replacements for fracture has increased from 12.0% in 2008 to 16.0% in 2016 (Figure ST21).

Primary total reverse shoulder replacement is most commonly undertaken in females (65.6%) (Table ST40). There has been minimal change in gender distribution since 2008 (Figure ST22). The mean age is 75.6 years for females and 73.1 years for males. The proportion of patients aged 75 years or older has declined from 61.4% in 2010 to 47.0% in 2016 (Figure ST23).

The most common primary diagnoses are osteoarthritis (45.5%), rotator cuff arthropathy (34.0%) and fracture (15.0%) (Table ST41).



The majority of procedures use cementless fixation (75.1%). Hybrid fixation (humerus cemented) is used in 23.4% of procedures. There has been little variation in the use of fixation since 2008 (Figure ST24).


The most used humeral stems are the Delta Xtend, SMR and Aequalis (Table ST42). The most used glenoid prostheses are the Delta Xtend, SMR L1 and Aequalis (Table ST43).

Table ST40 Primary Total Reverse Shoulder Replacement by Age and Gender

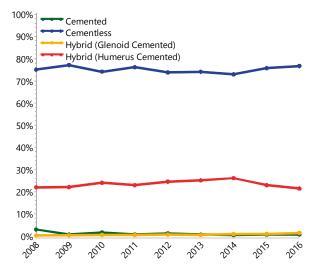

Gender	Number	Percent	Minimum	Maximum	Median	Mean	Std Dev
Male	5434	34.4%	24	96	74	73.1	8.1
Female	10347	65.6%	14	102	76	75.6	7.9
TOTAL	15781	100.0%	14	102	75	74.7	8.1

Figure ST23 Proportion of Primary Total Reverse Shoulder Replacement by Age

Figure ST24 Proportion of Primary Total Reverse Shoulder Replacement by Fixation

Table ST41 Primary Total Reverse Shoulder Replacement by Primary Diagnosis and Gender

	Male		Fem	ale	TOTAL	
Primary Diagnosis	N	Col%	N	Col%	Ν	Col%
Osteoarthritis	2626	48.3	4548	44.0	7174	45.5
Rotator Cuff Arthropathy	2225	40.9	3138	30.3	5363	34.0
Fracture	355	6.5	2010	19.4	2365	15.0
Rheumatoid Arthritis	64	1.2	277	2.7	341	2.2
Instability	62	1.1	129	1.2	191	1.2
Osteonecrosis	31	0.6	148	1.4	179	1.1
Tumour	52	1.0	53	0.5	105	0.7
Other Inflammatory Arthritis	17	0.3	40	0.4	57	0.4
Other	2	0.0	4	0.0	6	0.0
TOTAL	5434	100.0	10347	100.0	15781	100.0

Note: Instability includes instability and dislocation

2008	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
262 SMR	713 Delta Xtend	845 Delta Xtend	959 Delta Xtend	1017 Delta Xtend	
252 Delta Xtend	567 SMR	633 SMR	729 SMR	909 SMR	
76 Aequalis	308 Aequalis	253 Aequalis	265 Aequalis	358 Aequalis	
42 Trabecular Metal	142 Trabecular Metal	141 Trabecular Metal	191 Trabecular Metal	205 Trabecular Metal	
21 Delta CTA	38 RSP	113 RSP	142 RSP	192 Comprehensive	
2 Custom Made (Lima)	36 Comprehensive	83 Aequalis Ascend	103 Comprehensive	176 RSP	
1 Generic Humera 1 Stem	14 Equinoxe	80 Comprehensive	80 Comprehensive 103 Equinoxe		
1 Promos	13 Global Unite	45 Global Unite	67 Global Unite	104 Global Unite	
	12 Affinis	32 Equinoxe	46 Aequalis Ascend	92 Aequalis Ascend	
	7 Vaios	18 Anatomical Shoulder	44 Anatomical Shoulder	79 Affinis	
10 Most Used					
657 (8) 100.0%	1850 (10) 99.4%	2243 (10) 99.1%	2649 (10) 98.7%	3300 (10) 99.0%	
Remainder					
0 (0) 0%	11 (3) 0.6%	21 (4) 0.9%	35 (3) 1.3%	32 (3) 1.0%	
TOTAL					
657 (8) 100.0%	1861 (13) 100.0%	2264 (14) 100.0%	2684 (13) 100.0%	3332 (13) 100.0%	

Table ST42 10 Most Used Humeral Stem Prostheses in Primary Total Reverse Shoulder Replacement

Table ST43 10 Most Used Glenoid Prostheses in Primary Total Reverse Shoulder Replacement

2008	2013	2014	2015	2016	
N Model	N Model	N Model	N Model	N Model	
263 SMR L1	726 Delta Xtend	890 Delta Xtend	1026 Delta Xtend	1121 Delta Xtend	
252 Delta Xtend	562 SMR L1	628 SMR L1	728 SMR L1	897 SMR L1	
76 Aequalis	313 Aequalis	338 Aequalis	311 Aequalis	451 Aequalis	
42 Trabecular Metal	144 Trabecular Metal	150 Trabecular Metal	216 Trabecular Metal	231 Trabecular Metal	
21 Delta CTA	38 RSP	113 RSP	142 RSP	178 Comprehensive Reverse	
1 Generic Metaglene	Comprehensive 36 Reverse	78 Comprehensive Reverse	103 Equinoxe	176 RSP	
1 Promos	14 Equinoxe	32 Equinoxe	101 Comprehensive Reverse	164 Equinoxe	
1 SMR	12 Affinis	10 Affinis	28 Affinis	79 Affinis	
	7 Vaios	10 Anatomical Shoulder	19 Anatomical Shoulder	7 SMR Axioma	
	6 Mets	9 Mets	6 Mets	6 Anatomical Shoulder	
10 Most Used					
657 (8) 100.0%	1858 (10) 99.8%	2258 (10) 99.7%	2680 (10) 99.9%	3310 (10) 99.3%	
Remainder					
0 (0) 0%	3 (2) 0.2%	6 (3) 0.3%	4 (2) 0.1%	22 (8) 0.7%	
TOTAL					
657 (8) 100.0%	1861 (12) 100.0%	2264 (13) 100.0%	2684 (12) 100.0%	3332 (18) 100.0%	

OUTCOME FOR ALL DIAGNOSES

Primary Diagnosis

Fracture has a higher rate of revision in the first three months compared to osteoarthritis. After this time, there is no difference in the rate of revision of total reverse shoulder replacement when primary diagnosis is considered (Table ST44 and Figure ST25).

Reason for Revision

Instability/dislocation is the most common reason for revision (35.4%), followed by infection (19.1%), loosening (18.2%) and fracture (13.7%) (Table ST45 and Figure ST26).

Type of Revision

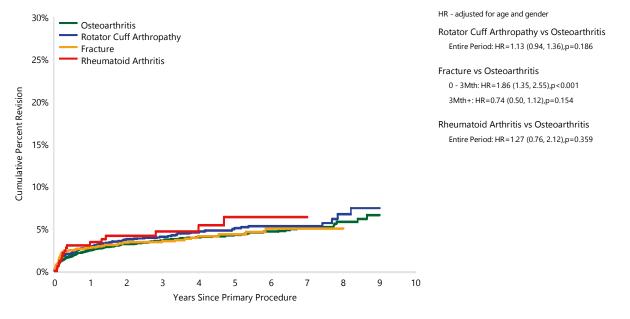

The four most common types of revision are: replacement of both cup (liner) and glenosphere (23.2%), cup only (20.1%), humeral component only (20.1%), and humeral head only (converted to a hemi arthroplasty, 16.0%) (Table ST46). When only the humeral component is revised, this may be associated with exchange of the epiphysis and/or humeral stem and additional minor components such as the liner.

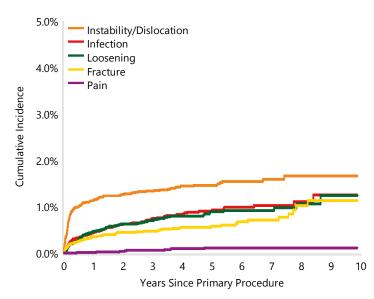
Table ST44 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Primary Diagnosis

Primary Diagnosis	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Osteoarthritis	249	7174	2.5 (2.1, 2.9)	3.6 (3.1, 4.1)	4.3 (3.7, 4.9)	5.1 (4.4, 5.9)	6.6 (5.2, 8.3)	
Rotator Cuff Arthropathy	207	5363	2.9 (2.4, 3.4)	4.0 (3.5, 4.7)	5.1 (4.3, 5.9)	5.3 (4.5, 6.2)	7.4 (5.4, 10.1)	
Fracture	80	2365	2.8 (2.2, 3.6)	3.5 (2.8, 4.4)	4.3 (3.4, 5.5)	5.0 (3.8, 6.7)		
Rheumatoid Arthritis	16	341	3.4 (1.9, 6.1)	4.7 (2.8, 7.8)	6.4 (3.7, 10.7)	6.4 (3.7, 10.7)		
Other (5)	30	538	3.6 (2.3, 5.7)	6.2 (4.1, 9.2)	6.7 (4.5, 10.0)	7.6 (5.0, 11.6)		
TOTAL	582	15781						

Note: Only primary diagnoses with over 200 procedures have been listed

Figure ST25 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Primary Diagnosis

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Osteoarthritis	7174	5438	3122	1684	740	133	17
Rotator Cuff Arthropathy	5363	4051	2255	1008	327	58	15
Fracture	2365	1721	877	362	122	20	2
Rheumatoid Arthritis	341	271	179	89	45	6	4


Table ST45	Primary Total Reverse Shoulder Replacement
	by Reason for Revision

Reason for Revision	Number	Percent
Instability/Dislocation	206	35.4
Infection	111	19.1
Loosening	106	18.2
Fracture	80	13.7
Dissociation	12	2.1
Pain	10	1.7
Lysis	8	1.4
Incorrect Sizing	7	1.2
Malposition	6	1.0
Arthrofibrosis	3	0.5
Rotator Cuff Insufficiency	2	0.3
Other	31	5.3
TOTAL	582	100.0

Table ST46 Primary Total Reverse Shoulder Replacement by Type of Revision

Type of Revision	Number	Percent
Cup/Glenosphere	135	23.2
Cup Only	117	20.1
Humeral Component	117	20.1
Humeral Head Only	93	16.0
Glenoid Component	36	6.2
Humeral/Glenoid	31	5.3
Cement Spacer	24	4.1
Removal of Prostheses	12	2.1
Glenosphere Only	5	0.9
Minor Components	5	0.9
Cement Only	3	0.5
Reoperation	2	0.3
Head/Insert	1	0.2
Reinsertion of Components	1	0.2
TOTAL	582	100.0

Figure ST26 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement

OUTCOME FOR OSTEOARTHRITIS

Age and Gender

Age is not a risk factor for revision of total reverse shoulder replacement undertaken for osteoarthritis (Table ST47 and Figure ST27).

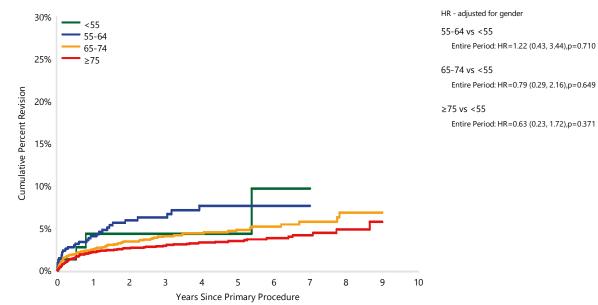
Males have a higher rate of revision compared to females (Table ST48 and Figure ST28).

Fixation

Fixation is not a risk factor for revision (Table ST49 and Figure ST29), with no difference between hybrid (humerus cemented) and cementless humeral stems. This is also the case when the SMR L2 prosthesis is excluded from the analysis (Table ST50 and Figure ST30).

Glenosphere Size

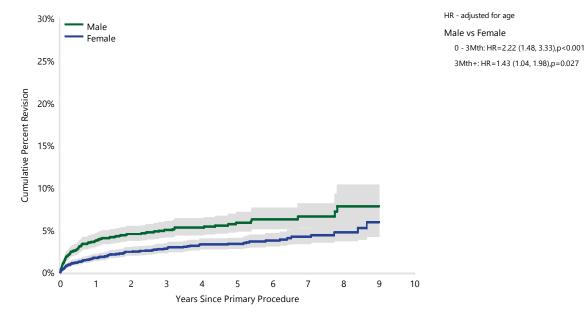
Glenosphere sizes smaller than 38mm have a higher rate of revision over the entire period compared to 38 to 40mm sizes and in the first three months only when compared to sizes larger than 40mm (Table ST51 and Figure ST31). The most common reason for revision is instability/dislocation (Figure ST32).


Glenosphere sizes smaller than 38mm have a higher rate of revision when used for osteoarthritis.

The outcomes of the most commonly used total reverse shoulder prostheses are listed in Table ST52. The outcomes for the most used prosthesis combinations using cementless fixation are listed in Table ST53. The most commonly used prosthesis combinations using hybrid (humerus cemented) fixation are listed in Table ST54.

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	4	77	4.3 (1.4, 12.9)	4.3 (1.4, 12.9)	4.3 (1.4, 12.9)	9.7 (3.0, 28.9)		
55-64	33	555	4.0 (2.7, 6.1)	6.3 (4.4, 9.0)	7.6 (5.3, 10.9)	7.6 (5.3, 10.9)		
65-74	98	2648	2.5 (2.0, 3.2)	4.1 (3.3, 5.0)	4.8 (3.9, 6.0)	5.7 (4.5, 7.3)	6.8 (5.1, 9.2)	
≥75	114	3894	2.2 (1.8, 2.7)	2.9 (2.4, 3.6)	3.5 (2.8, 4.2)	4.2 (3.3, 5.2)	5.7 (3.9, 8.4)	
TOTAL	249	7174						

Table ST47 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis OA)

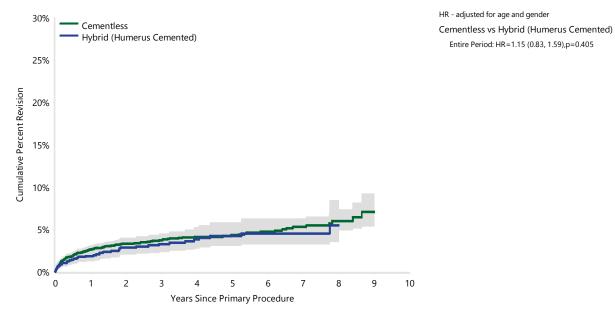


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	77	55	35	19	10	3	1
55-64	555	403	227	122	57	14	2
65-74	2648	1913	1061	575	278	52	5
≥75	3894	3067	1799	968	395	64	9

Table ST48 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis OA)

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	124	2626	3.8 (3.1, 4.6)	5.0 (4.1, 6.0)	5.9 (4.8, 7.1)	6.6 (5.3, 8.1)	7.8 (5.9, 10.3)	
Female	125	4548	1.7 (1.4, 2.2)	2.8 (2.3, 3.4)	3.4 (2.8, 4.1)	4.2 (3.4, 5.2)	5.9 (4.2, 8.4)	
TOTAL	249	7174						

Figure ST28 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis OA)

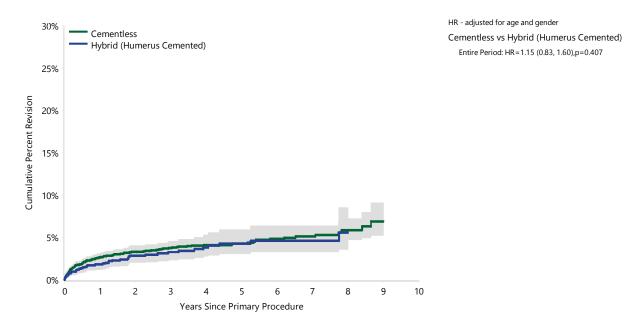


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	2626	1942	1063	554	244	50	4
Female	4548	3496	2059	1130	496	83	13

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	1	72	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)		
Cementless	203	5692	2.6 (2.2, 3.1)	3.7 (3.2, 4.3)	4.3 (3.7, 5.0)	5.3 (4.4, 6.3)	7.0 (5.4, 9.2)	
Hybrid (Glenoid Cemented)	1	45	2.3 (0.3, 15.4)	2.3 (0.3, 15.4)				
Hybrid (Humerus Cemented)	44	1365	1.9 (1.2, 2.8)	3.3 (2.4, 4.5)	4.2 (3.1, 5.8)	4.5 (3.3, 6.2)		
TOTAL	249	7174						

Table ST49 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA)

Figure ST29 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA)

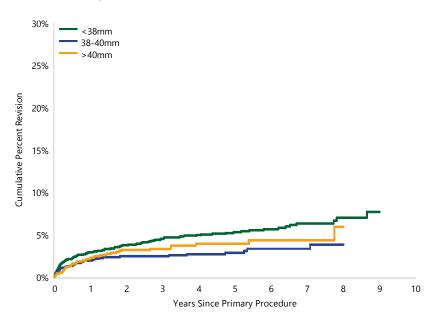

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cementless	5692	4270	2416	1300	565	94	17
Hybrid (Humerus Cemented)	1365	1086	648	345	158	33	0

Entire Period: HR=1.15 (0.83, 1.60),p=0.407

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	1	72	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)	1.6 (0.2, 10.7)		
Cementless	183	5241	2.7 (2.2, 3.2)	3.7 (3.2, 4.4)	4.3 (3.7, 5.0)	5.1 (4.3, 6.1)	6.9 (5.2, 9.1)	
Hybrid (Glenoid Cemented)	1	43	2.4 (0.3, 16.1)	2.4 (0.3, 16.1)				
Hybrid (Humerus Cemented)	43	1337	1.8 (1.2, 2.7)	3.3 (2.4, 4.6)	4.3 (3.1, 5.9)	4.6 (3.3, 6.4)		
TOTAL	228	6693						

Table ST50 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)

Figure ST30 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cementless	5241	3838	2009	1004	550	94	17
Hybrid (Humerus Cemented)	1337	1060	623	326	158	33	0

Glenosphere Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<38mm	142	3160	2.9 (2.4, 3.6)	4.5 (3.8, 5.4)	5.3 (4.4, 6.3)	6.3 (5.2, 7.6)	7.7 (5.9, 10.0)	
38-40mm	60	2478	2.0 (1.5, 2.6)	2.4 (1.9, 3.2)	2.9 (2.1, 3.8)	3.3 (2.4, 4.6)		
>40mm	46	1528	2.3 (1.6, 3.2)	3.3 (2.4, 4.5)	3.9 (2.9, 5.3)	4.4 (3.1, 6.1)		
TOTAL	248	7166						

Table ST51 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA)

Note: Excludes 8 procedures with unknown head size

Figure ST31 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA)

HР	_	adi	hotou	for	ane	and	gender	
1 11 1		au	usieu	101	aye	anu	genuer	

<38mm vs 38-40mm

Entire Period: HR=1.66 (1.22, 2.24),p=0.001

>40mm vs 38-40mm

0 - 3Mth: HR=0.54 (0.28, 1.02),p=0.058 3Mth+: HR=1.21 (0.77, 1.90),p=0.411

<38mm vs >40mm

0 - 3Mth: HR=3.07 (1.63, 5.78),p<0.001 3Mth+: HR=1.38 (0.91, 2.08),p=0.129

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<38mm	3160	2522	1589	961	442	92	16
38-40mm	2478	1809	934	467	199	21	0
>40mm	1528	1104	598	255	98	20	1

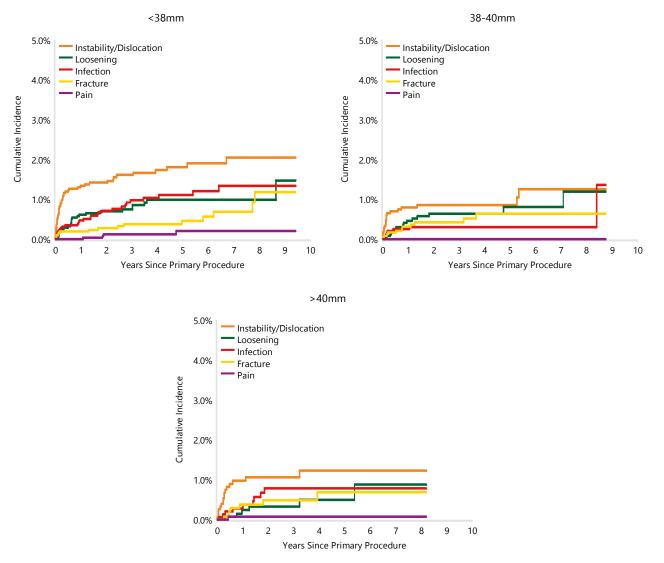


Figure ST32 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	43	953	2.3 (1.5, 3.5)	4.4 (3.2, 6.2)	5.7 (4.2, 7.8)	6.7 (4.8, 9.3)		
Aequalis Ascend	Aequalis	3	108	2.4 (0.6, 9.5)					
Affinis	Affinis	3	81	2.6 (0.7, 10.1)	5.6 (1.7, 17.9)				
Comprehensive	Comprehensive Reverse	5	220	2.7 (1.1, 6.4)					
Delta CTA	Delta CTA	7	64	7.8 (3.3, 17.8)	9.4 (4.3, 19.8)	9.4 (4.3, 19.8)	11.4 (5.6, 22.5)	11.4 (5.6, 22.5)	11.4 (5.6, 22.5)
Delta Xtend	Delta Xtend	63	2513	1.9 (1.4, 2.6)	2.4 (1.8, 3.1)	2.8 (2.1, 3.7)	3.3 (2.5, 4.4)		
Equinoxe	Equinoxe	3	179	1.4 (0.3, 5.5)					
Global Unite	Delta Xtend	2	91	0.0 (0.0, 0.0)					
Promos	Promos	2	40	0.0 (0.0, 0.0)	5.0 (1.3, 18.5)	5.0 (1.3, 18.5)	5.0 (1.3, 18.5)		
RSP	RSP	7	221	3.7 (1.8, 7.6)					
SMR	SMR L1	73	1705	3.5 (2.7, 4.5)	4.7 (3.6, 5.9)	5.1 (4.0, 6.7)	5.9 (4.4, 7.8)	7.0 (5.0, 9.6)	1
SMR	SMR L2	21	481	2.3 (1.3, 4.1)	3.4 (2.1, 5.5)	4.1 (2.6, 6.4)			
Trabecular Metal	Trabecular Metal	14	444	1.7 (0.8, 3.5)	3.2 (1.8, 5.8)	4.5 (2.5, 8.0)	4.5 (2.5, 8.0)		
Other (18)		3	74	3.0 (0.8, 11.6)	5.7 (1.8, 17.5)				
TOTAL		249	7174						

Table ST52 Cumulative Percent Revision of All Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Note: Only combinations with over 25 procedures have been listed

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	36	730	2.5 (1.5, 3.9)	5.1 (3.6, 7.2)	6.2 (4.4, 8.6)	7.5 (5.2, 10.8)		
Aequalis Ascend	Aequalis	3	93	2.8 (0.7, 11.2)					
Affinis	Affinis	2	50	2.0 (0.3, 13.4)	6.7 (1.5, 26.6)				
Comprehensive	Comprehensive Reverse	5	206	2.9 (1.2, 6.8)					
Delta CTA	Delta CTA	4	35	8.6 (2.8, 24.3)	8.6 (2.8, 24.3)	8.6 (2.8, 24.3)	11.7 (4.6, 28.3)	11.7 (4.6, 28.3)	11.7 (4.6, 28.3)
Delta Xtend	Delta Xtend	45	1713	2.3 (1.6, 3.1)	2.6 (1.9, 3.5)	2.9 (2.1, 4.1)	3.5 (2.5, 5.1)		
Equinoxe	Equinoxe	2	164	0.6 (0.1, 4.3)					
Global Unite	Delta Xtend	0	83	0.0 (0.0, 0.0)					
Promos	Promos	2	38	0.0 (0.0, 0.0)	5.3 (1.3, 19.4)	5.3 (1.3, 19.4)	5.3 (1.3, 19.4)		
SMR	SMR L1	68	1654	3.4 (2.6, 4.5)	4.4 (3.4, 5.7)	4.9 (3.7, 6.4)	5.7 (4.2, 7.6)	6.8 (4.8, 9.5)	
SMR	SMR L2	20	451	2.2 (1.2, 4.1)	3.4 (2.1, 5.5)	4.2 (2.6, 6.6)			
Trabecular Metal	Trabecular Metal	11	393	1.9 (0.9, 3.9)	2.7 (1.4, 5.2)	3.4 (1.8, 6.5)			
Other (16)		5	82	5.2 (2.0, 13.3)	7.3 (3.0, 17.2)				
TOTAL		203	5692						

Table ST53 Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Note: Only combinations with over 25 procedures have been listed.

Table ST54 Cumulative Percent Revision of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	7	203	2.0 (0.8, 5.3)	2.7 (1.1, 6.5)	4.6 (2.2, 9.8)			
Affinis	Affinis	1	29	4.2 (0.6, 26.1)					
Delta CTA	Delta CTA	3	29	6.9 (1.8, 24.9)	10.5 (3.5, 29.1)	10.5 (3.5, 29.1)	10.5 (3.5, 29.1)	10.5 (3.5, 29.1)	
Delta Xtend	Delta Xtend	18	759	1.2 (0.6, 2.4)	2.1 (1.2, 3.5)	2.6 (1.6, 4.3)	3.1 (1.8, 5.2)		
RSP	RSP	3	167	2.2 (0.7, 6.8)					
SMR	SMR L1	5	46	6.9 (2.3, 19.9)	12.6 (5.4, 27.8)	12.6 (5.4, 27.8)	12.6 (5.4, 27.8)		
SMR	SMR L2	1	28	3.6 (0.5, 22.8)	3.6 (0.5, 22.8)	3.6 (0.5, 22.8)			
Trabecular Metal	Trabecular Metal	3	44	0.0 (0.0, 0.0)	8.4 (2.2, 29.9)	13.8 (4.6, 37.4)	13.8 (4.6, 37.4)		
Other (10)		3	60	1.9 (0.3, 12.6)					
TOTAL		44	1365						

Note: Only combinations with over 25 procedures have been listed.

OUTCOME FOR ROTATOR CUFF ARTHROPATHY

Age and Gender

Age is not a risk factor for revision of total reverse shoulder replacement undertaken for rotator cuff arthropathy (Table ST55 and Figure ST33).

Males have a higher rate of revision compared to females (Table ST56 and Figure ST34).

Fixation

Fixation is not a risk factor for revision (Table ST57 and Figure ST35). This is also the case when the SMR L2 total reverse shoulder prosthesis is excluded from the analysis (Table ST58 and Figure ST36).

Glenosphere Size

There is no difference in the rate of revision of the different glenosphere sizes for rotator cuff arthropathy (Table ST59 and Figure ST37). Instability/dislocation is the most common reason for early revision for glenosphere sizes 40mm or less (Figure ST38).

The outcomes of the most commonly used prosthesis combinations are listed in Table ST60. The most commonly used prosthesis combinations using cementless fixation for rotator cuff arthropathy are listed in Table ST61. The most commonly used prosthesis combinations using hybrid (humerus cemented) fixation for rotator cuff arthropathy are listed in Table ST62.

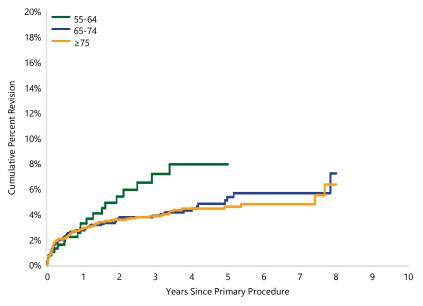
HR - adjusted for gender

Entire Period: HR=1.32 (0.82, 2.14),p=0.250

Entire Period: HR=0.98 (0.73, 1.32),p=0.907

Entire Period: HR=1.35 (0.82, 2.21),p=0.235

55-64 vs ≥75

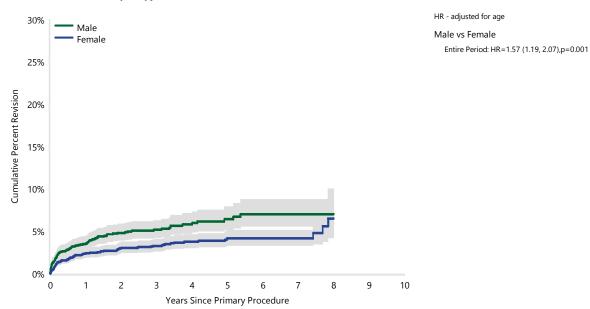

65-74 vs ≥75

55-64 vs 65-74

Table ST55 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Rotator Cuff Arthropathy)

Age	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	1	37	2.7 (0.4, 17.7)	2.7 (0.4, 17.7)	2.7 (0.4, 17.7)			
55-64	20	392	3.3 (1.8, 5.9)	7.2 (4.5, 11.2)	7.9 (5.0, 12.3)			
65-74	75	1985	2.7 (2.1, 3.6)	3.9 (3.0, 4.9)	5.4 (4.1, 7.0)	5.7 (4.3, 7.4)		
≥75	111	2949	2.9 (2.4, 3.6)	3.8 (3.1, 4.6)	4.6 (3.7, 5.6)	4.8 (3.9, 5.9)		
TOTAL	207	5363						

Figure ST33 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Rotator Cuff Arthropathy)



Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
			5 115	5 115	7 115	5 115	10 113
55-64	392	266	138	64	22	3	1
65-74	1985	1459	807	347	122	24	6
≥75	2949	2300	1298	592	181	30	8

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	107	2225	3.6 (2.8, 4.4)	5.2 (4.2, 6.3)	6.4 (5.2, 7.9)	7.0 (5.6, 8.8)		
Female	100	3138	2.4 (1.9, 3.0)	3.3 (2.6, 4.0)	4.1 (3.3, 5.1)	4.1 (3.3, 5.1)		
TOTAL	207	5363						

Table ST56 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Rotator Cuff Arthropathy)

Figure ST34 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Rotator Cuff Arthropathy)

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	2225	1632	851	355	116	26	6
Female	3138	2419	1404	653	211	32	9

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	0	13	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)			
Cementless	184	4608	3.0 (2.5, 3.5)	4.2 (3.6, 4.9)	5.3 (4.5, 6.2)	5.4 (4.6, 6.4)	7.8 (5.6, 10.7)	
Hybrid (Glenoid Cemented)	1	36	3.0 (0.4, 19.6)	3.0 (0.4, 19.6)				
Hybrid (Humerus Cemented)	22	706	2.1 (1.3, 3.6)	3.3 (2.1, 5.1)	3.7 (2.4, 5.8)			
TOTAL	207	5363						

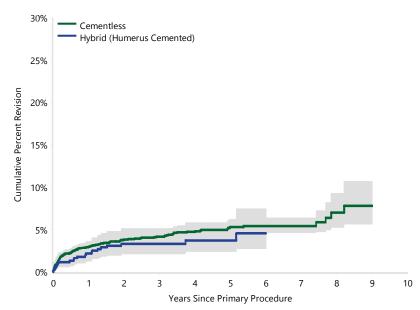
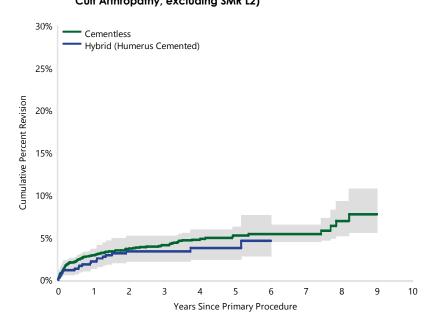

Table ST57 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy)

Figure ST35 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy)

HR - adjusted for age and gender

Cementless vs Hybrid (Humerus Cemented)

Entire Period: HR=1.23 (0.79, 1.92),p=0.353



Number at Risk 0 Yr 1 Yr 3 Yrs 5 Yrs 7 Yrs 9 Yrs 10 Yrs Cementless 4608 3470 1920 876 290 55 14 Hybrid (Humerus Cemented) 706 550 317 126 35 3 1

3 Yrs 5 Yrs Fixation 1 Yr 7 Yrs 9 Yrs 10 Yrs Revised Total Cemented 0 13 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 5.2 (4.4, 6.2) Cementless 163 4235 2.9 (2.4, 3.5) 4.1 (3.5, 4.9) 5.4 (4.5, 6.5) 7.8 (5.6, 10.7) Hybrid (Glenoid Cemented) 3.0 (0.4, 19.6) 3.0 (0.4, 19.6) 1 36 22 Hybrid (Humerus Cemented) 698 2.2 (1.3, 3.7) 3.4 (2.2, 5.2) 3.8 (2.4, 5.9)

Table ST58 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy, excluding SMR L2)

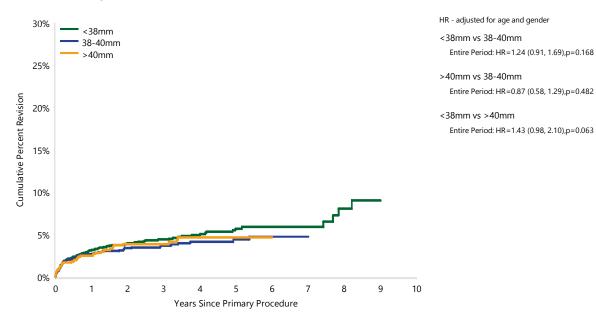
Figure ST36 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy, excluding SMR L2)

186

4982

TOTAL

HR - adjusted for age and gender Cementless vs Hybrid (Humerus Cemented) Entire Period: HR=1.18 (0.76, 1.85),p=0.461


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cementless	4235	3117	1590	656	285	55	14
Hybrid (Humerus Cemented)	698	542	310	121	35	3	1

Glenosphere Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<38mm	95	2082	3.2 (2.5, 4.1)	4.4 (3.6, 5.5)	5.7 (4.6, 7.1)	5.9 (4.7, 7.4)	9.0 (6.2, 13.0)	
38-40mm	70	2072	2.7 (2.1, 3.6)	3.7 (2.9, 4.8)	4.4 (3.4, 5.7)	4.8 (3.6, 6.3)		
>40mm	42	1204	2.5 (1.7, 3.6)	3.9 (2.8, 5.3)	4.7 (3.4, 6.4)			
TOTAL	207	5358						

Table ST59 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Rotator Cuff Arthropathy)

Note: Excludes five procedures with unknown glenosphere size

Figure ST37 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Rotator Cuff Arthropathy)

Number at Risk 0 Yr 1 Yr 2 Yrs 3 Yrs 4 Yrs 5 Yrs 6 Yrs 7 Yrs 8 Yrs 9 Yrs 10 Yrs <38mm 38-40mm >40mm



Figure ST38 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Rotator Cuff Arthropathy)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	26	660	1.8 (1.0, 3.3)	3.7 (2.4, 5.7)	4.6 (3.1, 7.0)	5.2 (3.4, 8.0)		
Aequalis Ascend	Aequalis	2	97	2.4 (0.6, 9.4)					
Affinis	Affinis	2	42	7.3 (1.7, 28.0)					
Anatomical Shoulder	Trabecular Metal	3	26	7.7 (2.0, 27.4)					
Comprehensive	Comprehensive Reverse	2	100	2.1 (0.5, 8.1)	2.1 (0.5, 8.1)				
Delta Xtend	Delta Xtend	65	2021	2.2 (1.7, 3.0)	3.4 (2.6, 4.4)	4.2 (3.2, 5.5)	4.5 (3.4, 5.9)		
Equinoxe	Equinoxe	2	91	1.1 (0.2, 7.6)					
Global Unite	Delta Xtend	2	81	2.6 (0.7, 10.2)					
RSP	RSP	3	172	2.5 (0.8, 7.7)					
SMR	SMR L1	58	1206	4.1 (3.1, 5.4)	5.1 (3.9, 6.7)	7.4 (5.2, 10.3)	7.4 (5.2, 10.3)		
SMR	SMR L2	21	381	3.7 (2.2, 6.2)	4.8 (3.0, 7.5)	5.8 (3.8, 8.8)			
Trabecular Metal	Trabecular Metal	19	426	3.9 (2.4, 6.4)	4.6 (2.9, 7.3)	5.2 (3.3, 8.2)			
Other (12)		2	60	1.7 (0.2, 11.2)	1.7 (0.2, 11.2)	1.7 (0.2, 11.2)	1.7 (0.2, 11.2)	8.7 (1.8, 37.4)	
TOTAL		207	5363						

Table ST60 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Rotator Cuff Arthropathy)

Note: Only combinations with over 25 procedures have been listed

Table ST61 Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Rotator Cuff Arthropathy)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	19	522	1.7 (0.8, 3.3)	3.4 (2.0, 5.6)	4.6 (2.8, 7.4)	4.6 (2.8, 7.4)		
Aequalis Ascend	Aequalis	2	90	2.6 (0.6, 10.0)					
Affinis	Affinis	2	35	8.6 (2.0, 32.3)					
Comprehensive	Comprehensive Reverse	2	99	2.1 (0.5, 8.1)	2.1 (0.5, 8.1)				
Delta Xtend	Delta Xtend	58	1684	2.4 (1.7, 3.3)	3.8 (2.9, 5.0)	4.6 (3.4, 6.1)	4.9 (3.7, 6.7)		
Equinoxe	Equinoxe	2	91	1.1 (0.2, 7.6)					
Global Unite	Delta Xtend	2	71	3.0 (0.8, 11.6)					
SMR	SMR L1	53	1166	3.8 (2.8, 5.1)	4.8 (3.6, 6.3)	7.1 (4.9, 10.1)	7.1 (4.9, 10.1)		
SMR	SMR L2	21	373	3.8 (2.2, 6.3)	4.9 (3.1, 7.6)	5.9 (3.9, 8.9)			
Trabecular Metal	Trabecular Metal	18	394	4.0 (2.4, 6.6)	4.7 (2.9, 7.5)	5.4 (3.3, 8.5)			
Other (14)		5	83	5.1 (1.9, 13.0)	5.1 (1.9, 13.0)	5.1 (1.9, 13.0)	5.1 (1.9, 13.0)		
TOTAL		184	4608						

Note: Only combinations with over 25 procedures have been listed

Table ST62 Cumulative Percent Revision of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Rotator Cuff Arthropathy)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	7	134	2.5 (0.8, 7.5)	5.3 (2.4, 11.5)				
Delta Xtend	Delta Xtend	7	327	1.5 (0.6, 3.7)	1.9 (0.9, 4.2)	2.6 (1.2, 5.8)			
RSP	RSP	2	150	1.9 (0.4, 7.5)					
SMR	SMR L1	4	29	11.6 (3.9, 32.0)	16.8 (6.6, 39.4)	16.8 (6.6, 39.4)	16.8 (6.6, 39.4)		
Trabecular Metal	Trabecular Metal	1	28	3.6 (0.5, 22.8)	3.6 (0.5, 22.8)	3.6 (0.5, 22.8)			
Other (8)		1	38	0.0 (0.0, 0.0)	3.4 (0.5, 22.1)	3.4 (0.5, 22.1)			
TOTAL		22	700						

TOTAL 22 706

Note: Only combinations with over 25 procedures have been listed.

OUTCOME FOR FRACTURE

Age and Gender

For the diagnosis of fracture, patients aged 55 to 64 years have a higher rate of revision compared to those aged 75 years or older (Table ST63 and Figure ST39).

Males have a higher rate of revision than females over the entire period (Table ST64 and Figure ST40).

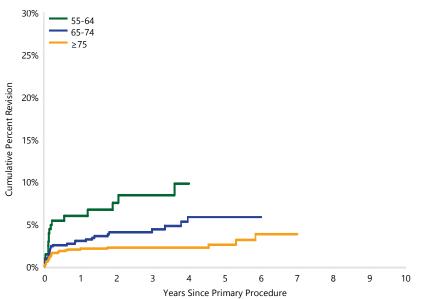
Fixation

Cementless fixation has a higher rate of revision for fracture than hybrid (humerus cemented) fixation (Table ST65 and Figure ST41). A similar result was observed when the SMR L2 prosthesis was excluded (Table ST66 and Figure ST42).

Glenosphere Size

Glenosphere sizes larger than 40mm have a higher rate of revision. This is in contrast to osteoarthritis (Table ST67 and Figure ST43).

Glenosphere sizes larger than 40mm have a higher rate of revision.


The reasons for revision and cumulative incidence revision diagnoses are shown in Table ST68 and Figure ST44. The larger glenospheres have a higher cumulative incidence of revision for instability/dislocation.

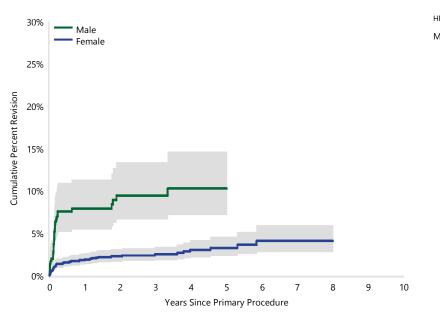
The outcomes of the most commonly used prosthesis combinations are listed in Table ST69. The cementless prosthesis combinations used in total reverse shoulder replacement for fracture are listed in Table ST70. The hybrid (humerus cemented) prosthesis combinations used in total reverse shoulder replacement for fracture are listed in Table ST71.

Age	N Revised		1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<55	2	21	9.8 (2.5, 33.8)	9.8 (2.5, 33.8)				
55-64	16	207	6.0 (3.4, 10.3)	8.4 (5.1, 13.8)				
65-74	31	775	3.0 (2.0, 4.5)	4.4 (3.0, 6.4)	5.8 (3.9, 8.6)			
≥75	31	1362	2.1 (1.4, 3.1)	2.2 (1.5, 3.2)	2.6 (1.7, 3.9)	3.8 (2.3, 6.5)		
TOTAL	80	2365						

Table ST63 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Fracture)

HR - adjusted for gender 55-64 vs ≥75 Entire Period: HR=2.91 (1.59, 5.35),p<0.001

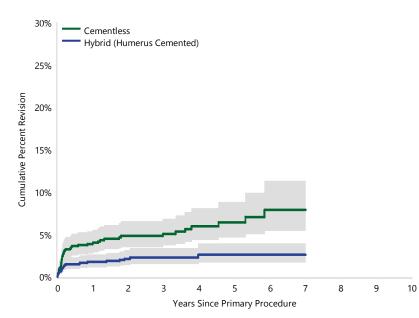
65-74 vs ≥75 Entire Period: HR=1.64 (0.99, 2.70),p=0.052


55-64 vs 65-74 Entire Period: HR=1.78 (0.97, 3.25),p=0.062

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
55-64	207	141	80	38	18	2	0
65-74	775	561	266	104	37	8	1
≥75	1362	1003	524	217	65	10	1

Gender	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	31	355	7.9 (5.5, 11.3)	9.5 (6.6, 13.4)	10.3 (7.2, 14.6)			
Female	49	2010	1.9 (1.4, 2.6)	2.5 (1.8, 3.4)	3.3 (2.4, 4.5)	4.1 (2.8, 5.9)		
TOTAL	80	2365						

Table ST64 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Fracture)


HR - adjusted for age Male vs Female Entire Period: HR=3.34 (2.12, 5.28),p<0.001

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Male	355	240	119	41	16	3	0
Female	2010	1481	758	321	106	17	2

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	3	35	9.4 (3.1, 26.3)	9.4 (3.1, 26.3)	9.4 (3.1, 26.3)			
Cementless	48	940	4.0 (2.9, 5.5)	5.1 (3.7, 6.9)	6.4 (4.7, 8.8)	7.9 (5.5, 11.3)		
Hybrid (Glenoid Cemented)	1	20	5.6 (0.8, 33.4)	5.6 (0.8, 33.4)				
Hybrid (Humerus Cemented)	28	1370	1.8 (1.2, 2.7)	2.3 (1.6, 3.3)	2.6 (1.7, 3.9)	2.6 (1.7, 3.9)		
TOTAL	80	2365						

Table ST65 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture)

Figure ST41 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture)

HR - adjusted for age and gender Cementless vs Hybrid (Humerus Cemented) Entire Period: HR=2.20 (1.38, 3.52),p<0.001

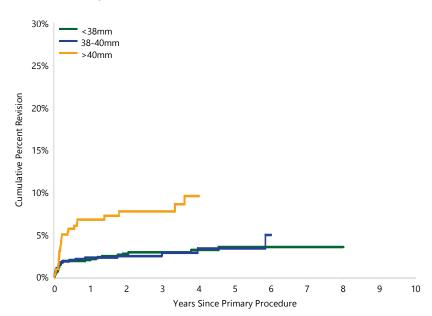
Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cementless	940	677	385	172	61	12	1
Hybrid (Humerus Cemented)	1370	1008	472	181	55	7	1

Fixation	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cemented	3	33	10.0 (3.3, 27.9)	10.0 (3.3, 27.9)	10.0 (3.3, 27.9)			
Cementless	38	792	4.2 (2.9, 5.9)	5.0 (3.6, 6.9)	5.9 (3.9, 9.0)	8.4 (5.1, 13.7)		
Hybrid (Glenoid Cemented)	1	20	5.6 (0.8, 33.4)	5.6 (0.8, 33.4)				
Hybrid (Humerus Cemented)	27	1322	1.8 (1.2, 2.7)	2.3 (1.6, 3.4)	2.7 (1.7, 4.1)	2.7 (1.7, 4.1)		
TOTAL	69	2167						

Table ST66 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture, excluding SMR L2)

Figure ST42 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture, excluding SMR L2)

HR - adjusted for age and gender Cementless vs Hybrid (Humerus Cemented) Entire Period: HR=2.17 (1.32, 3.56),p=0.002


Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Cementless	792	536	257	87	60	12	1
Hybrid (Humerus Cemented)	1322	966	433	158	54	7	1

Glenosphere Size	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<38mm	31	1142	2.1 (1.4, 3.1)	2.9 (2.0, 4.2)	3.5 (2.4, 5.2)	3.5 (2.4, 5.2)		
38-40mm	23	886	2.3 (1.5, 3.5)	2.8 (1.8, 4.5)	3.4 (2.1, 5.6)			
>40mm	26	331	6.8 (4.5, 10.2)	7.7 (5.2, 11.5)				
TOTAL	80	2359						

Table ST67 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)

Note: Excludes six procedures with unknown glenosphere size

Figure ST43 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)

HR - adjusted for age and gender

<38mm vs 38-40mm

Entire Period: HR=0.94 (0.55, 1.62),p=0.830

>40mm vs 38-40mm Entire Period: HR=2.01 (1.11, 3.62),p=0.020

>40mm vs <38mm Entire Period: HR=2.13 (1.24, 3.67),p=0.006

Number at Risk	0 Yr	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
<38mm	1142	861	484	226	83	14	2
38-40mm	886	628	271	101	33	3	0
>40mm	331	226	119	34	6	3	0

Table ST68 Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)

Revision Diagnosis	Number	<38mm % Primaries Revised	% Revisions	Number	38-40mm % Primaries Revised	% Revisions	Number	>40mm % Primaries Revised	% Revisions
Instability/Dislocation	14	1.2	45.2	12	1.4	52.2	13	3.9	50.0
Infection	9	0.8	29.0	2	0.2	8.7	2	0.6	7.7
Fracture	3	0.3	9.7	6	0.7	26.1	6	1.8	23.1
Loosening	3	0.3	9.7	1	0.1	4.3	3	0.9	11.5
Arthrofibrosis	1	0.1	3.2						
Implant Breakage Glenoid							1	0.3	3.8
Malposition				1	0.1	4.3			
Pain	1	0.1	3.2				1	0.3	3.8
Other				1	0.1	4.3			
N Revision	31	2.7	100.0	23	2.6	100.0	26	7.9	100.0
N Primary	1142			886			331		

Note: Excludes six procedures with unknown glenosphere size

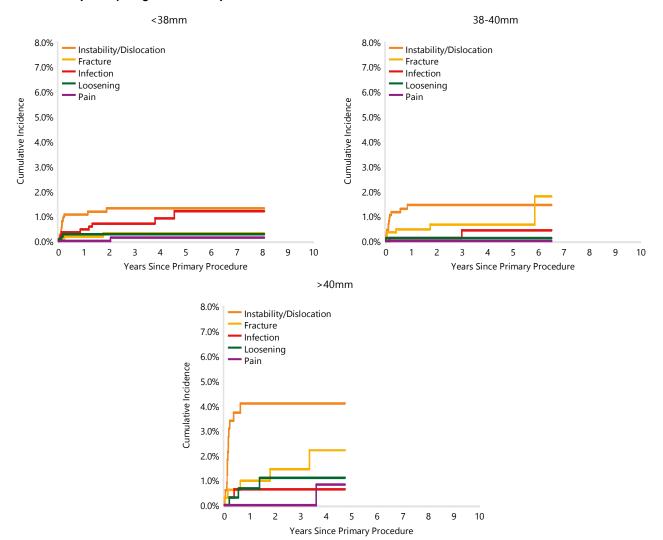


Figure ST44 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	9	370	2.0 (1.0, 4.2)	2.5 (1.2, 5.0)	4.2 (1.7, 10.4)			
Comprehensive	Comprehensive Reverse	0	85	0.0 (0.0, 0.0)					
Delta Xtend	Delta Xtend	22	701	2.7 (1.7, 4.2)	3.1 (2.0, 4.8)	3.7 (2.3, 5.8)			
RSP	RSP	4	67	3.1 (0.8, 11.7)					
SMR	SMR L1	32	648	4.6 (3.2, 6.6)	5.3 (3.7, 7.5)	5.3 (3.7, 7.5)	6.7 (4.1, 10.8)		
SMR	SMR L2	11	198	3.0 (1.4, 6.7)	4.2 (2.1, 8.2)	5.9 (3.3, 10.5)			
Trabecular Metal	Trabecular Metal	0	153	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Other (13)		2	143	1.4 (0.4, 5.6)					
TOTAL		80	2365						

Table ST69 Cumulative Percent Revision of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)

Note: Only combinations with over 50 procedures have been listed

Table ST70 Cumulative Percent Revision of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Delta Xtend	Delta Xtend	3	115	0.9 (0.1, 6.0)	2.3 (0.6, 9.5)				
SMR	SMR L1	31	544	5.3 (3.7, 7.6)	6.1 (4.3, 8.7)	6.1 (4.3, 8.7)	8.0 (4.7, 13.3)		
SMR	SMR L2	10	148	3.4 (1.4, 8.0)	4.9 (2.3, 9.9)	7.2 (3.9, 12.9)			
Other (13)		4	133	2.3 (0.8, 7.0)	2.3 (0.8, 7.0)				
TOTAL		48	940						

Note: Only combinations with over 50 procedures have been listed

Table ST71 Cumulative Percent Revision of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)

Humeral Stem	Glenoid Component	N Revised	N Total	1 Yr	3 Yrs	5 Yrs	7 Yrs	9 Yrs	10 Yrs
Aequalis	Aequalis	7	339	1.9 (0.8, 4.1)	2.4 (1.1, 5.1)				
Comprehensive	Comprehensive Reverse	0	68	0.0 (0.0, 0.0)					
Delta Xtend	Delta Xtend	17	568	2.8 (1.7, 4.5)	3.0 (1.9, 4.9)	3.7 (2.2, 6.3)			
RSP	RSP	3	57	1.8 (0.3, 12.2)					
SMR	SMR L1	0	97	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)		
Trabecular Metal	Trabecular Metal	0	104	0.0 (0.0, 0.0)	0.0 (0.0, 0.0)				
Other (12)		1	137	0.7 (0.1, 5.1)	0.7 (0.1, 5.1)				
TOTAL		28	1370						

Note: Only combinations with over 50 procedures have been listed.

Prostheses with Higher Than Anticipated Rates of Revision

Prostheses with Higher Than Anticipated Rates of Revision

INTRODUCTION

A unique and important function of registries is that they are able to provide population based data on the comparative outcome of individual prostheses in a community. Outcome data are necessary to enable an evidencebased approach to prosthesis selection. For many prostheses, the only source of outcome data are Registry reports.

It is evident from Registry data that most prostheses have similar outcomes. However, a number have a rate of revision that is statistically higher than other prostheses in the same class. The Registry identifies these as 'prostheses with a higher than anticipated rate of revision'.

The Registry has developed a standardised three-stage approach to identify prostheses that are outliers with respect to rate of revision. The comparator group includes all other prostheses within the same class regardless of their rate of revision. This is a more pragmatic approach than comparing to a select group of prostheses with the lowest rate of revision.

Stage 1

The first stage is a screening test to identify prostheses that differ significantly from the combined revisions per 100 observed component years of all other prostheses in the same class. It is an automated analysis that identifies prostheses based on set criteria. These include:

- 1. the revision rate (per 100 component years) exceeds twice that for the group, and
- 2. the Poisson probability of observing that number of revisions, given the rate of the group is significant (p<0.05), and

either:

3. there are at least 10 primary procedures for that component,

or

4. the proportion revised is at least 75% and there have been at least two revisions.

The Registry has the capacity to assess the outcome of individual prostheses or combinations of prostheses used in a procedure. It is apparent from previous reports that individual prostheses that perform well in one combination may not perform well in another. Therefore, the outcome of an individual prosthesis is partly dependent on the combination of the different prostheses used.

Consequently, the Registry undertakes two different analyses in Stage 1. The first assesses the outcome of all combinations. The second assesses all individual prostheses regardless of the combination. Both analyses are reviewed to determine if a higher revision rate is identified with a single combination, multiple combinations, or uniformly with all combinations. If prostheses are identified in a single combination, that combination progresses to Stage 2. An individual prosthesis progresses to Stage 2 if it is identified in multiple combinations or uniformly across all combinations.

If a prosthesis is identified in more than two combinations with 10 or more procedures in Stage 1, an additional analysis of the individual prosthesis is undertaken for review at Stage 2, regardless of whether the individual prosthesis was identified in Stage 1. The purpose of this is to simplify the reporting of an individual prosthesis and to avoid identifying the same prosthesis in multiple combinations when it may be more appropriate to identify it individually.

A prosthesis or combination may also be brought to the attention of the Registry by the Therapeutic Goods Administration (TGA) or a member of the AOA. A further investigation may then be undertaken as outlined in Stage 2.

Stage 2

In Stage 2, the AOANJRR Director and Deputy Directors in conjunction with SAHMRI staff, review the identified prostheses and undertake further investigation. This includes examining the impact of confounders and calculating age and gender adjusted hazard ratios. In addition, all prostheses identified in previous reports are re-analysed as part of the Stage 2 analysis. This is not dependent on re-identification in Stage 1. If there is a significant difference compared to the combined hazard rate of all other prostheses in the same class, then the prosthesis or prosthesis combination progresses to Stage 3. The possible exception to this is the presence of confounding factors, such as use in complex primary procedures.

Stage 3

The final stage involves review by a panel of independent orthopaedic surgeons from the Australian Orthopaedic Association and Arthroplasty Society. The panel meets with Registry staff at a joint specific workshop to review the Stage 2 analysis and determine which prostheses will be identified in the Annual Report.

IDENTIFIED PROSTHESES

Identified prostheses are listed in one of three groups. The first group, 'Newly Identified', lists prostheses that are identified for the first time and are still used.

The second group is 'Re-identified and still used'. This listing identifies prostheses which continue to have a higher than anticipated rate of revision and provides information on their continued use. Most identified or reidentified prostheses decline in use. This is usually evident only after the first year because almost a full year of use has occurred prior to identification in the Annual Report.

Prostheses that have a higher rate of revision but are no longer used in Australia make up the third group: 'Identified and no longer used'. These are listed to provide ongoing information on the rate of revision. This also enables comparison of other prostheses to the discontinued group. This group may include prostheses that are no longer used in Australia that are identified for the first time.

The Registry does not make a recommendation or otherwise on the continued use of identified

prostheses. Identification is made to ensure that prostheses with a higher rate of revision, compared to others in the same class, are highlighted.

On occasion, a prosthesis previously identified no longer meets the criteria for inclusion. In this situation, the prosthesis is not subsequently reidentified. The Registry monitors the continual real time performance of prostheses within a community and the Annual Report provides a snap shot at a particular time. It is necessary to appreciate that outcomes are continually changing and that many factors may influence that change, including identification in the report.

The current approach used by the Registry is most effective at identifying the relative performance of recently introduced prostheses. As the Registry's follow up period increases, it is becoming evident that prostheses with a delayed onset of higher rates of revision are not as readily identified by this approach. The Registry will develop further strategies in the future to identify these prostheses.

This year, 19 independent arthroplasty specialists together with the Chairperson of the AOANJRR Committee, AOANJRR Director, three Deputy Directors, two assistant Deputy Directors and SAHMRI Registry staff attended the two day Hip and Knee Surgeon Review Workshop.

The Shoulder Chapter was reviewed at a weekend workshop under the leadership of Professor Richard Page, together with the AOANJRR Director, one Deputy Director and SAHMRI Registry staff.

Only prostheses identified for the first time or prostheses that are not re-identified are discussed in the following text.

Investigations of prostheses identified as having a higher than anticipated rate of revision are available on the Registry website: https://aoanjrr.sahmri.com/annual-reports-2017.

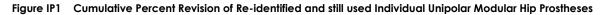
PRIMARY PARTIAL HIP REPLACEMENT

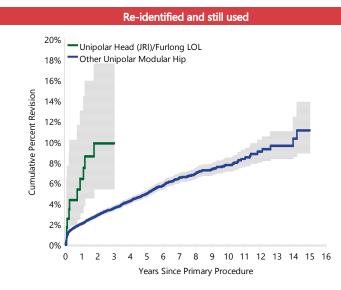
UNIPOLAR MODULAR

There are no newly identified unipolar modular prostheses.

Table IP1 Revision Rate of Individual Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Head/Femoral				Revisions/100 Obs. Yrs) Hazard Ratio, P Value
Re-Identified and Still Used					
Unipolar Head (JRI)/Furlong LOL	10	131	358	2.79	Entire Period: HR=2.29 (1.23, 4.26),p=0.009


Note: All components have been compared to all other unipolar modular hip components


Table IP2 Cumulative Percent Revision of Individual Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
Re-Identified and Still Used					
Unipolar Head (JRI)/Furlong LOL	6.4 (3.1, 13.0)	9.9 (5.4, 17.7)			

Table IP3 Yearly Usage of Individual Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Re-Identified and Still Used															
Unipolar Head (JRI)/Furlong LOL	.					12	18	10	13	10	8	7	34	16	3

BIPOLAR

There are no newly identified bipolar hip prostheses.

Table IP4 Revision Rate of Individual Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Bipolar/Femoral	N Revised	N Total		Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used					
Bipolar Head (Medacta)/Quadra-H	6	57	111	5.39	Entire Period: HR=4.28 (1.91, 9.57),p<0.001
Identified and no longer used					
Tandem/Basis	13	114	438	2.97	Entire Period: HR=2.53 (1.46, 4.40),p<0.001
UHR/ABGII	20	177	897	2.23	Entire Period: HR=2.63 (1.68, 4.10),p<0.001
UHR/Omnifit (cless)	7	40	232	3.02	0 - 3Mth: HR=4.51 (1.44, 14.09),p=0.009
					3Mth - 6Mth: HR=8.98 (1.24, 65.01),p=0.029
					6Mth+: HR=2.21 (0.71, 6.88),p=0.172
**Synergy	9	54	358	2.51	Entire Period: HR=2.74 (1.42, 5.30),p=0.002

Note: All components have been compared to all other bipolar hip components ** Femoral Component

Table IP5 Cumulative Percent Revision of Individual Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
Re-Identified and Still Used					
Bipolar Head (Medacta)/Quadra-H	8.9 (3.4, 22.2)	12.7 (5.3, 28.8)			
Identified and no longer used					
Tandem/Basis	2.0 (0.5, 7.7)	12.5 (7.1, 21.5)			
UHR/ABGII	4.4 (2.1, 8.9)	5.1 (2.6, 10.1)	10.9 (6.5, 18.0)		
UHR/Omnifit (cless)	18.3 (9.1, 34.6)	18.3 (9.1, 34.6)	18.3 (9.1, 34.6)	18.3 (9.1, 34.6)	
**Synergy	7.5 (2.9, 18.7)	9.7 (4.1, 21.8)	12.3 (5.7, 25.7)	18.4 (9.4, 34.1)	

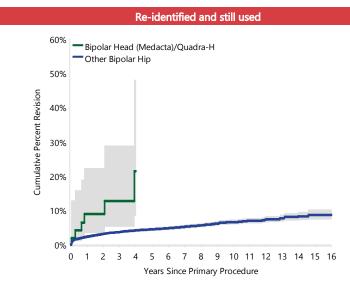

Note: ** Femoral Component

Table IP6 Yearly Usage of Individual Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Re-Identified and Still Used															
Bipolar Head (Medacta)/Quadra-H	.							10	7	5	6	3	11	8	7
Identified and no longer used															
Tandem/Basis	.			10	13	9	11	4	7	8	21	24	6	1	
UHR/ABGII	25	25	36	34	10	15	20	7	5						
UHR/Omnifit (cless)	11	10	7	5	4	1	2			•					
**Synergy	12	13	9	10	3	2	1	1		1		2			

Note: ** Femoral Component

PRIMARY TOTAL HIP REPLACEMENT

TOTAL CONVENTIONAL

Large head metal/metal bearings have been removed from the comparator group for all primary total conventional hip investigations.

The Furlong femoral stem is no longer identified. There have been an additional three procedures and one further revision since the previous report.

There are four primary total conventional hip combinations and one acetabular prosthesis identified for the first time.

The Quadra-H/Versafitcup DM combination has been used in 283 procedures since 2012. The cumulative percent revision at one year was 4.2%. Of the 10 revisions, four were femoral only, two acetabular only and four were minor revisions. The main reasons for revision were fracture (30.0%), infection (30.0%) and loosening (20.0%).

The Taperloc/G7 combination has been used in 911 procedures since 2013. The cumulative percent revision at one year was 2.4%. This combination has a higher rate of revision in the first two weeks only and after this time there is no difference when compared to other total conventional hip procedures. The main reasons for revision were dislocation (50.0%), fracture (20.0%), infection (15.0%) and loosening (10.0%). Of the 20 revisions, five were femoral only, two were acetabular only, and nine were head/insert.

The Taperloc/Versafitcup CC combination has been used in 75 procedures. Of the four revisions, three were femoral only and one was revision of the head only. The reasons for revision were fracture (50.0%), infection (25.0%) and pain (25.0%).

The Delta-One-TT acetabular component has been used in 95 procedures since 2010. The cumulative percent revision at three years was 7.3%. Of the six revisions, four were acetabular only and two were femoral only. The reasons for revision were loosening (50.0%), dislocation (33.3%) and fracture (16.7%).

The Hyperion/Delta-TT combination has been identified for the first time and is no longer used.

The Continuum acetabular component remains identified because of its higher than anticipated rate of revision in the first three months. However, after 2.5 years it has a lower rate of revision than other total conventional hip prostheses.

Newly Identified . Quadra-H/Versafitcup DM 10 283 282 3.55 Entire Period: HR=2.20 (1.18, 4.08),p=0.012 Taperloc/G7 20 911 1084 1.85 0 - 2Wk: HR=3.15 (1.57, 6.31),p=0.001 Taperloc/Versafitcup CC 4 75 21 18.7 Entire Period: HR=2.65 (1.19, 5.89),p=0.001 **Delta-One-TT 6 95 232 2.58 Entire Period: HR=2.65 (1.19, 5.49),p=0.009 CPT/Fitmore 13 216 912 1.43 Entire Period: HR=2.59 (1.44, 4.67),p=0.001 Corail/Trabecular Metal (Shell) 11 90 399 2.76 Entire Period: HR=3.95 (2.19, 7.13),p=0.001 Corail/Trabecular Metal (Shell) 11 90 399 2.76 Entire Period: HR=1.82 (1.00, 3.29),p=0.001 Corail/Trabecular Metal (Shell) 11 90 399 2.20 Entire Period: HR=1.82 (1.00, 3.29),p=0.001 Corail/Trabecular Metal (Shell) 11 90 399 2.20 Entire Period: HR=2.01 (1.6, 7.49),p=0.038 *Apex 126 2380 1283 0.98 Entire Period: HR=2.31 (1.10, 1.50, p=0.001 <th>Femoral/Acetabular R</th> <th>N N Obs Revised Total Year</th> <th>s. Revisions/100 Irs Obs. Yrs</th> <th>Hazard Ratio, P Value</th>	Femoral/Acetabular R	N N Obs Revised Total Year	s. Revisions/100 Irs Obs. Yrs	Hazard Ratio, P Value
Quadra-H/Versafitcup DM 10 283 282 3.55 Entire Period: HR=220 (1.18, 4.08),p=0.012 Taperfoc/G7 20 911 1084 1.85 0 - 2Wic HR=3.15 (1.57, 6.31),p=0.001 Taperfoc/Versafitcup CC 4 75 21 18.7 Entire Period: HR=2.65 (1.19, 5.80),p=0.001 **Delta-One-TT 6 95 232 2.58 Entire Period: HR=2.59 (2.17, 15.40),p=0.009 Re-Identified and Still Used	wly Identified			
Number of the second		10 283 28	82 3.55	Entire Period: HR=2.20 (1.18, 4.08),p=0.012
Taperloc/Versafitcup CC 4 75 21 18.7 Entire Period: HR=5.78 (2.17, 15.40),p<0.001	erloc/G7	20 911 108	84 1.85	0 - 2Wk: HR=3.15 (1.57, 6.31),p=0.001
**Delta-One-TT 6 95 232 2.58 Entire Period: HR=2.65 (1.19, 5.89),p=0.017 Re-Identified and Still Used 11 216 912 1.43 Entire Period: HR=2.59 (1.44, 467),p=0.009 CPT/Low Profile Cup 11 136 657 1.67 Entire Period: HR=3.95 (2.19, 7.13),p<0.001 Corail/Trabecular Metal (Shell) 11 90 399 2.76 Entire Period: HR=1.82 (1.00, 3.29),p=0.048 Corail/Trabecular Metal (Shell) 11 90 399 2.276 Entire Period: HR=1.82 (1.00, 3.29),p=0.048 Metafix/Trinity 43 2147 4622 0.93 0 - 2Wk + IR=1.82 (1.00, 3.29),p=0.048 Metafix/Trinity 22 770 999 2.20 Entire Period: HR=1.82 (1.00, 3.29),p=0.007 Taperion 28 2147 4622 0.93 Entire Period: HR=1.48 (1.24, 1.76),p=0.007 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.27 (1.65, 3.12),p=0.001 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.48 (1.24, 1.76),p=0.001 *ML Taper Kinetiv 133 3298 14208 0.94 Entire Period: H				2Wk+: HR=0.91 (0.52, 1.61),p=0.754
**Delta-One-TT 6 95 232 2.58 Entire Period: HR=2.65 (1.19, 5.89),p=0.017 Re-Identified and Still Used 11 216 912 1.43 Entire Period: HR=2.59 (1.44, 467),p=0.009 CPT/Low Profile Cup 11 136 657 1.67 Entire Period: HR=3.95 (2.19, 7.13),p<0.001 Corail/Trabecular Metal (Shell) 11 90 399 2.76 Entire Period: HR=1.82 (1.00, 3.29),p=0.048 Corail/Trabecular Metal (Shell) 11 90 399 2.276 Entire Period: HR=1.82 (1.00, 3.29),p=0.048 Metafix/Trinity 43 2147 4622 0.93 0 - 2Wk + IR=1.82 (1.00, 3.29),p=0.048 Metafix/Trinity 22 770 999 2.20 Entire Period: HR=1.82 (1.00, 3.29),p=0.007 Taperion 28 2147 4622 0.93 Entire Period: HR=1.48 (1.24, 1.76),p=0.007 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.27 (1.65, 3.12),p=0.001 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.48 (1.24, 1.76),p=0.001 *ML Taper Kinetiv 133 3298 14208 0.94 Entire Period: H	erloc/Versafitcup CC	4 75 2	21 18.7	Entire Period: HR=5.78 (2.17, 15.40),p<0.001
CPT/Fitmore 13 216 912 1.43 Entire Period: HR=2.06 (1.19, 3.54),p=0.009 Corail/Trabecular Metal (Shell) 11 136 657 1.67 Entire Period: HR=3.95 (2.19, 7.13),p=0.001 Metafix/Trinity 43 2147 4622 0.93 0 2Wk: HR=1.82 (100, 3.29),p=0.048 Metafix/Trinity 43 2147 4622 0.93 0 2Wk: HR=1.82 (100, 3.29),p=0.048 Metafix/Trinity 43 2147 4622 0.93 0 2Wk: HR=1.82 (100, 3.29),p=0.048 Metafix/Trinity 43 2147 4622 0.93 0 2Wk: HR=1.82 (106, 7.49),p=0.058 Torperson 22 770 99 2.20 Entire Period: HR=1.48 (1.24, 1.76),p<0.001	elta-One-TT	6 95 23	32 2.58	Entire Period: HR=2.65 (1.19, 5.89),p=0.017
CPT/Low Profile Cup 11 136 657 1.67 Entire Period: HR=2.59 (1.44, 4.67), p=0.001 Corail/Trabecular Metal (Shell) 11 90 399 2.76 Entire Period: HR=3.95 (2.19, 7.13), p<0.001	Identified and Still Used			
Corail/Trabecular Metal (Shell) 11 90 399 2.76 Entire Period: HR=3.95 (2.19, 7.13),p<0.001 Metafix/Trinity 43 2147 4622 0.93 0 - 2Wk: HR=1.82 (1.00, 3.29),p=0.048 2Wk - 1.5Yr: HR=0.90 (0.62, 1.31),p=0.582 Profemur L/Dynasty 22 770 999 2.20 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Apex 126 2380 1.99 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Apex 126 2380 1.82 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Kapex 126 2380 1.82 Entire Period: HR=2.27 (1.65, 3.12),p<0.001	/Fitmore	13 216 91	12 1.43	Entire Period: HR=2.06 (1.19, 3.54),p=0.009
Metafix/Trinity 43 2147 4622 0.93 0 - 2Wk: HR=1.82 (1.00, 3.29),p=0.048 2Wk - 1.5Yr: HR=0.90 (0.62, 1.31),p=0.582 2Wk - 1.5Yr: HR=0.90 (0.62, 1.31),p=0.097 Profemur L/Dynasty 22 770 999 2.20 Entire Period: HR=1.60 (1.05, 2.43),p=0.027 Taperloc Microplasty/Regenerex 4 48 201 1.99 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Apex 126 2380 12838 0.98 Entire Period: HR=2.27 (1.65, 3.12),p<0.001	/Low Profile Cup	11 136 65	57 1.67	Entire Period: HR=2.59 (1.44, 4.67),p=0.001
2Wk - 1.5Yr: HR=0.90 (0.62, 1.31),p=0.582 1.5Yr+: HR=0.44 (0.16, 1.16),p=0.097 Profemur L/Dynasty 22 770 999 2.20 Entire Period: HR=1.60 (1.05, 2.43),p=0.027 Taperloc Microplasty/Regenerex 4 48 201 1.99 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Apex 126 2380 1283 0.98 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Entiperion 38 494 2350 1.62 Entire Period: HR=2.27 (1.65, 3.12),p<0.001 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.57 (1.66, 3.99),p<0.001 *Furlong Evolution 6 91 187 3.21 Entire Period: HR=1.49 (1.07, 2.08),p=0.017 *ML Taper Kinectiv 133 3298 14208 0.94 Entire Period: HR=1.49 (1.07, 2.08),p=0.017 *Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=0.50 (0.16, 1.56),p=0.234 *Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=2.69 (1.98, 3.65),p<0.001 *Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=1.30	ail/Trabecular Metal (Shell)	11 90 39	99 2.76	Entire Period: HR=3.95 (2.19, 7.13),p<0.001
Image: Network in the second	tafix/Trinity	43 2147 462	22 0.93	0 - 2Wk: HR=1.82 (1.00, 3.29),p=0.048
Profemur L/Dynasty 22 770 999 2.20 Entire Period: HR=1.60 (1.05, 2.43),p=0.027 Taperloc Microplasty/Regenerex 4 48 201 1.99 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Apex 126 2380 12838 0.98 Entire Period: HR=2.81 (1.06, 7.49),p=0.001 *Emperion 38 494 2350 1.62 Entire Period: HR=2.27 (1.65, 3.12),p<0.001 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.57 (1.66, 3.99),p<0.001 *Furlong Evolution 6 91 187 3.21 Entire Period: HR=3.06 (1.37, 6.81),p=0.002 *Novation 35 996 2526 1.39 Entire Period: HR=1.31 (1.10, 1.55),p=0.002 *Novation 35 996 2526 1.39 Entire Period: HR=1.49 (1.07, 2.08),p=0.017 *Taper Fit 50 915 3697 1.35 0 -1Mth: HR=0.50 (0.16, 1.56), p=0.234 *Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16), P<0.001 *Trabecular Metal 101 1866 8654 1.46 Entire Peri				2Wk - 1.5Yr: HR=0.90 (0.62, 1.31),p=0.582
Taperloc Microplasty/Regenerex 4 48 201 1.99 Entire Period: HR=2.81 (1.06, 7.49),p=0.038 *Apex 126 2380 12838 0.98 Entire Period: HR=1.48 (1.24, 1.76),p<0.001 *Emperion 38 494 2350 1.62 Entire Period: HR=2.27 (1.65, 3.12),p<0.001 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.57 (1.66, 3.99),p<0.001 *Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.57 (1.66, 3.99),p<0.001 *Furlong Evolution 6 91 187 3.21 Entire Period: HR=3.06 (1.37, 6.81),p=0.006 *ML Taper Kinectiv 133 3298 14208 0.94 Entire Period: HR=1.31 (1.10, 1.55),p=0.002 *Novation 35 996 2526 1.39 Entire Period: HR=1.31 (1.01, 1.56),p=0.0234 *Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=0.50 (0.16, 1.56),p=0.234 *Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001 *Trabecular Metal 101 1866 8654 1.17 0				1.5Yr+: HR=0.44 (0.16, 1.16),p=0.097
*Apex 126 2380 12838 0.98 Entire Period: HR=1.48 (1.24, 1.76), p<0.001	femur L/Dynasty	22 770 99	99 2.20	Entire Period: HR=1.60 (1.05, 2.43),p=0.027
*Emperion 38 494 2350 1.62 Entire Period: HR=2.27 (1.65, 3.12),p<0.001	erloc Microplasty/Regenerex	4 48 20	01 1.99	Entire Period: HR=2.81 (1.06, 7.49),p=0.038
*Excia (cless) 20 285 1031 1.94 Entire Period: HR=2.57 (1.66, 3.99),p<0.001	Dex	126 2380 1283	38 0.98	Entire Period: HR=1.48 (1.24, 1.76),p<0.001
*Furlong Evolution 6 91 187 3.21 Entire Period: HR=3.06 (1.37, 6.81),p=0.006 *ML Taper Kinectiv 133 3298 14208 0.94 Entire Period: HR=1.31 (1.10, 1.55),p=0.002 *Novation 35 996 2526 1.39 Entire Period: HR=1.49 (1.07, 2.08),p=0.017 *Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=0.50 (0.16, 1.56),p=0.234 *Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=0.52 (0.07, 3.71),p=0.516 *Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001	nperion	38 494 235	50 1.62	Entire Period: HR=2.27 (1.65, 3.12),p<0.001
*ML Taper Kinectiv 133 3298 14208 0.94 Entire Period: HR=1.31 (1.10, 1.55),p=0.002 *Novation 35 996 2526 1.39 Entire Period: HR=1.49 (1.07, 2.08),p=0.017 *Taper Fit 50 915 3697 1.35 0 - 1 Mth: HR=0.50 (0.16, 1.56),p=0.234 *Taper Fit 50 915 3697 1.35 0 - 1 Mth: HR=0.50 (0.07, 3.71),p=0.498 *Taper Fit 3Mth - 6Mth: HR=0.52 (0.07, 3.71),p=0.516 *Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001	cia (cless)	20 285 103	31 1.94	Entire Period: HR=2.57 (1.66, 3.99),p<0.001
*Novation 35 996 2526 1.39 Entire Period: HR=1.49 (1.07, 2.08),p=0.017 *Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=0.50 (0.16, 1.56),p=0.234 *Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=0.50 (0.16, 1.56),p=0.234 *Taper Fit 1Mth - 3Mth: HR=1.35 (0.56, 3.26),p=0.498 3Mth - 6Mth: HR=0.52 (0.07, 3.71),p=0.516 *Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001	rlong Evolution	6 91 18	87 3.21	Entire Period: HR=3.06 (1.37, 6.81),p=0.006
*Taper Fit 50 915 3697 1.35 0 - 1Mth: HR=0.50 (0.16, 1.56),p=0.234 *Taper Fit 1Mth - 3Mth: HR=1.35 (0.56, 3.26),p=0.498 3Mth - 6Mth: HR=0.52 (0.07, 3.71),p=0.516 6Mth+: HR=2.69 (1.98, 3.65),p<0.001	L Taper Kinectiv	133 3298 1420	08 0.94	Entire Period: HR=1.31 (1.10, 1.55),p=0.002
*Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001	ovation	35 996 252	26 1.39	Entire Period: HR=1.49 (1.07, 2.08),p=0.017
*Trabecular Metal 101 1866 8654 1.17 0 - 3Mth + HR=2.39 (1.98, 3.65), p<0.001	per Fit	50 915 369	97 1.35	0 - 1Mth: HR=0.50 (0.16, 1.56),p=0.234
*Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001				1Mth - 3Mth: HR=1.35 (0.56, 3.26),p=0.498
*Trabecular Metal 101 1866 8654 1.17 0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001				3Mth - 6Mth: HR=0.52 (0.07, 3.71),p=0.516
*UniSyn 45 462 3081 1.46 Entire Period: HR=2.33 (1.74, 3.12),p<0.001				6Mth+: HR=2.69 (1.98, 3.65),p<0.001
*UniSyn 45 462 3081 1.46 Entire Period: HR=2.33 (1.74, 3.12),p<0.001	abecular Metal	101 1866 865	54 1.17	0 - 3Mth: HR=2.38 (1.80, 3.16),p<0.001
**Continuum 322 9520 30945 1.04 0 - 3Mth: HR=1.72 (1.48, 2.00),p<0.001				3Mth+: HR=1.30 (0.99, 1.71),p=0.060
**Furlong 30 568 2654 1.13 Entire Period: HR=1.06 (0.34, 1.33),p=0.621 **Plasmacup 30 568 2654 1.13 Entire Period: HR=1.61 (1.13, 2.30),p=0.009 **Procotyl L 52 1076 4426 1.17 Entire Period: HR=1.62 (1.24, 2.13),p<0.001	niSyn	45 462 308	81 1.46	Entire Period: HR=2.33 (1.74, 3.12),p<0.001
Image: Network with the system Image:	ontinuum	322 9520 3094	45 1.04	0 - 3Mth: HR=1.72 (1.48, 2.00),p<0.001
**Furlong 30 568 2654 1.13 Entire Period: HR=1.61 (1.13, 2.30),p=0.009 **Plasmacup 30 482 2153 1.39 Entire Period: HR=1.96 (1.37, 2.80),p<0.001				3Mth - 1.5Yr: HR=1.06 (0.84, 1.33),p=0.621
**Furlong 30 568 2654 1.13 Entire Period: HR=1.61 (1.13, 2.30),p=0.009 **Plasmacup 30 482 2153 1.39 Entire Period: HR=1.96 (1.37, 2.80),p<0.001				1.5Yr - 2.5Yr: HR=1.30 (0.94, 1.80),p=0.109
**Plasmacup 30 482 2153 1.39 Entire Period: HR=1.96 (1.37, 2.80),p<0.001 **Procotyl L 52 1076 4426 1.17 Entire Period: HR=1.62 (1.24, 2.13),p<0.001				2.5Yr+: HR=0.67 (0.47, 0.96),p=0.028
**Procotyl L 52 1076 4426 1.17 Entire Period: HR=1.62 (1.24, 2.13),p<0.001	urlong	30 568 265	54 1.13	Entire Period: HR=1.61 (1.13, 2.30),p=0.009
	lasmacup	30 482 215	53 1.39	Entire Period: HR=1.96 (1.37, 2.80),p<0.001
	rocotyl L	52 1076 442	26 1.17	Entire Period: HR=1.62 (1.24, 2.13),p<0.001
Identified and no longer used	ntified and no longer used			
+Hyperion/Delta-TT 8 128 453 1.77 Entire Period: HR=2.24 (1.12, 4.48),p=0.022	yperion/Delta-TT	8 128 45	53 1.77	Entire Period: HR=2.24 (1.12, 4.48),p=0.022
Anatomic II/Duraloc Option 7 60 514 1.36 Entire Period: HR=2.35 (1.12, 4.92),p=0.023	atomic II/Duraloc Option	7 60 51	14 1.36	Entire Period: HR=2.35 (1.12, 4.92),p=0.023
Anca-Fit/Pinnacle 14 101 775 1.81 Entire Period: HR=3.14 (1.86, 5.30),p<0.001	ca-Fit/Pinnacle	14 101 77	75 1.81	Entire Period: HR=3.14 (1.86, 5.30),p<0.001
F2L/Delta-PF 17 107 957 1.78 Entire Period: HR=3.07 (1.91, 4.93),p<0.001	/Delta-PF	17 107 95	57 1.78	Entire Period: HR=3.07 (1.91, 4.93),p<0.001
Friendly Hip/Cup (Exactech) 14 97 853 1.64 Entire Period: HR=2.88 (1.71, 4.87),p<0.001	endly Hip/Cup (Exactech)	14 97 85	53 1.64	Entire Period: HR=2.88 (1.71, 4.87),p<0.001
H Moos/Mueller 9 19 139 6.47 Entire Period: HR=10.39 (5.41, 19.95),p<0.001	loos/Mueller	9 19 13	39 6.47	Entire Period: HR=10.39 (5.41, 19.95),p<0.001
Secur-Fit Plus/Secur-Fit 23 197 2100 1.10 Entire Period: HR=1.86 (1.23, 2.79),p=0.003	ur-Fit Plus/Secur-Fit	23 197 210	00 1.10	Entire Period: HR=1.86 (1.23, 2.79),p=0.003
Taperloc/M2a ^{MoM} 59 515 4844 1.22 Entire Period: HR=2.08 (1.61, 2.69),p<0.001	erloc/M2a ^{MoM}	59 515 484	44 1.22	Entire Period: HR=2.08 (1.61, 2.69),p<0.001
*ABGII (exch neck) 70 246 1384 5.06 0 - 1Mth: HR=3.68 (1.65, 8.21),p=0.001	GII (exch neck)	70 246 138	84 5.06	0 - 1Mth: HR=3.68 (1.65, 8.21),p=0.001
1Mth - 2.5Yr: HR=3.45 (2.04, 5.82),p<0.001				1Mth - 2.5Yr: HR=3.45 (2.04, 5.82),p<0.001
2.5Yr - 4Yr: HR=11.15 (6.46, 19.26),p<0.001				2.5Yr - 4Yr: HR=11.15 (6.46, 19.26),p<0.001
				4Yr - 4.5Yr: HR=32.93 (18.07, 60.01),p<0.001

Table IP7 Revision Rate of Individual Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Femoral/Acetabular	N Revised	N Total		Revisions/100 Obs. Yrs	Hazard Ratio, P Value
					4.5Yr+: HR=17.04 (11.58, 25.10),p<0.001
*Adapter (cless)	115	744	5088	2.26	0 - 2Wk: HR=3.88 (1.93, 7.78),p<0.001
					2Wk - 1Mth: HR=1.73 (0.72, 4.16),p=0.222
					1Mth - 6Mth: HR=0.82 (0.31, 2.18),p=0.687
					6Mth - 3Yr: HR=3.59 (2.53, 5.08),p<0.001
		•	•		3Yr - 3.5Yr: HR=9.86 (5.56, 17.48),p<0.001
					3.5Yr+: HR=5.06 (3.87, 6.63),p<0.001
*Adapter (ctd)	30	148	987	3.04	0 - 6Mth: HR=2.19 (0.82, 5.83),p=0.118
					6Mth+: HR=5.29 (3.60, 7.76),p<0.001
*BMHR VST	21	260	1482	1.42	Entire Period: HR=2.02 (1.32, 3.10),p=0.001
*CBH Stem	35	274	1634	2.14	Entire Period: HR=3.40 (2.44, 4.73),p<0.001
*Edinburgh	18	138	842	2.14	Entire Period: HR=3.61 (2.27, 5.72),p<0.001
*Elite Plus	235	2841	27751	0.85	0 - 1Mth: HR=0.27 (0.11, 0.65),p=0.003
					1Mth - 9Mth: HR=1.02 (0.68, 1.53),p=0.916
					9Mth+: HR=1.77 (1.54, 2.03),p<0.001
*K2	67	601	3624	1.85	Entire Period: HR=2.96 (2.33, 3.77),p<0.001
*LYDERIC II	15	164	1306	1.15	Entire Period: HR=2.00 (1.20, 3.31),p=0.007
*MSA	23	224	1092	2.11	Entire Period: HR=2.94 (1.95, 4.43),p<0.001
*Margron	102	688	7024	1.45	0 - 3Mth: HR=2.35 (1.48, 3.74),p<0.001
					3Mth - 1Yr: HR=5.70 (3.74, 8.67),p<0.001
					1Yr - 2Yr: HR=2.37 (1.18, 4.74),p=0.015
					2Yr - 4Yr: HR=2.96 (1.75, 5.01),p<0.001
					4Yr - 7Yr: HR=4.10 (2.80, 5.99),p<0.001
					7Yr+: HR=0.84 (0.49, 1.45),p=0.528
*Mayo	16	168	1446	1.11	Entire Period: HR=1.91 (1.17, 3.12),p=0.009
*Metha (exch neck)	13	88	488	2.67	Entire Period: HR=4.01 (2.33, 6.91),p<0.001
*Profemur Z	26	186	1636	1.59	Entire Period: HR=2.74 (1.86, 4.02),p<0.001
**2000 Plus	16	135	971	1.65	Entire Period: HR=2.78 (1.70, 4.54),p<0.001
**ASR	1801	4421	31051	5.80	0 - 1.5Yr: HR=1.47 (1.24, 1.75),p<0.001
					1.5Yr - 2Yr: HR=6.26 (4.83, 8.10),p<0.001
					2Yr - 3Yr: HR=13.09 (11.32, 15.13),p<0.001
					3Yr - 5Yr: HR=23.69 (21.57, 26.02),p<0.001
					5Yr - 5.5Yr: HR=27.93 (23.32, 33.45),p<0.001
					5.5Yr - 6Yr: HR=23.26 (18.98, 28.50),p<0.001
					6Yr - 7Yr: HR=17.28 (14.57, 20.50),p<0.001
					7Yr - 8.5Yr: HR=13.60 (11.56, 15.99),p<0.001
					8.5Yr+: HR=6.84 (5.56, 8.43),p<0.001
**Adept	17	121	856	1.99	Entire Period: HR=3.18 (1.97, 5.11),p<0.001
**Artek	63	179	2016	3.13	0 - 1.5Yr: HR=1.93 (0.92, 4.04),p=0.083
					1.5Yr+: HR=6.32 (4.85, 8.22),p<0.001
**BHR	347	2987	23928	1.45	0 - 2Wk: HR=0.81 (0.39, 1.71),p=0.584
	.				2Wk - 1Mth: HR=0.17 (0.04, 0.66),p=0.010
	.				1Mth - 1.5Yr: HR=0.93 (0.67, 1.29),p=0.664
	.				1.5Yr+: HR=3.60 (3.21, 4.05),p<0.001
**Bionik	117	608	4290	2.73	0 - 3Mth: HR=1.66 (0.92, 2.99),p=0.094
					3Mth+: HR=5.59 (4.62, 6.77),p<0.001
**Cormet	96	803	6557	1.46	0 - 1.5Yr: HR=1.05 (0.65, 1.69),p=0.845
					1.5Yr - 2Yr: HR=0.53 (0.08, 3.80),p=0.531
					2Yr+: HR=3.68 (2.94, 4.61),p<0.001
**DeltaLox	22	222	965	2.28	Entire Period: HR=3.27 (2.15, 4.97),p<0.001
			200	2	

Femoral/Acetabular	N Revised	N Total		Revisions/100 Obs. Yrs	Hazard Ratio, P Value
**Duraloc	500	5354	52320	0.96	0 - 3Mth: HR=0.84 (0.63, 1.11),p=0.227
					3Mth - 9Mth: HR=1.36 (0.95, 1.95),p=0.096
					9Mth - 2Yr: HR=1.58 (1.20, 2.07),p<0.001
		•			2Yr - 2.5Yr: HR=0.76 (0.38, 1.53),p=0.445
		•			2.5Yr - 3Yr: HR=1.80 (1.11, 2.92),p=0.017
					3Yr - 5.5Yr: HR=1.47 (1.14, 1.89),p=0.002
				•	5.5Yr+: HR=2.35 (2.08, 2.66),p<0.001
**Durom	148	1245	10842	1.37	0 - 1.5Yr: HR=0.75 (0.48, 1.17),p=0.204
					1.5Yr+: HR=3.29 (2.76, 3.92),p<0.001
**ExpanSys	11	71	636	1.73	Entire Period: HR=3.02 (1.67, 5.46),p<0.001
**Fin II	110	2025	11808	0.93	Entire Period: HR=1.47 (1.22, 1.77),p<0.001
**Hedrocel	9	46	489	1.84	Entire Period: HR=3.04 (1.58, 5.84),p<0.001
**lcon	75	401	2911	2.58	0 - 2.5Yr: HR=2.50 (1.68, 3.73),p<0.001
		•			2.5Yr+: HR=6.17 (4.68, 8.13),p<0.001
**Inter-Op	9	33	334	2.70	Entire Period: HR=4.57 (2.38, 8.79),p<0.001
**MBA	17	124	1008	1.69	Entire Period: HR=2.91 (1.81, 4.69),p<0.001
**Mitch TRH	86	732	5457	1.58	0 - 3Mth: HR=0.61 (0.25, 1.46),p=0.262
		•		•	3Mth+: HR=3.30 (2.65, 4.11),p<0.001
**SPH-Blind	107	952	10266	1.04	0 - 1Mth: HR=2.51 (1.54, 4.10),p<0.001
					1Mth+: HR=1.68 (1.37, 2.07),p<0.001
**seleXys (excluding seleXys PC)	42	391	2050	2.05	Entire Period: HR=3.08 (2.28, 4.17),p<0.001

Note: All components have been compared to all other total conventional hip components, excluding metal/metal bearings with head size larger than 32mm

* Femoral Component, ** Acetabular Component

+ Newly identified and no longer used

Table IP8 Cumulative Percent Revision of Individual Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
Newly Identified					
Quadra-H/Versafitcup DM	4.2 (2.2, 7.9)				
Taperloc/G7	2.4 (1.5, 3.7)				
Taperloc/Versafitcup CC					
**Delta-One-TT	3.2 (1.0, 9.6)	7.3 (3.3, 15.8)			
Re-Identified and Still Used					
CPT/Fitmore	4.3 (2.3, 8.1)	4.9 (2.6, 8.9)	6.1 (3.3, 11.3)		
CPT/Low Profile Cup	4.5 (2.0, 9.7)	6.1 (3.1, 11.9)	9.3 (5.2, 16.3)		
Corail/Trabecular Metal (Shell)	6.7 (3.1, 14.3)	10.7 (5.7, 19.6)	13.9 (7.8, 23.8)		
Metafix/Trinity	1.9 (1.4, 2.6)	2.4 (1.8, 3.2)	2.4 (1.8, 3.2)		
Profemur L/Dynasty	3.1 (2.0, 4.7)				
Taperloc Microplasty/Regenerex	8.5 (3.3, 21.1)	8.5 (3.3, 21.1)	8.5 (3.3, 21.1)		
*Apex	2.3 (1.8, 3.0)	3.4 (2.7, 4.2)	5.0 (4.1, 6.1)	8.1 (6.6, 9.8)	
*Emperion	4.7 (3.2, 7.0)	5.7 (3.9, 8.2)	7.3 (5.2, 10.2)		
*Excia (cless)	5.0 (3.0, 8.3)	6.9 (4.4, 10.7)	7.6 (4.9, 11.8)		
*Furlong Evolution	4.5 (1.7, 11.6)	7.3 (3.3, 15.5)			
*ML Taper Kinectiv	2.2 (1.7, 2.8)	3.5 (2.9, 4.2)	4.5 (3.8, 5.4)		
*Novation	2.8 (1.9, 4.0)	3.9 (2.8, 5.5)	4.4 (3.0, 6.4)		
*Taper Fit	1.5 (0.9, 2.6)	3.0 (2.0, 4.7)	6.4 (4.4, 9.2)	13.0 (9.6, 17.5)	
*Trabecular Metal	3.4 (2.7, 4.3)	4.8 (3.9, 5.9)	5.4 (4.5, 6.6)		

**Continuum 2.5 (2.2, 2.9) 3.4 (3.1, 3.8) 3.9 (3.5, 4.4) **Furlong 3.4 (2.2, 5.2) 5.1 (3.6, 7.4) 5.5 (3.8, 7.9) **Plasmacup 4.4 (2.9, 6.7) 5.8 (4.0, 8.4) 6.2 (4.3, 8.9) **Procotyl L 3.4 (2.4, 4.7) 4.7 (3.6, 6.3) 5.3 (4.1, 7.0) **Procotyl L 3.4 (2.4, 4.7) 4.7 (3.6, 6.3) 5.3 (4.1, 7.0) **thyperion/Delta-TT 3.2 (1.2, 8.2) 5.6 (2.7, 11.3) 5.5 (3.0, 14.0) 12.1 (6.0, 23.9) Anatomic II/Duraloc Option 1.7 (0.2, 11.2) 6.7 (2.6, 16.8) 10.1 (4.7, 21.1) 12.1 (6.0, 23.9) Anca-Fit/Pinnacle 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 11.0 (6.3, 19.1) 5.5 (3.0, 14.0) 14.2 (8.3, 23.8) Friendly Hip/Cup (Exactech) 2.1 (0.5, 8.0) 3.2 (1.0, 9.5) 6.5 (3.0, 14.0) 14.2 (8.3, 23.8) 5.5 Secur-Fit Plus/Secur-Fit 3.1 (1.4, 6.7) 7.3 (4.4, 11.9) 7.8 (4.8, 12.6) 10.1 (6.5, 15.3) Taperloc/M2a ^{MoM} 1.8 (0.9, 3.3) 4.3 (2.9, 6.5) 7.4 (5.4, 10.0) 12.3 (9.6, 15.8) *AbgBII (exch neck) 4.1 (2.2, 7.5) 10.3 (7.1, 14.9) 19.7 (15.2, 25.3) * *Adapter (ctd) 4.	CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
""Funning 3.4 (22, 52) 5.1 (3.6, 7.4) 5.5 (3.8, 7.9) ""Plasmoup 4.4 (2.9, 6.7) 5.8 (4.0, 8.4) 6.2 (4.3, 8.9) ""Procotyl L 3.4 (2.4, 4.7) 4.7 (3.6, 5.3) 5.3 (4.1, 7.0) Antornii (UPOnto Option 1.7 (0.2, 11.3) 6.7 (2.6, 16.3) 1.0 (4.7, 21.1) 1.2 (1.6, 0.2.9.9) Ancar FilpPinande 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 1.10 (6.3, 19.1) 1.4 (2.8, 2.3.2) P2U/Delta-PF 5.6 (2.6, 12.1) 0.3 (5.9, 17.9) 1.2 (7.3, 20.2) 1.5 (9.8, 24.0) Friendly Hig/Xog (Exatch) 2.1 (0.5, 8.0) 3.2 (1.0, 5.5) 3.8 (2.8, 6.47) 4.65 (2.6, 7.2.4) Secur-Fit Pu/Secur-Fit 3.1 (1.4, 6.7) 7.3 (4.4, 19) 7.8 (4.8, 12.6) 1.0 (1.6, 15.3) Secur-Fit Pu/Secur-Fit 3.1 (1.4, 6.7) 7.3 (4.4, 19) 1.7 (1.5, 2.10) 3.4 (2.9, 6.5) Adapter (closs) 4.2 (2.2, 4.8) 6.7 (5.1, 8.8) 1.1 (4.9, 3.1.4) 1.7 (9.1, 5.0, 2.12) VABGI (lexsh neck) 4.1 (2.2, 7.5) 0.1 (3.7, 1.4.9) 1.5 (7.2, 7.0.0) 8.4 (3.3, 1.6.1) VABGI (closs) 3.4 (2.2, 3.5) 4.2 (3.5, 5.1)	*UniSyn	3.3 (2.0, 5.4)	5.9 (4.1, 8.6)	6.8 (4.8, 9.7)	13.1 (9.6, 17.7)	
Plasmacup 4.4 (2.9, 6.7) 5.8 (4.0, 8.4) 6.2 (4.3, 8.9) **Procoyl L 34 (2.4, 47) 4.7 (3.6, 6.3) 5.3 (4.1, 7.0) **Procoyl L 32 (1.2, 8.2) 5.6 (2.7, 11.3) 1.1 (4.7, 2.1.1) 1.2 (6.0, 2.9) **Antomic IJ/Duraloc Option 1.7 (0.2, 11.2) 6.7 (2.6, 16.8) 1.0.1 (4.7, 2.1.1) 1.2 (6.0, 2.9) **Antomic IJ/Duraloc Option 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 11.0 (6.3, 19.1) 1.2 (6.0, 2.2.9) **Antomic IJ/Duraloc Option 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 1.0 (6.5, 15.3) 1.0 (6.5, 15.3) **Edit/Buraloc Option 5.6 (0.8, 3.33) 4.3 (2.9, 6.5) 7.4 (5.4, 10.0) 1.2 (2.6, 15.8) **Edit/Buraloc Option 4.1 (2.2, 7.5) 10.3 (7.1, 14.9) 19.7 (15.2, 2.5.3) ** **Adapter (cides) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) *Adapter (cides) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) ***Adapter (cides) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) ***Adapter (cide)	**Continuum	2.5 (2.2, 2.9)	3.4 (3.1, 3.8)	3.9 (3.5, 4.4)		
"Procodyl I 34 (24.47) 4.7 (3.6, 6.3) 5.3 (4.1, 7.0) dendified and no longer use 3.2 (1.2, 8.2) 5.6 (2.7, 11.3) Anatomic II/Duraloc Option 1.7 (0.2, 11.2) 6.7 (2.6, 16.8) 10.1 (4.7, 21.1) 1.2 (1.6, 0.2.3.9) Anca-Fi/Pinnacle 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 11.0 (6.3, 19.1) 1.4 (2.0, 2.3.9) Evidential Pierrole Machine 5.6 (2.6, 12.1) 10.3 (5.9, 17.9) 12.3 (7.3, 20.2) 15.5 (8.6, 2.4.0) Area-Fi/Pinnacle 5.6 (2.6, 12.1) 10.3 (5.9, 17.9) 12.3 (7.3, 20.2) 15.5 (8.6, 27.4) Bernor Machine 1.1 (1.6, 7) 7.3 (4.4, 11.9) 7.8 (4.8, 12.6) 10.1 (6.5, 15.3) Secur-Fit Plus/Secur-Fit 3.1 (1.4, 6.7) 7.3 (4.7, 19) 7.6 (4.6, 10.0) 12.3 (8.6, 15.8) Apather (cleask) 4.1 (1.2, 7.5) 10.3 (7.1, 14.9) 17.9 (15.0, 21.2) 0.6 (4.3, 10.8) VAdapter (cleask) 3.1 (3.7, 20.2) 2.8 (2.3, 5.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4 VAdapter (cleask) 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4	**Furlong	3.4 (2.2, 5.2)	5.1 (3.6, 7.4)	5.5 (3.8, 7.9)		
Identified and no longer used Physeinor/Delta TT 3.2 (1.2, 8.2) 5.6 (2.7, 11.3) Ancamic II/Duratio Option 1.7 (0.2, 11.2) 6.7 (2.6, 16.8) 1.0.1 (4.7, 2.1.1) 1.21 (6.0, 2.3.9) Anca-Fit/Pinnacle 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 11.0 (6.3, 19.1) 1.21 (6.0, 2.3.9) Finendy Hip/cup (Esactech) 2.1 (0.5, 8.0) 3.2 (1.0, 9.5) 6.5 (3.0, 14.0) 1.42 (8.3, 22.8) Moos/Mueller 5.6 (0.8, 33.4) 3.33 (16.6, 59.6) 3.8 (20.8, 64.7) 4.65 (26.2, 72.4) Secur-Fit Plus/Secur-Fit 3.1 (1.4, 6.7) 7.3 (4.4, 11.9) 17.0 (12.3, 20.6, 15.8) Tapedro/M2 ^{MM} 18.09, 3.3 4.3 (2.9, 6.5) 7.4 (5.4, 10.0) 12.3 (9.6, 15.8) Adapter (ctd) 4.1 (2.2, 7.5) 10.3 (7.1, 14.9) 17.0 (12.6, 24.5) 7.4 (4.0, 12.6) Madapter (ctd) 4.1 (2.3, 7.2) 7.5 (10.7, 10.6, 86.43, 10.8) 1.2 (11.3, 15.4) Madapter (ctd) 4.1 (2.7, 7.2) 7.6 (2.6, 8.1) 1.2 (11.3, 15.4) Madapter (ctd) 1.5 (1.1, 2.0) 2.4 (2.3, 5.5) 7.6 (6.6, 8.6) 13.2 (11.3, 15.4) Math (xtct) 1.6 (1.3, 11.7) 9.	**Plasmacup	4.4 (2.9, 6.7)	5.8 (4.0, 8.4)	6.2 (4.3, 8.9)		
Hyperion/Delta-TI 3.2 (1.2, 8.2) 5.6 (2.7, 11.3) Anatomi (I/Duraloc Option 1.7, 102, 11.2) 6.7 (2.4, 16.8) 10.1 (47, 21.1) 12.1 (60, 23.9) Anatomi (I/Duraloc Option 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 11.0 (63, 19.1) F2L/Delta-FF 5.6 (2.6, 12.1) 10.3 (5.9, 17.9) 12.3 (7.3, 20.2) 15.5 (9.8, 24.0) F2L/Delta-FF 5.6 (0.8, 33.4) 33.3 (16.6, 59.6) 38.9 (20.8, 64.7) 46.5 (26.2, 72.4) Secur-FI PLysSecur-Fit 3.1 (1.4, 67) 7.3 (4.4, 11.9) 7.7 (4.5, 4.10.0) 12.3 (9.6, 15.8) ABGI (exch meck) 4.1 (2.2, 7.5) 10.3 (7.1, 14.9) 19.7 (15.2, 25.3) YAdapter (ctch) Adapter (ctch) 3.2 (2.2, 4.8) 6.7 (5.1.8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) YAdapter (ctch) 4.1 (1.9, 8.9) 9.1 (5.4, 15.2) 17.0 (11.6, 24.5) 12.8 (7.4, 20.0) YEBMH WST 1.9 (0.8, 4.6) 4.6 (2.7, 8.0) 6.8 (4.3, 10.8) 13.2 (11.3, 15.4) YEBNE 1.3 (1.1, 3.7.2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) YEBNE 1.3 (1.1, 3.7.2) 5.7 (3.0, 10.6) <td>**Procotyl L</td> <td>3.4 (2.4, 4.7)</td> <td>4.7 (3.6, 6.3)</td> <td>5.3 (4.1, 7.0)</td> <td></td> <td></td>	**Procotyl L	3.4 (2.4, 4.7)	4.7 (3.6, 6.3)	5.3 (4.1, 7.0)		
Anatomic II/Duraloc Option 1.7 (0.2, 11.2) 6.7 (2.6, 16.8) 10.1 (4.7, 21.1) 12.1 (6.0, 23.9) Anaca-FilpPinnacle 6.0 (2.7, 12.8) 8.0 (4.1, 15.3) 11.0 (6.3, 19.1) Friendly Hip/Cup (Exactech) 2.1 (0.5, 80) 3.2 (10, 95) 6.5 (3.0, 14.0) 14.2 (8.3, 23.8) H Moog/Mueller 5.6 (0.8, 33.4) 33.3 (16.6, 59.6) 38.9 (20.8, 64.7) 465 (26.2, 72.4) Secur-Fit Plus/Secur-Fit 3.1 (1.4, 67) 7.3 (4.4, 11.9) 7.8 (4.8, 12.6) 10.1 (65, 15.3) Faperloc/M2AMM 1.8 (0.9, 3.3) 4.3 (2.9, 65) 7.4 (5.4, 10.0) 12.3 (9.6, 15.8) YAdghter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) YAdghter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) YAdghter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) YAdghter (cless) 3.2 (2.2, 4.8) 6.4 (2.7, 8.0) 6.8 (4.3, 10.8) 13.2 (11.3, 15.4) YEBH N 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.7, 15.5) 12.2 (7.3, 20.5)	Identified and no longer used					
Anca-Fit/Pinnacle 6.0 (2,7, 12,8) 8.0 (4.1, 15.3) 11.0 (6.3, 19.1) F2L/Deta-FF 5.6 (2,6, 12.1) 10.3 (5.9, 17.9) 12.2 (7.3, 20.2) 15.5 (9.8, 24.0) Friendly Hig/Cup (Exatceh) 2.1 (0.5, 80) 3.2 (1.0, 9.5) 6.5 (3.0, 14.0) 14.2 (8.3, 23.8) Secur-Fit 3.1 (1.4, 6.7) 7.3 (4.4, 19) 7.8 (4.8, 12.6) 10.1 (6.5, 15.3) Faperloc/M2MMM 1.8 (0.9, 3.3) 4.3 (2.9, 6.5) 7.4 (5.4, 10.0) 12.3 (9.6, 15.8) Adapter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) Adapter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) Adapter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) Adapter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) MAGB (lext/h meck) 1.9 (0.6, 3.1, 17.7) 9.6 (5.4, 12.5 (7.7, 20.0) T.6 (6.8, 4.3, 10.8) 'CBH Stern 4.0 (2.3, 7.2) 7.5 (5.7, 10.0) 9.6 (7.7, 12.6) T.7 (4.0, 12.5) 12.3 (7.3, 20.5) 'Mada Ca	+Hyperion/Delta-TT	3.2 (1.2, 8.2)	5.6 (2.7, 11.3)			
F2L/Delta-PF 5.6 (2.6, 12.1) 10.3 (5.9, 17.9) 12.3 (7.3, 20.2) 15.5 (9.8, 24.0) Prinendy Hp/Cup (Exactech) 2.1 (0.5, 80) 3.2 (10, 95) 6.5 (30, 14.0) 142.8, 23.3) H Moos/Mueller 5.6 (0.8, 33.4) 33.3 (16.6 59.6) 38.9 (20.8, 64.7) 46.5 (26.2, 72.4) Ecur-FR IDUSSecur-Fit 3.1 (1.4, 6.7) 7.3 (44, 11.9) 7.8 (48, 12.6) 10.1 (6.5, 15.3) Taperdoc/M2a ^{MAM} 1.8 (0.9, 3.3) 4.3 (2.9, 6.5) 7.4 (5.4, 10.0) 12.3 (9.6, 15.8) Adapter (cles) 3.2 (2.2, 48) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) VAdapter (cles) 4.2 (2.7, 7.2) 10.3 (7.1, 14.9) 19.7 (15.0, 21.2) 10.4 (6.7, 10.0) VEBH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) 12.5 (7.7, 20.0) "Elthe Plus 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4) "VDERICI II 3.1 (1.3, 7.2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) "Margoon 5.8 (4.3, 7.9) 8.4 (6.5, 10.8) 10.6 (7.1, 15.5) 10.4 (7.1, 12.4)	Anatomic II/Duraloc Option	1.7 (0.2, 11.2)	6.7 (2.6, 16.8)	10.1 (4.7, 21.1)	12.1 (6.0, 23.9)	
Friendly Hip/Cup (Exactech) 2.1 (0.5, 8.0) 3.2 (10, 9.5) 6.5 (3.0, 14.0) 1.42 (8.3, 23.8) H Mosy/Mueller 5.6 (0.8, 33.4) 33.3 (16.6, 59.6) 38.9 (20.8, 64.7) 44.55 (26.2, 72.4) Secur-Fit Plus/Secur-Fit 3.1 (1.4, 6.7) 7.3 (44, 11.9) 7.8 (48, 12.6) 10.165, 15.3) Pagedoc/M22 ^{Mabin} 18.10 (39, 33) 43.2 (29, 65) 7.4 (54, 10.0) 12.3 (96, 15.8) Adapter (cles) 4.1 (12, 2, 7.5) 10.3 (7.1, 14.9) 19.7 (152, 25.3) 10.4 (20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	Anca-Fit/Pinnacle	6.0 (2.7, 12.8)	8.0 (4.1, 15.3)	11.0 (6.3, 19.1)		
Friendly Hip/Cup (Exactech) 2.1 (0.5, 8.0) 3.2 (10, 9.5) 6.5 (3.0, 14.0) 1.42 (8.3, 23.8) H Mosy/Mueller 5.6 (0.8, 33.4) 33.3 (16.6, 59.6) 38.9 (20.8, 64.7) 44.55 (26.2, 72.4) Secur-Fit Plus/Secur-Fit 3.1 (1.4, 6.7) 7.3 (44, 11.9) 7.8 (48, 12.6) 10.165, 15.3) Pagedoc/M22 ^{Mabin} 18.10 (39, 33) 43.2 (29, 65) 7.4 (54, 10.0) 12.3 (96, 15.8) Adapter (cles) 4.1 (12, 2, 7.5) 10.3 (7.1, 14.9) 19.7 (152, 25.3) 10.4 (20, 20, 20, 20, 20, 20, 20, 20, 20, 20,	F2L/Delta-PF	5.6 (2.6, 12.1)	10.3 (5.9, 17.9)	12.3 (7.3, 20.2)	15.5 (9.8, 24.0)	
H Moos/Mueller 56 (0.8, 33.4) 33.3 (16.6, 59.6) 38.9 (20.8, 64.7) 46.5 (26.2, 72.4) Secur-Fit 3.1 (1.4, 6.7) 7.3 (4.4, 1.9) 7.8 (4.8, 1.2.6) 10.1 (6.5, 15.3) Tapperloc/M24 ^{MAM} 18.09, 3.3) 4.3 (2.9, 6.5) 7.4 (5.4, 10.0) 12.3 (9.6, 15.8) Adapter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) Adapter (cles) 3.2 (2.2, 4.8) 6.6 7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) Adapter (cles) 3.2 (2.2, 4.8) 6.6 7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) Statistic 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) 10.0 (6.9, 14.4) *Edinburgh 6.0 (3.1, 11.7) 9.6 (5.6, 16.4) 12.2 (17.7, 20.0) 12.3 (7.3, 20.5) *K2 5.2 (3.7, 73) 7.5 (7.3, 10.0) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) *MSA 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.0 (2.8, 12.8) 14.9 (12.4, 17.9) *MYAS 3.0 (1.7, 7.8) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) 14.0 (2.7, 2.2, 13.1) *MYAS 3.0 (1.7	Friendly Hip/Cup (Exactech)					
Secur-Fit Plus/Secur-Fit 3.1 (14, 6.7) 7.3 (44, 11.9) 7.8 (48, 12.6) 10.1 (65, 15.3) Taperloc/M2a ^{MM} 1.8 (0.9, 3.3) 4.3 (2.9, 6.5) 7.4 (54, 10.0) 12.2 (9.6, 15.8) *ABGII (exch neck) 4.1 (2.2, 7.5) 10.3 (7.1, 14.9) 19.7 (152, 25.3) *Adapter (ctd) 4.1 (19, 8.9) 9.1 (54, 15.2) 17.0 (11.6, 24.5) *Adapter (ctd) 4.1 (19, 8.9) 9.1 (54, 15.2) 17.0 (11.6, 24.5) *BMHR VST 1.9 (0.8, 4.6) 4.6 (2.7, 8.0) 6.8 (43, 10.8) *CBH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) *CBH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) *CBH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.6 (6.3, 14.4) *Eliteburgh 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4) *K2 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) ************************************	H Moos/Mueller					
Taperloc/M28 ^{IMM} 1.8 (0.9, 3.3) 4.3 (2.9, 6.5) 7.4 (5.4, 10.0) 12.3 (9.6, 15.8) 'AAGDI (exch neck) 4.1 (2.2, 7.5) 10.3 (7.1, 14.9) 19.7 (15.2, 25.3) 'Adapter (clds) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) 'Adapter (cld) 4.1 (19, 8.9) 9.1 (5.4, 15.2) 17.0 (11.6, 24.5) ************************************	Secur-Fit Plus/Secur-Fit					
ABGII (exch neck) 4.1 (2.2, 7.5) 10.3 (7.1, 14.9) 19.7 (15.2, 25.3) Adapter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) Adapter (cld) 4.1 (19.8, 9) 9.1 (5.4, 15.2) 17.0 (11.6, 24.5) BMHR VST 1.9 (0.8, 4.6) 4.6 (2.7, 8.0) 6.8 (4.3, 10.8) CBH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) Edinburgh 6.0 (3.1, 11.7) 9.6 (5.6, 16.4) 12.5 (7.7, 20.0) VEX 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) 12.3 (7.3, 20.5) VLVDERICI 3.1 (13.7, 2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) ''MAgoron 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.6 (7.1, 15.5) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) ''Mayoron 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 0.9 (5.4, 14.9) ''Metha (exch neck) 1.5 (7.1, 2.4) 13.6 (8.0, 2.28) 13.6 (8.0, 2.28) ''Profermur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) ''Metha (exch neck) <td>Taperloc/M2a^{MoM}</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Taperloc/M2a ^{MoM}					
*Adapter (cless) 3.2 (2.2, 4.8) 6.7 (5.1, 8.8) 11.4 (9.3, 14.0) 17.9 (15.0, 21.2) *Adapter (ctd) 4.1 (1.9, 8.9) 9.1 (5.4, 15.2) 17.0 (11.6, 24.5) *BMMR VST 1.9 (0.8, 4.6) 4.6 (2.7, 8.0) 6.8 (4.3, 10.8) *CBH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) *CBH Stem 6.0 (3.1, 11.7) 9.6 (5.6, 16.4) 12.5 (7.7, 20.0) *Elite Plus 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4) *K2 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) 12.3 (7.3, 20.5) 12.3 (7.3, 20.5) *MSA 5.8 (4.3, 7.9) 8.4 (6.5, 10.8) 10.2 (8.2, 12.8) 14.9 (12.4, 17.9) 13.6 (8.0, 22.8) *Mayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) 14.10.4 *Mayo 3.0 (1.3, 7.0) 6.8 (3.6, 12.7) 9.2 (8.3, 15.7) 12.2 (8.2, 18.0) 12.2 (8.2, 18.0) **Matha 1.9 (15.2, 3.3) 9.6 (8.7, 10.5) 9.3 (5.3, 16.2) 14.1 (12.6, 15.6) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 14.8 (4.3.1, 46.4) 14.1 (12.6, 15.6) 14	*ABGII (exch neck)				,	
Adapter (td) 4.1 (1.9, 8.9) 9.1 (5.4, 15.2) 17.0 (11.6, 24.5) BMHR VST 1.9 (0.8, 4.6) 4.6 (2.7, 8.0) 6.8 (4.3, 10.8) CGH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 11.0 (0.6), 14.4) Edinburgh 6.0 (3.1, 11.7) 9.6 (5.6, 16.4) 12.5 (7.7, 20.0) Elite Plus 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4) YK2 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) 12.3 (7.3, 20.5) UNDERIC II 3.1 (1.3, 7.2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) Margon 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.6 (7.1, 15.5) 17.00 Margon 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) 17.00 "Matha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) "Moo 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) 14.10 12.6 (8.2, 13.8) "Matha (exch neck) 1.9 (15, 2.3) 9.6 (8.7, 10.5) 24.2 (23.0, 25.6) 44.8 (43.1, 46.4) 14.0 "Moo 3.0 (1.1, 7.96) 8.4 (4.6, 15	, , , , , , , , , , , , , , , , , , ,				17.9 (15.0, 21.2)	
TBMHR VST 1.9 (0.8, 4.6) 4.6 (2.7, 8.0) 6.8 (4.3, 10.8) CGB Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) Edinburgh 6.0 (3.1, 11.7) 9.6 (5.6, 16.4) 1.2 (7.7, 20.0) "Elite Plus 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4) "K2 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) 1.2.3 (7.3, 20.5) "MAG 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.6 (7.1, 15.5) 1.2.3 (7.3, 20.5) "Margron 5.8 (4.3, 7.9) 8.4 (6.5, 10.8) 10.2 (8.2, 12.8) 14.9 (12.4, 17.9) "Margron 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) "Metha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) "*2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) "*4Aept 4.1 (10.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) "*300 Plus 3.0 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (12.6, 15.6) 9.3 (5.3, 16.2) "*4Aept						
CBH Stem 4.0 (2.3, 7.2) 7.5 (4.9, 11.3) 10.0 (6.9, 14.4) **Edinburgh 6.0 (3.1, 11.7) 9.6 (5.6, 16.4) 12.5 (7.7, 20.0) **Elite Plus 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 13.2 (11.3, 15.4) **K2 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) 12.3 (7.3, 20.5) 12.3 (7.3, 20.5) **LVDERIC II 3.1 (1.3, 7.2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) 12.5 (7.1, 21.4) 13.6 (8.0, 21.6) 10.2 (8.2, 12.6) 14.9 (12.4, 17.9) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 13.7 (7.3, 12.8) 13.7 (7.3, 12.8) 13.7 (7.3, 12.8) **Mayo 3.0 (1.7, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) 13.2 (1.3, 14.4) 14.2 (8.2, 18.0) *200 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.2) 14.4 (3.4, 14.4) 14.4 (3.4, 14.4) ***200 Plus 3.0 (1.1, 7.8) 8.2 (4.6, 15.0) <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>						
Fedinburgh 6.0 (3,1, 11.7) 9.6 (5,6, 16,4) 12.5 (7,7, 20.0) *Elite Plus 1.5 (1,1, 2.0) 2.8 (2,3, 3.5) 4.2 (3,5, 5,1) 7.6 (6,6, 8,8) 13.2 (11,3, 15,4) *K2 5.2 (3,7, 7,3) 7.5 (5,7, 10.0) 9.8 (7,7, 12,6) 12.3 (7,3, 20,5) *MSA 5.8 (3,4, 9,8) 9.0 (5,9, 13,6) 10.6 (7,1, 15,5) 12.3 (7,3, 20,5) *Margron 5.8 (43, 7,9) 8.4 (6,5, 10,8) 10.2 (8,2, 12,8) 14.9 (12,4, 17,9) *Mayo 3.0 (1,3, 7.0) 6.6 (3,7, 11,6) 9.0 (5,4, 14,9) ** *Metha (exch neck) 12.5 (7,1, 21,4) 13.6 (8.0, 22,8) 13.6 (8.0, 22,8) ** ***2000 Plus 3.0 (1,1, 7.8) 6.8 (3,6, 12,7) 9.2 (5,3, 15,7) *** ***Ask 1.9 (15, 2,3) 9.6 (8,7, 10,5) 12.4 (23,0, 28,2) *** ***Ask 2.8 (12, 6,7) 8.0 (48, 13,1) 15.5 (11,0, 21.9) 2.47, (18,9, 32.0) ***Atek 2.8 (12, 6,7) 8.0 (48, 13,1) 15.5 (11,0, 21.9) 2.47, (18,9, 32.0) ***BHR 1.1 (0,8, 16) 3.2 (2,6, 3.9) 6.1 (52, 7.0)						
Tellite Plus 1.5 (1.1, 2.0) 2.8 (2.3, 3.5) 4.2 (3.5, 5.1) 7.6 (6.6, 8.8) 1.3.2 (11.3, 15.4) YK2 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) UVDERIC II 3.1 (1.3, 7.2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) YMSA 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.6 (7.1, 15.5) 10.4 (7.1, 7.9) YMayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) YMayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) YMetha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) 1.9 (1.2, 4.8, 13.0) Y*2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) 7.4 (1.8, 9.2.0) **4Ackept 4.1 (1.7, 9.6) 8.4 (4.6, 15.0) 9.3 (5.3, 16.2) 7.4 (7.8, 9.2.0) **8Binik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (1.5, 15.6) 7.6 (5.7, 10.0) 14.1 (1.2, 15.6) **10uraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 6.1 (3.2, 7.0) 15.4 (12.4, 19.0) 7.4 (5.4, 9.6)						
K2 5.2 (3.7, 7.3) 7.5 (5.7, 10.0) 9.8 (7.7, 12.6) **LYDERIC II 3.1 (1.3, 7.2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) *MSA 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.6 (7.1, 15.5) 10.4 (9.12.4, 17.9) *Margron 5.8 (4.3, 7.9) 8.4 (6.5, 10.8) 10.2 (8.2, 12.8) 14.9 (12.4, 17.9) *Mayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.0 (3.7, 11.6) 9.0 (5.4, 14.9) *Metha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) *Profemur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) **2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) 14.4 (4.6, 15.0) **2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (7.3, 13.7) 14.4 (12.6, 15.6) **4Ack 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) *Tekk 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) ***Benkink 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0)	-				76(66.88)	13 2 (11 3, 15 4)
TLYDERIC II 3.1 (1.3, 7.2) 5.7 (3.0, 10.6) 7.1 (4.0, 12.5) 12.3 (7.3, 20.5) *MSA 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.6 (7.1, 15.5) 14.9 (12.4, 17.9) *Mayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) *Mayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) *Metha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) **Profemur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) **2000 Plus 3.0 (1.7, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) ************************************	*K2					
MSA 5.8 (3.4, 9.8) 9.0 (5.9, 13.6) 10.6 (7.1, 15.5) *Margron 5.8 (4.3, 7.9) 8.4 (6.5, 10.8) 10.2 (8.2, 12.8) 14.9 (12.4, 17.9) *Mayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) *Metha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) **Profemur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) **2000 Plus 3.0 (1.7, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) ************************************					12 3 (7 3, 20 5)	
Margron 5.8 (4.3, 7.9) 8.4 (6.5, 10.8) 10.2 (8.2, 12.8) 14.9 (12.4, 17.9) *Mayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) *Metha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) *Profemur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) **2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) ************************************					1210 (110/ 2010)	
Mayo 3.0 (1.3, 7.0) 6.6 (3.7, 11.6) 9.0 (5.4, 14.9) **Metha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) **Profemur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) **2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) *** **ASR 1.9 (1.5, 2.3) 9.6 (8.7, 10.5) 24.2 (23.0, 25.6) 44.8 (43.1, 46.4) ***Adept 4.1 (1.7, 9.6) 8.4 (4.6, 15.0) 9.3 (5.3, 16.2) *** ***Atek 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) ***Attek 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) ***BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) ***Bionik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) ***DetaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) *** ***Durano 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) <td></td> <td></td> <td></td> <td></td> <td>149 (124 179)</td> <td></td>					149 (124 179)	
Metha (exch neck) 12.5 (7.1, 21.4) 13.6 (8.0, 22.8) 13.6 (8.0, 22.8) *Profemur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) **2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) **ASR 1.9 (1.5, 2.3) 9.6 (8.7, 10.5) 24.2 (23.0, 25.6) 44.8 (43.1, 46.4) **Adept 4.1 (1.7, 9.6) 8.4 (4.6, 15.0) 9.3 (5.3, 16.2) *** **Adept 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) ***BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) **BUR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.4 (12.4, 19.0) **DeltaLox 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) **Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) **Durano 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) 14.4 (14.9, 19.0) **ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) 14.6 (16.9, 6, 28.1)	-					
Profemur Z 6.0 (3.4, 10.5) 10.4 (6.7, 15.8) 10.9 (7.2, 16.4) 12.2 (8.2, 18.0) **2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) ***ASR 1.9 (1.5, 2.3) 9.6 (8.7, 10.5) 24.2 (23.0, 25.6) 44.8 (43.1, 46.4) ***Adept 4.1 (1.7, 9.6) 8.4 (4.6, 15.0) 9.3 (5.3, 16.2) *** ***Attek 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) ***BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) ***Bionik 3.6 (24, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) ***Cormet 1.4 (0.8, 2.5) 3.4 (2.3, 4.9) 5.1 (3.7, 6.9) 15.4 (12.4, 19.0) ***DeltaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) *** **Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) ***Durom 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) *** ***Loraloc 4.3 (1.1, 16.3) 6.6 (2.2, 19.2) 6.6 (2.2, 19.2) 20.4 (10.7, 37.0) ***					3.0 (3.1, 11.3)	
2000 Plus 3.0 (1.1, 7.8) 6.8 (3.6, 12.7) 9.2 (5.3, 15.7) **ASR 1.9 (15, 2.3) 9.6 (8.7, 10.5) 24.2 (23.0, 25.6) 44.8 (43.1, 46.4) **Adept 4.1 (1.7, 9.6) 8.4 (4.6, 15.0) 9.3 (5.3, 16.2) 5.4 **Artek 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) 5.4 **BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) 5.4 **Bionik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) 5.4 **Cormet 1.4 (0.8, 2.5) 3.4 (2.3, 4.9) 5.1 (3.7, 6.9) 15.4 (12.4, 19.0) 5.4 **DeltaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) 16.0 (13.9, 18.5) 5.4 **Duraloc 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) 5.5 **ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) 5.4 **Thedrocel 4.3 (1.1, 16.3) 6.6 (2.2, 19.2) 6.6 (2.2, 19.2) 20.4 (10.7, 37.0) 5.4 *Portion 3.0 (1.7, 5.3) 7.					122 (82 180)	
ASR 1.9 (1.5, 2.3) 9.6 (8.7, 10.5) 24.2 (23.0, 25.6) 44.8 (43.1, 46.4) *Adept 4.1 (1.7, 9.6) 8.4 (4.6, 15.0) 9.3 (5.3, 16.2) ***Artek 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) ***BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) ***Boinik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (1.5, 17.3) 21.5 (18.2, 25.3) ***Cormet 1.4 (0.8, 2.5) 3.4 (2.3, 4.9) 5.1 (3.7, 6.9) 15.4 (12.4, 19.0) ***DeltaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) *** ***Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) ***Durom 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) ** ***ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) ** ***Hedrocel 4.3 (1.1, 16.3) 6.6 (2.2, 19.2) 6.6 (2.2, 19.2) 20.4 (10.7, 37.0) ** ***Icon 3.0 (1.7, 5.3) 7.8 (5.5, 10.9) 12.7 (9.7, 16.4) 23.6 (1					12.2 (0.2, 10.0)	
Adept 4.1 (1.7, 9.6) 8.4 (4.6, 15.0) 9.3 (5.3, 16.2) *Artek 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) ***BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) ***Bionik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) ***Cormet 1.4 (0.8, 2.5) 3.4 (2.3, 4.9) 5.1 (3.7, 6.9) 15.4 (12.4, 19.0) ***DeltaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) ** **Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) **Durom 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) ** **ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) ** ***Hedrocel 4.3 (1.1, 16.3) 6.6 (2.2, 19.2) 2.0.4 (10.7, 37.0) ** ***Hedrocel 4.3 (1.1, 7.9.1) 15.2 (6.6, 32.6) 21.4 (10.8, 39.8) 28.3 (15.8, 47.4) ***Icon 3.0 (1.7, 5.3) 7.8 (5.5, 10.9) 12.7 (9.7, 16.4) 23.6 (18.8, 29.3)					<i>11</i> 8 (<i>1</i> 3 1 <i>1</i> 6 <i>1</i>)	
Arkek 2.8 (1.2, 6.7) 8.0 (4.8, 13.1) 15.6 (11.0, 21.9) 24.7 (18.9, 32.0) **BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) **Bonik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) **Cormet 1.4 (0.8, 2.5) 3.4 (2.3, 4.9) 5.1 (3.7, 6.9) 15.4 (12.4, 19.0) **DeltaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) 16.0 (13.9, 18.5) **Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) **Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) **Durom 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) **ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) *Hedrocel 4.3 (1.1, 16.3) 6.6 (2.2, 19.2) 2.0.4 (10.7, 37.0) 14.4 (17.9, 30.0 (17.7, 5.3) ***Icon 3.0 (1.7, 5.3) 7.8 (5.5, 10.9) 12.7 (9.7, 16.4) 23.6 (18.8, 29.3) ***Inter-Op 12.1 (4.7, 29.1) 15.2 (6.6, 32.6) 21.					(+3.1, +0.+)	
***BHR 1.1 (0.8, 1.6) 3.2 (2.6, 3.9) 6.1 (5.2, 7.0) 14.1 (12.6, 15.6) ***Bionik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) ***Cormet 1.4 (0.8, 2.5) 3.4 (2.3, 4.9) 5.1 (3.7, 6.9) 15.4 (12.4, 19.0) ***DeltaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) 16.0 (13.9, 18.5) ***Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) ***Durom 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) ***ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) ***Hedrocel 4.3 (1.1, 16.3) 6.6 (2.2, 19.2) 20.4 (10.7, 37.0) 4.4 (14.9, 39.8) ***Icon 3.0 (1.7, 5.3) 7.8 (5.5, 10.9) 12.7 (9.7, 16.4) 23.6 (18.8, 29.3) ***Inter-Op 12.1 (4.7, 29.1) 15.2 (6.6, 32.6) 21.4 (10.8, 39.8) 28.3 (15.8, 47.4) **MBA 4.0 (1.7, 9.4) 8.2 (4.5, 14.8) 10.2 (5.9, 17.2) 16.0 (9.9, 25.4) **MItch TRH 1.5 (0.8, 2.7) 4.6 (3.3, 6.4) 7.4 (5.7, 9.6) 10.3 (8	•				247 (189 320)	
Bionik 3.6 (2.4, 5.5) 7.6 (5.7, 10.0) 14.1 (11.5, 17.3) 21.5 (18.2, 25.3) **Cormet 1.4 (0.8, 2.5) 3.4 (2.3, 4.9) 5.1 (3.7, 6.9) 15.4 (12.4, 19.0) **DeltaLox 5.9 (3.5, 9.9) 8.7 (5.6, 13.3) 9.8 (6.5, 14.7) * **Duraloc 1.8 (1.5, 2.2) 3.0 (2.6, 3.5) 4.1 (3.6, 4.6) 8.5 (7.7, 9.4) 16.0 (13.9, 18.5) **Durom 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) ** **ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) ** ***Fin II 2.7 (2.1, 3.5) 3.6 (2.2, 19.2) 6.6 (2.2, 19.2) 20.4 (10.7, 37.0) ** ***Icon 3.0 (1.7, 5.3) 7.8 (5.5, 10.9) 12.7 (9.7, 16.4) 23.6 (18.8, 29.3) ** ***Inter-Op 12.1 (4.7, 29.1) 15.2 (6.6, 32.6) 21.4 (10.8, 39.8) 28.3 (15.8, 47.4) ** **MBA 4.0 (1.7, 9.4) 8.2 (4.5, 14.8) 10.2 (5.9, 17.2) 16.0 (9.9, 25.4) ** ***MBA 1.5 (0.8, 2.7) 4.6 (3.3, 6.4) 7.4 (5.7, 9.6) ** ** ***SPH-Blind 3.8 (2.8,						
Cormet1.4 (0.8, 2.5)3.4 (2.3, 4.9)5.1 (3.7, 6.9)15.4 (12.4, 19.0)DeltaLox5.9 (3.5, 9.9)8.7 (5.6, 13.3)9.8 (6.5, 14.7)**Duraloc1.8 (1.5, 2.2)3.0 (2.6, 3.5)4.1 (3.6, 4.6)8.5 (7.7, 9.4)16.0 (13.9, 18.5)**Durom1.1 (0.7, 1.9)3.6 (2.7, 4.8)5.5 (4.3, 6.9)12.7 (10.8, 14.9)**ExpanSys2.8 (0.7, 10.8)5.7 (2.2, 14.4)10.2 (5.0, 20.2)16.6 (9.6, 28.1)**Fin II2.7 (2.1, 3.5)3.6 (2.9, 4.5)4.8 (3.9, 5.9)7.2 (5.8, 9.0)**Hedrocel4.3 (1.1, 16.3)6.6 (2.2, 19.2)6.6 (2.2, 19.2)20.4 (10.7, 37.0)**Ilcon3.0 (1.7, 5.3)7.8 (5.5, 10.9)12.7 (9.7, 16.4)23.6 (18.8, 29.3)**MBA4.0 (1.7, 9.4)8.2 (4.5, 14.8)10.2 (5.9, 17.2)16.0 (9.9, 25.4)**Mitch TRH1.5 (0.8, 2.7)4.6 (3.3, 6.4)7.4 (5.7, 9.6)**SPH-Blind3.8 (2.8, 5.2)5.8 (4.5, 7.5)7.3 (5.8, 9.2)10.3 (8.5, 12.4)						
DeltaLox5.9 (3.5, 9.9)8.7 (5.6, 13.3)9.8 (6.5, 14.7)Duraloc1.8 (1.5, 2.2)3.0 (2.6, 3.5)4.1 (3.6, 4.6)8.5 (7.7, 9.4)16.0 (13.9, 18.5)**Durom1.1 (0.7, 1.9)3.6 (2.7, 4.8)5.5 (4.3, 6.9)12.7 (10.8, 14.9)**ExpanSys2.8 (0.7, 10.8)5.7 (2.2, 14.4)10.2 (5.0, 20.2)16.6 (9.6, 28.1)***Fin II2.7 (2.1, 3.5)3.6 (2.9, 4.5)4.8 (3.9, 5.9)7.2 (5.8, 9.0)**Hedrocel4.3 (1.1, 16.3)6.6 (2.2, 19.2)6.6 (2.2, 19.2)20.4 (10.7, 37.0)**Ilcon3.0 (1.7, 5.3)7.8 (5.5, 10.9)12.7 (9.7, 16.4)23.6 (18.8, 29.3)**MBA4.0 (1.7, 9.4)8.2 (4.5, 14.8)10.2 (5.9, 17.2)16.0 (9.9, 25.4)**Mitch TRH1.5 (0.8, 2.7)4.6 (3.3, 6.4)7.4 (5.7, 9.6)**SPH-Blind3.8 (2.8, 5.2)5.8 (4.5, 7.5)7.3 (5.8, 9.2)10.3 (8.5, 12.4)						
Duraloc1.8 (1.5, 2.2)3.0 (2.6, 3.5)4.1 (3.6, 4.6)8.5 (7.7, 9.4)16.0 (13.9, 18.5)Durom1.1 (0.7, 1.9)3.6 (2.7, 4.8)5.5 (4.3, 6.9)12.7 (10.8, 14.9)**ExpanSys2.8 (0.7, 10.8)5.7 (2.2, 14.4)10.2 (5.0, 20.2)16.6 (9.6, 28.1)**Fin II2.7 (2.1, 3.5)3.6 (2.9, 4.5)4.8 (3.9, 5.9)7.2 (5.8, 9.0)**Hedrocel4.3 (1.1, 16.3)6.6 (2.2, 19.2)6.6 (2.2, 19.2)20.4 (10.7, 37.0)**Icon3.0 (1.7, 5.3)7.8 (5.5, 10.9)12.7 (9.7, 16.4)23.6 (18.8, 29.3)**MBA4.0 (1.7, 9.4)8.2 (4.5, 14.8)10.2 (5.9, 17.2)16.0 (9.9, 25.4)**Mitch TRH1.5 (0.8, 2.7)4.6 (3.3, 6.4)7.4 (5.7, 9.6)**SPH-Blind3.8 (2.8, 5.2)5.8 (4.5, 7.5)7.3 (5.8, 9.2)10.3 (8.5, 12.4)					15.4 (12.4, 19.0)	
**Durom 1.1 (0.7, 1.9) 3.6 (2.7, 4.8) 5.5 (4.3, 6.9) 12.7 (10.8, 14.9) **ExpanSys 2.8 (0.7, 10.8) 5.7 (2.2, 14.4) 10.2 (5.0, 20.2) 16.6 (9.6, 28.1) **Fin II 2.7 (2.1, 3.5) 3.6 (2.9, 4.5) 4.8 (3.9, 5.9) 7.2 (5.8, 9.0) **Hedrocel 4.3 (1.1, 16.3) 6.6 (2.2, 19.2) 6.6 (2.2, 19.2) 20.4 (10.7, 37.0) **Icon 3.0 (1.7, 5.3) 7.8 (5.5, 10.9) 12.7 (9.7, 16.4) 23.6 (18.8, 29.3) **Inter-Op 12.1 (4.7, 29.1) 15.2 (6.6, 32.6) 21.4 (10.8, 39.8) 28.3 (15.8, 47.4) **MBA 4.0 (1.7, 9.4) 8.2 (4.5, 14.8) 10.2 (5.9, 17.2) 16.0 (9.9, 25.4) **Mitch TRH 1.5 (0.8, 2.7) 4.6 (3.3, 6.4) 7.4 (5.7, 9.6) 10.3 (8.5, 12.4)						160(120,195)
ExpanSys2.8 (0.7, 10.8)5.7 (2.2, 14.4)10.2 (5.0, 20.2)16.6 (9.6, 28.1)Fin II2.7 (2.1, 3.5)3.6 (2.9, 4.5)4.8 (3.9, 5.9)7.2 (5.8, 9.0)**Hedrocel4.3 (1.1, 16.3)6.6 (2.2, 19.2)6.6 (2.2, 19.2)20.4 (10.7, 37.0)**Icon3.0 (1.7, 5.3)7.8 (5.5, 10.9)12.7 (9.7, 16.4)23.6 (18.8, 29.3)**Inter-Op12.1 (4.7, 29.1)15.2 (6.6, 32.6)21.4 (10.8, 39.8)28.3 (15.8, 47.4)**MBA4.0 (1.7, 9.4)8.2 (4.5, 14.8)10.2 (5.9, 17.2)16.0 (9.9, 25.4)**Mitch TRH1.5 (0.8, 2.7)4.6 (3.3, 6.4)7.4 (5.7, 9.6)**SPH-Blind3.8 (2.8, 5.2)5.8 (4.5, 7.5)7.3 (5.8, 9.2)10.3 (8.5, 12.4)						10.0 (13.9, 10.5)
Fin II2.7 (2.1, 3.5)3.6 (2.9, 4.5)4.8 (3.9, 5.9)7.2 (5.8, 9.0)Hedrocel4.3 (1.1, 16.3)6.6 (2.2, 19.2)6.6 (2.2, 19.2)20.4 (10.7, 37.0)**Icon3.0 (1.7, 5.3)7.8 (5.5, 10.9)12.7 (9.7, 16.4)23.6 (18.8, 29.3)**Inter-Op12.1 (4.7, 29.1)15.2 (6.6, 32.6)21.4 (10.8, 39.8)28.3 (15.8, 47.4)**MBA4.0 (1.7, 9.4)8.2 (4.5, 14.8)10.2 (5.9, 17.2)16.0 (9.9, 25.4)**Mitch TRH1.5 (0.8, 2.7)4.6 (3.3, 6.4)7.4 (5.7, 9.6)**SPH-Blind3.8 (2.8, 5.2)5.8 (4.5, 7.5)7.3 (5.8, 9.2)10.3 (8.5, 12.4)						
Hedrocel4.3 (1.1, 16.3)6.6 (2.2, 19.2)6.6 (2.2, 19.2)20.4 (10.7, 37.0)Icon3.0 (1.7, 5.3)7.8 (5.5, 10.9)12.7 (9.7, 16.4)23.6 (18.8, 29.3)**Inter-Op12.1 (4.7, 29.1)15.2 (6.6, 32.6)21.4 (10.8, 39.8)28.3 (15.8, 47.4)**MBA4.0 (1.7, 9.4)8.2 (4.5, 14.8)10.2 (5.9, 17.2)16.0 (9.9, 25.4)**Mitch TRH1.5 (0.8, 2.7)4.6 (3.3, 6.4)7.4 (5.7, 9.6)**SPH-Blind3.8 (2.8, 5.2)5.8 (4.5, 7.5)7.3 (5.8, 9.2)10.3 (8.5, 12.4)						
**Icon 3.0 (1.7, 5.3) 7.8 (5.5, 10.9) 12.7 (9.7, 16.4) 23.6 (18.8, 29.3) **Inter-Op 12.1 (4.7, 29.1) 15.2 (6.6, 32.6) 21.4 (10.8, 39.8) 28.3 (15.8, 47.4) **MBA 4.0 (1.7, 9.4) 8.2 (4.5, 14.8) 10.2 (5.9, 17.2) 16.0 (9.9, 25.4) **Mitch TRH 1.5 (0.8, 2.7) 4.6 (3.3, 6.4) 7.4 (5.7, 9.6) **SPH-Blind 3.8 (2.8, 5.2) 5.8 (4.5, 7.5) 7.3 (5.8, 9.2) 10.3 (8.5, 12.4)						
**Inter-Op 12.1 (4.7, 29.1) 15.2 (6.6, 32.6) 21.4 (10.8, 39.8) 28.3 (15.8, 47.4) **MBA 4.0 (1.7, 9.4) 8.2 (4.5, 14.8) 10.2 (5.9, 17.2) 16.0 (9.9, 25.4) **Mitch TRH 1.5 (0.8, 2.7) 4.6 (3.3, 6.4) 7.4 (5.7, 9.6) **SPH-Blind 3.8 (2.8, 5.2) 5.8 (4.5, 7.5) 7.3 (5.8, 9.2) 10.3 (8.5, 12.4)						
MBA4.0 (1.7, 9.4)8.2 (4.5, 14.8)10.2 (5.9, 17.2)16.0 (9.9, 25.4)Mitch TRH1.5 (0.8, 2.7)4.6 (3.3, 6.4)7.4 (5.7, 9.6)**SPH-Blind3.8 (2.8, 5.2)5.8 (4.5, 7.5)7.3 (5.8, 9.2)10.3 (8.5, 12.4)						
**Mitch TRH 1.5 (0.8, 2.7) 4.6 (3.3, 6.4) 7.4 (5.7, 9.6) **SPH-Blind 3.8 (2.8, 5.2) 5.8 (4.5, 7.5) 7.3 (5.8, 9.2) 10.3 (8.5, 12.4)	•					
**SPH-Blind 3.8 (2.8, 5.2) 5.8 (4.5, 7.5) 7.3 (5.8, 9.2) 10.3 (8.5, 12.4)					16.0 (9.9, 25.4)	
**seleXys (excluding seleXys PC) 4.6 (2.9, 7.2) 7.8 (5.5, 11.0) 11.1 (8.2, 14.9)					10.3 (8.5, 12.4)	
	**seleXys (excluding seleXys PC)	4.6 (2.9, 7.2)	7.8 (5.5, 11.0)	11.1 (8.2, 14.9)		

Note: * Femoral Component, **Acetabular Component + Newly identified and no longer used

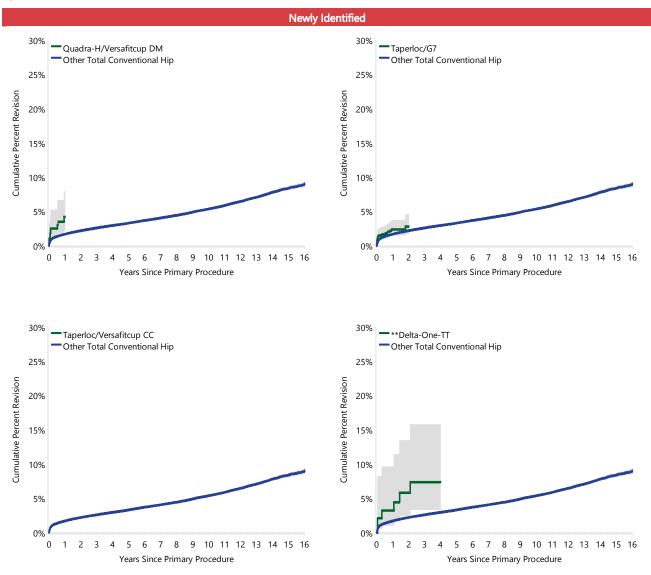
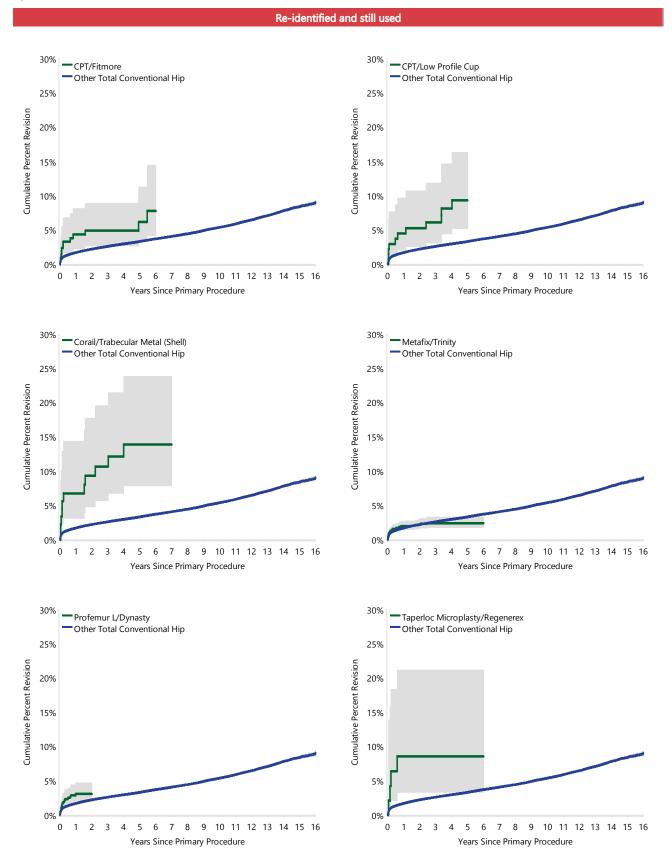
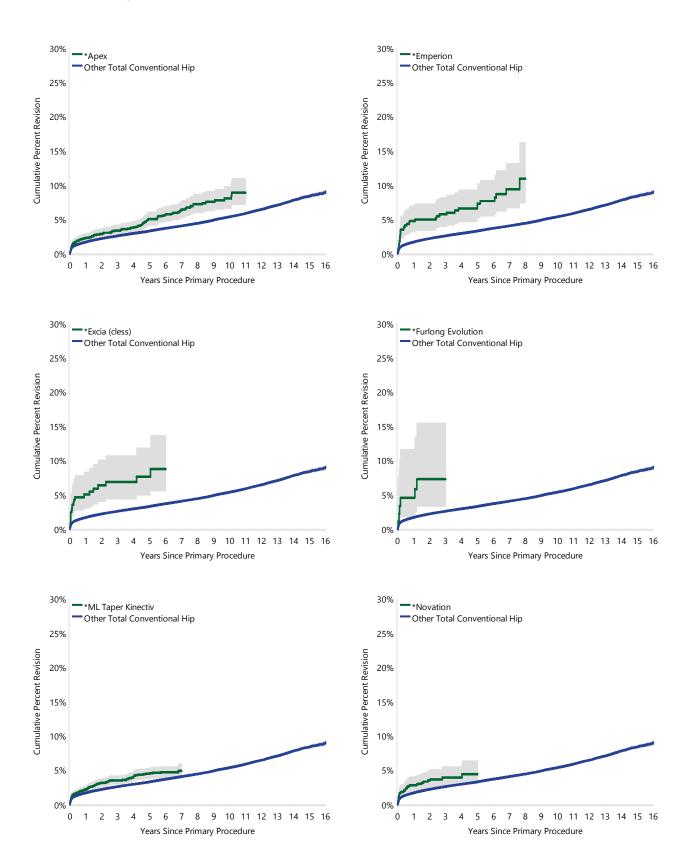
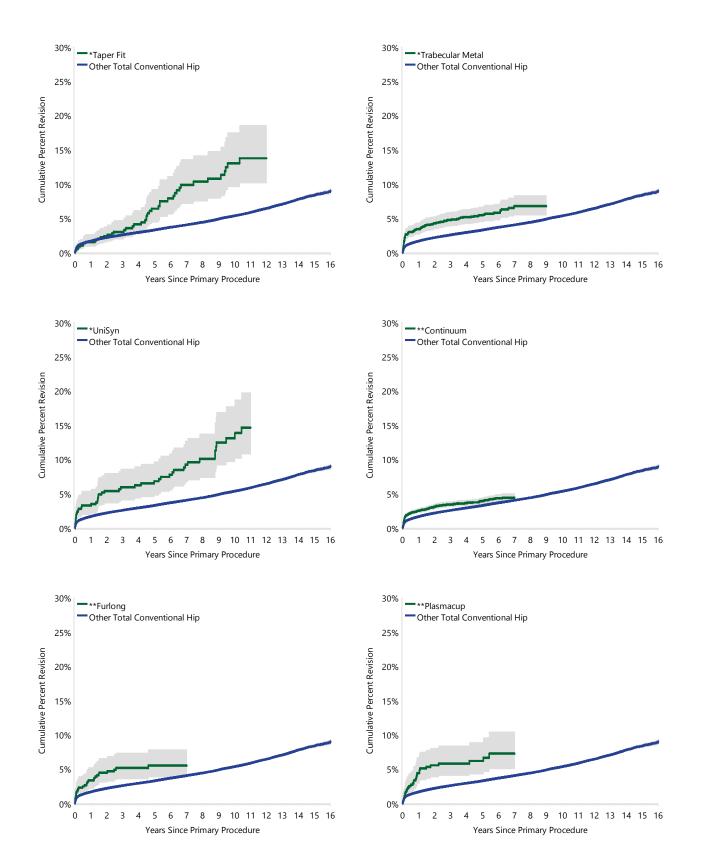
Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Newly Identified															
Quadra-H/Versafitcup DM											1	1	15	120	146
Taperloc/G7												19	147	333	412
Taperloc/Versafitcup CC											2				73
**Delta-One-TT									4	7	7	15	37	13	12
Re-Identified and Still Used															
CPT/Fitmore			19	6	6	4	16	12	15	24	14	30	30	22	18
CPT/Low Profile Cup			15	9	8	7	7	6	9	16	26	20	6	5	2
Corail/Trabecular Metal (Shell)						5	10	17	21	8	8	8	6	1	6
Metafix/Trinity									52	114	224	293	360	470	634
Profemur L/Dynasty		•	•	•	•	•	•		•		•	23	172	280	295
Taperloc Microplasty/Regenerex									12	14	12	2	3	3	2
*Apex				75	247	223	265	197	169	190	219	246	188	193	168
*Emperion				1	13	21	26	65	87	72	44	53	38	41	33
*Excia (cless)							6	34	8	47	58	38	17	42	35
*Furlong Evolution												29	23	29	10
*ML Taper Kinectiv					•		36	341	647	576	515	384	345	256	198
*Novation								4	32	53	130	137	227	265	148
*Taper Fit	30	34	65	50	66	26	18	6	8	17	55	45	110	161	224
*Trabecular Metal					6	101	147	198	242	272	276	186	220	112	106
*UniSyn	1	14	41	74	33	37	46	48	36	23	19	23	27	23	17
**Continuum								175	1117	1245	1333	1502	1492	1359	1297
**Furlong	27	4			•	4	7	61	90	84	73	76	64	66	12
**Plasmacup				10	16	13	7	54	60	59	77	70	44	51	21
**Procotyl L				•		•	8	32	268	342	67	26	121	103	109
Identified and no longer used															
+Hyperion/Delta-TT									2	7	44	60	15		
Anatomic II/Duraloc Option				4	33	23									
Anca-Fit/Pinnacle					30	55	16								
F2L/Delta-PF			7	62	28	10					•			•	
Friendly Hip/Cup (Exactech)	8	16	18	16	19	12	2	6							
H Moos/Mueller	19		•	•	•						•			•	
Secur-Fit Plus/Secur-Fit	101	27	21	26	22										
Taperloc/M2a ^{MoM}	18	79	113	74	38	43	76	49	23	2	•				•
*ABGII (exch neck)						10	39	69	58	63	7				
*Adapter (cless)			•	19	140	131	122	158	113	60		1		•	
*Adapter (ctd)				7	41	52	33	8	7						
*BMHR VST					•		2	65	81	71	22	13	5	1	•
*CBH Stem			12	7	14	37	28	27	45	53	43	7		1	
*Edinburgh				20	37	29	18	23	10	1					
*Elite Plus	1609	445	353	249	112	46	26			1				•	
*K2					1	22	80	172	204	122					
*LYDERIC II	33	16	64	23	12	8	8								
*MSA						2	3	11	58	76	46	21	7		
*Margron	214	123	140	96	85	28	2								
*Mayo	10	11	14	23	24	25	29	30	2						
*Metha (exch neck)								20	53	15					
*Profemur Z			41	79	56	6	1	2	1						
**2000 Plus				11	23	42	14	18	25	2			•	•	•

Table IP9 Yearly Usage of Individual Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
**ASR			84	584	958	1186	1179	430							
**Adept					19	20	29	30	11	12					
**Artek	179														
**BHR	39	66	127	288	550	581	476	404	276	134	27	13	5	1	
**Bionik				11	147	136	138	134	38	4					
**Cormet	9	53	74	103	114	73	129	124	93	26	4	1			
**DeltaLox									32	86	72	24	8		
**Duraloc	2147	907	631	448	301	253	293	187	82	84	18	3			
**Durom		5	79	265	322	257	218	85	13	1					
**ExpanSys		1	7	24	30	8	1								
**Fin II				39	128	175	251	269	318	287	205	247	100	6	
**Hedrocel	37	9			•	•									
**lcon			3	40	80	84	68	78	37	11					
**Inter-Op	33				•	•									
**MBA	49	29	19	11	9	5	2								
**Mitch TRH					45	274	164	130	82	37					
**SPH-Blind	377	261	205	41	49	19									
**seleXys (excluding seleXys PC)	.				35	33	20	21	53	70	89	57	13		

Note: * Femoral Component, **Acetabular Component

+ Newly identified and no longer used

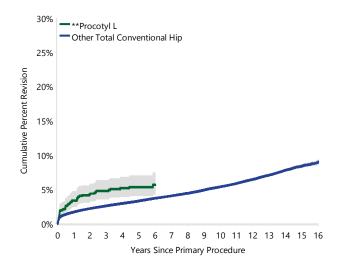

Figure IP3 Cumulative Percent Revision of Newly Identified Individual Total Conventional Hip Prostheses

Figure IP4 Cumulative Percent Revision of Re-identified and still used Individual Total Conventional Hip Prostheses

Note: * Femoral Component, **Acetabular Component

TOTAL RESURFACING

There are no newly identified total resurfacing hip prostheses.

Head/Acetabular	N Revised	N Total		Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Identified and no longer used					
ASR/ASR	356	1168	10182	3.50	0 - 3Mth: HR=1.78 (1.08, 2.92),p=0.022
					3Mth - 6Mth: HR=2.21 (1.19, 4.09),p=0.011
					6Mth - 4Yr: HR=3.03 (2.40, 3.82),p<0.001
					4Yr - 4.5Yr: HR=6.74 (4.25, 10.69),p<0.001
					4.5Yr - 5Yr: HR=8.99 (5.66, 14.26),p<0.001
					5Yr - 6Yr: HR=6.29 (4.42, 8.96),p<0.001
					6Yr - 9.5Yr: HR=4.71 (3.75, 5.90),p<0.001
					9.5Yr+: HR=3.69 (2.49, 5.46),p<0.001
Bionik/Bionik	47	200	1480	3.18	Entire Period: HR=3.33 (2.49, 4.46),p<0.001
Cormet/Cormet	113	626	5578	2.03	Entire Period: HR=1.95 (1.61, 2.37),p<0.001
Durom/Durom	93	847	8219	1.13	0 - 4.5Yr: HR=1.72 (1.32, 2.23),p<0.001
					4.5Yr+: HR=0.73 (0.51, 1.04),p=0.082
Recap/Recap	27	195	1585	1.70	Entire Period: HR=1.73 (1.18, 2.54),p=0.004
*Cormet 2000 HAP	23	95	1068	2.15	Entire Period: HR=2.33 (1.55, 3.52),p<0.001

Table IP10 Revision Rate of Individual Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Note: Components have been compared to all other total resurfacing hip components * Head Component

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
Identified and no longer used					
ASR/ASR	3.4 (2.5, 4.6)	7.2 (5.9, 8.8)	15.3 (13.4, 17.5)	30.4 (27.8, 33.3)	
Bionik/Bionik	3.5 (1.7, 7.2)	12.0 (8.2, 17.4)	17.1 (12.5, 23.1)		
Cormet/Cormet	2.1 (1.2, 3.6)	5.6 (4.1, 7.7)	9.5 (7.5, 12.1)	17.7 (14.7, 21.3)	
Durom/Durom	3.2 (2.2, 4.6)	5.4 (4.1, 7.2)	7.5 (5.9, 9.5)	10.9 (8.9, 13.3)	
Recap/Recap	5.1 (2.8, 9.3)	8.7 (5.5, 13.7)	10.3 (6.8, 15.5)	15.8 (10.9, 22.6)	
*Cormet 2000 HAP	6.3 (2.9, 13.5)	8.4 (4.3, 16.1)	9.5 (5.0, 17.4)	20.0 (13.3, 29.6)	

Table IP11 Cumulative Percent Revision of Individual Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Note: * Head Component

Table IP12 Yearly Usage of Individual Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Identified and no longer used															
ASR/ASR		43	165	302	258	176	133	91							
Bionik/Bionik				12	33	33	46	54	20	2					
Cormet/Cormet	62	42	50	85	74	76	94	75	50	10	4	4			
Durom/Durom		58	166	207	143	105	88	46	24	10					
Recap/Recap			27	14	9	42	46	38	16	3					
*Cormet 2000 HAP	18	38	39												

Note: * Head Component

PRIMARY PARTIAL KNEE REPLACEMENT

PATELLA/TROCHLEA

There are no newly identified patella/trochlear knee prostheses.

Table IP13 Revision Rate of Individual Patella/Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Patella/Trochlear				Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Identified and no longer used					
**LCS	158	413	3292	4.80	Entire Period: HR=1.62 (1.35, 1.95),p<0.001
**Vanguard	12	45	197	6.08	Entire Period: HR=1.98 (1.11, 3.51),p=0.019

Note: Components have been compared to all other patella/trochlear knee components

** Trochlear Component

Table IP14 Cumulative Percent Revision of Individual Patella/Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
Identified and no longer used					
**LCS	3.9 (2.4, 6.2)	11.9 (9.1, 15.4)	20.7 (17.1, 25.0)	38.4 (33.5, 43.7)	
**Vanguard	4.4 (1.1, 16.6)	18.0 (9.4, 32.8)	29.2 (16.9, 47.5)		

Note: ** Trochlear Component

Table IP15 Yearly Usage of Individual Patella/Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Identified and no longer use	±.														
**LCS	26	56	68	47	65	64	60	27							
**Vanguard						4	5	2	1	13	3	14	1	2	

Note: ** Trochlear Component

UNICOMPARTMENTAL

There are no newly identified unicompartmental knee prostheses.

Table IP16 Revision Rate of Individual Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Femoral/Tibial	N Revised	N Total		Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used	.				
GMK-UNI/GMK-UNI	19	113	322	5.89	Entire Period: HR=3.13 (2.00, 4.91),p<0.001
Uniglide/Uniglide	137	751	5897	2.32	0 - 1.5Yr: HR=1.99 (1.51, 2.63),p<0.001
					1.5Yr+: HR=1.13 (0.91, 1.40),p=0.276
Identified and no longer used					
Advance/Advance	16	37	275	5.81	Entire Period: HR=3.84 (2.35, 6.27),p<0.001
BalanSys Uni/BalanSys Uni Mobile	44	199	1726	2.55	0 - 6Mth: HR=4.37 (2.17, 8.78),p<0.001
					6Mth - 2Yr: HR=2.09 (1.24, 3.54),p=0.006
					2Yr+: HR=1.06 (0.70, 1.61),p=0.795
**Preservation Mobile	126	400	4027	3.13	0 - 1.5Yr: HR=2.24 (1.60, 3.14),p<0.001
					1.5Yr - 3Yr: HR=2.80 (1.91, 4.10),p<0.001
					3Yr+: HR=1.26 (0.98, 1.62),p=0.066

Note: Components have been compared to all other unicompartmental knee components ** Tibial Component

Table IP17 Cumulative Percent Revision of Individual Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
Re-Identified and Still Used					
GMK-UNI/GMK-UNI	7.8 (4.0, 15.1)	17.4 (11.0, 27.0)			
Uniglide/Uniglide	4.9 (3.5, 6.7)	10.6 (8.6, 13.1)	12.8 (10.6, 15.5)	19.8 (16.9, 23.2)	
Identified and no longer used					
Advance/Advance	10.8 (4.2, 26.3)	27.0 (15.6, 44.4)	32.9 (20.2, 50.6)	41.6 (27.5, 59.4)	
BalanSys Uni/BalanSys Uni Mobile	7.0 (4.2, 11.6)	13.1 (9.1, 18.6)	14.6 (10.4, 20.4)	21.4 (16.2, 27.9)	
**Preservation Mobile	5.3 (3.5, 7.9)	15.5 (12.3, 19.5)	19.1 (15.6, 23.3)	27.2 (23.1, 31.9)	

Note: ** Tibial Component

Table IP18 Yearly Usage of Individual Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Re-Identified and Still Used															
GMK-UNI/GMK-UNI	.						5	10	2		21	22	16	19	18
Uniglide/Uniglide		80	66	123	84	107	93	61	30	38	25	22	9	5	8
Identified and no longer used															
Advance/Advance		13	11	7	2	3	1								
BalanSys Uni/BalanSys Uni Mobile			37	51	63	33	9	2	4						
**Preservation Mobile	164	121	59	26	17	13									

Note: ** Tibial Component

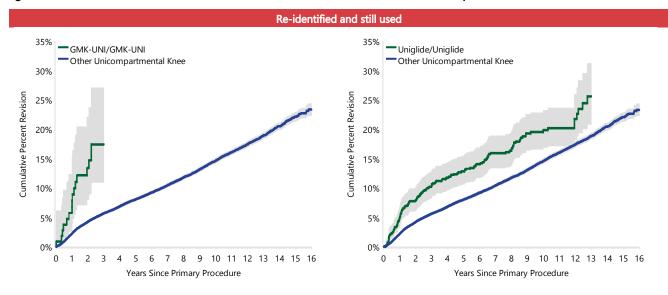


Figure IP5 Cumulative Percent Revision of Re-identified and still used Individual Unicompartmental Knee Prostheses

PRIMARY TOTAL KNEE REPLACEMENT

The GMK Primary (cementless)/GMK Primary (cementless) combination is no longer identified. There have been an additional 139 procedures and no further revisions.

There is one tibial prosthesis identified for the first time.

The Legion Revision Tibial Baseplate has been used in 492 primary procedures since 2006. The cumulative percent revision at five years was 6.5%. This prosthesis had a higher rate of revision in the first three months compared to other total knee procedures, with there being no difference after this time. There were four major and 21 minor revisions, 16 of which were for insert only. The main reasons for revision were infection (34.4%), bearing dislocation (12.5%) and loosening (9.4%).

The bearing dislocation occurred when a degree of prosthetic constraint was used (both posterior and fully stabilised).

Table IP19 Revision Rate of Individual Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

Femoral/Tibial	N Revised	N Total	Obs. Years	Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Newly Identified					
**Legion Revision Tibial Baseplate	32	492	2087	1.53	0 - 3Mth: HR=6.25 (3.46, 11.31),p<0.001
					3Mth - 1.5Yr: HR=0.91 (0.41, 2.03),p=0.819
					1.5Yr+: HR=1.56 (0.94, 2.60),p=0.083
Re-Identified and Still Used					
ACS (cless)/ACS Fixed	62	1350	3061	2.03	Entire Period: HR=2.09 (1.63, 2.69),p<0.001
Active Knee (cless)/Active Knee	490	7024	51498	0.95	0 - 3Yr: HR=1.19 (1.04, 1.35),p=0.008
					3Yr+: HR=1.83 (1.62, 2.07),p<0.001
Advance/Advance	36	755	3416	1.05	Entire Period: HR=1.41 (1.02, 1.95),p=0.039
Columbus/Columbus	92	1194	6481	1.42	Entire Period: HR=2.21 (1.80, 2.71),p<0.001
E.Motion/E.Motion	48	921	2943	1.63	0 - 1.5Yr: HR=2.66 (1.91, 3.69),p<0.001
					1.5Yr+: HR=1.07 (0.61, 1.89),p=0.813
Optetrak-PS/Optetrak	197	2778	17715	1.11	Entire Period: HR=1.77 (1.54, 2.03),p<0.001
Optetrak-PS/Optetrak-RBK	70	951	5470	1.28	Entire Period: HR=2.00 (1.58, 2.53),p<0.001
Score (cless)/Score (cless)	108	1836	7467	1.45	Entire Period: HR=1.66 (1.38, 2.01),p<0.001
Scorpio NRG PS (cless)/Series 7000 (cless)	69	1074	5622	1.23	Entire Period: HR=1.52 (1.20, 1.92),p<0.001
Trekking/Trekking	29	720	2118	1.37	0 - 1.5Yr: HR=1.96 (1.28, 3.01),p=0.002
					1.5Yr+: HR=0.97 (0.48, 1.93),p=0.924
Vanguard PS/Maxim	215	4355	19309	1.11	0 - 1.5Yr: HR=1.79 (1.50, 2.15),p<0.001
					1.5Yr+: HR=1.26 (1.03, 1.54),p=0.026
Vanguard PS/Regenerex	13	334	1318	0.99	0 - 1Yr: HR=2.66 (1.38, 5.11),p=0.003
					1Yr+: HR=0.55 (0.21, 1.47),p=0.231
Identified and no longer used					
ACS/ACS Mobile PC (cless)	25	131	445	5.62	Entire Period: HR=6.15 (4.16, 9.11),p<0.001
ΑΜΚ/ΑΜΚ	24	203	2273	1.06	Entire Period: HR=1.97 (1.32, 2.94),p<0.001
Buechel-Pappas/Buechel-Pappas	38	479	3243	1.17	Entire Period: HR=1.74 (1.26, 2.39),p<0.001
Eska RP/Eska RP	8	40	282	2.83	Entire Period: HR=5.15 (2.58, 10.27),p<0.001
Gemini MK II/Gemini MK II	7	21	193	3.63	Entire Period: HR=6.08 (2.90, 12.74),p<0.001
Genesis (ctd)/Genesis (ctd)	10	62	610	1.64	Entire Period: HR=3.21 (1.73, 5.97),p<0.001
Genesis II CR (cless)/Profix Mobile (ctd)	30	241	2249	1.33	Entire Period: HR=2.42 (1.69, 3.46),p<0.001
Genesis II Oxinium CR (cless)/Genesis II	45	110	831	5.42	0 - 1Yr: HR=10.25 (5.95, 17.67),p<0.001
					1Yr - 1.5Yr: HR=18.20 (10.07, 32.90),p<0.001
					1.5Yr - 2.5Yr: HR=20.90 (12.59, 34.71),p<0.001
					2.5Yr+: HR=2.14 (0.96, 4.76),p=0.062
Genesis II Oxinium CR (cless)/Profix Mobile	56	88	523	10.7	0 - 6Mth: HR=7.65 (2.87, 20.40),p<0.001
					6Mth - 9Mth: HR=46.94 (25.95, 84.90),p<0.001

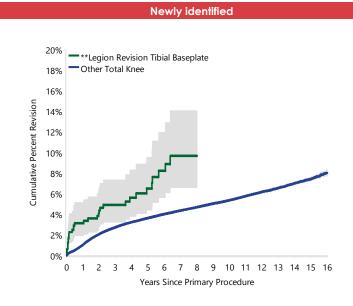
Femoral/Tibial	N Revised	N Total	Obs. Years	Revisions/100 Obs. Yrs	Hazard Ratio, P Value
					9Mth - 1.5Yr: HR=32.85 (21.39, 50.43),p<0.001
			•		1.5Yr - 2Yr: HR=27.14 (12.92, 57.00),p<0.001
					2Yr+: HR=6.60 (3.83, 11.38),p<0.001
Genesis II Oxinium PS (ctd)/Genesis II (cless)	17	56	289	5.89	0 – 1Yr: HR=16.61 (9.23, 29.91),p<0.001
					1Yr+: HR=3.56 (1.60, 7.92),p=0.001
Genesis II Oxinium PS (ctd)/Genesis II (keel)	59	269	2183	2.70	Entire Period: HR=4.50 (3.49, 5.81),p<0.001
HLS Noetos/HLS Noetos	35	294	2000	1.75	Entire Period: HR=2.71 (1.95, 3.78),p<0.001
IB II/IB II	33	199	2245	1.47	0 - 2Yr: HR=0.82 (0.26, 2.53),p=0.724
			•		2Yr - 2.5Yr: HR=4.60 (1.48, 14.27),p=0.008
		•	•		2.5Yr+: HR=4.20 (2.88, 6.13),p<0.001
Interax/Interax	11	52	492	2.24	0 - 3.5Yr: HR=1.43 (0.36, 5.73),p=0.610
					3.5Yr+: HR=8.12 (4.22, 15.59),p<0.001
Journey Oxinium/Journey	245	3033	18884	1.30	0 - 3Mth: HR=0.30 (0.10, 0.93),p=0.037
					3Mth - 1.5Yr: HR=1.93 (1.54, 2.41),p<0.001
					1.5Yr - 2Yr: HR=1.52 (0.99, 2.33),p=0.057
					2Yr - 2.5Yr: HR=2.03 (1.35, 3.07),p<0.001
					2.5Yr - 3Yr: HR=1.38 (0.78, 2.43),p=0.271
					3Yr+: HR=2.47 (2.04, 2.99),p<0.001
Optetrak-PS/Optetrak-PS	13	55	433	3.00	Entire Period: HR=5.60 (3.25, 9.64),p<0.001
Profix Oxinium (cless)/Profix	32	75	596	5.37	Entire Period: HR=8.19 (5.79, 11.58),p<0.001
Profix Oxinium (cless)/Profix Mobile	71	158	1160	6.12	Entire Period: HR=9.92 (7.86, 12.53),p<0.001
Profix Oxinium (ctd)/Profix Mobile	25	228	2475	1.01	Entire Period: HR=1.57 (1.06, 2.33),p=0.024
Profix/Profix Mobile	105	1005	9932	1.06	0 - 2.5Yr: HR=2.53 (1.96, 3.26),p<0.001
					2.5Yr+: HR=1.41 (1.05, 1.89),p=0.021
Rotaglide Plus/Rotaglide Plus	72	631	6341	1.14	0 - 1.5Yr: HR=1.21 (0.69, 2.13),p=0.507
			•		1.5Yr - 2Yr: HR=2.96 (1.48, 5.92),p=0.002
			•		2Yr+: HR=2.32 (1.77, 3.05),p<0.001
SAL/SAL	13	56	643	2.02	0 - 8.5Yr: HR=1.42 (0.53, 3.79),p=0.481
			•		8.5Yr+: HR=9.58 (4.98, 18.43),p<0.001
Trac/Trac	24	138	1486	1.62	Entire Period: HR=2.81 (1.88, 4.19),p<0.001
*LCS Duofix	582	4866	38026	1.53	0 - 2Yr: HR=1.76 (1.52, 2.04),p<0.001
			•		2Yr - 3.5Yr: HR=3.59 (3.06, 4.22),p<0.001
			•		3.5Yr - 4Yr: HR=4.88 (3.64, 6.53),p<0.001
					4Yr - 4.5Yr: HR=4.03 (2.86, 5.66),p<0.001
					4.5Yr - 5.5Yr: HR=4.50 (3.55, 5.69),p<0.001
					5.5Yr - 6.5Yr: HR=2.85 (2.09, 3.89),p<0.001
					6.5Yr+: HR=1.45 (1.10, 1.92),p=0.009
*LCS PS	55	638	3332	1.65	Entire Period: HR=2.38 (1.83, 3.10),p<0.001

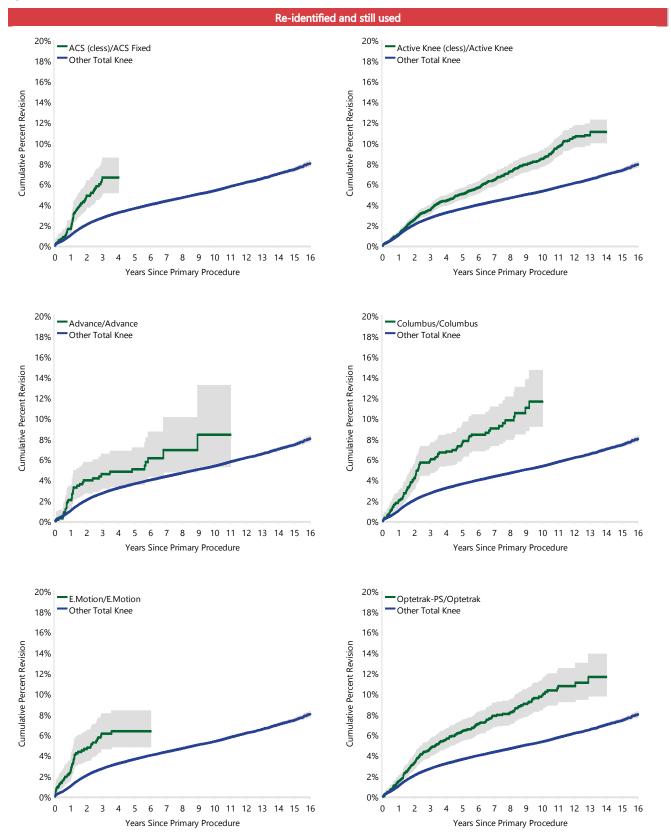
Note: Components have been compared to all other total knee components * Femoral Component

** Tibial Component

Table IP20 Cumulative Percent Revision of Individual Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	10 Yrs	16 Yrs
Newly Identified					
**Legion Revision Tibial Baseplate	3.1 (1.9, 5.1)	4.9 (3.2, 7.4)	6.5 (4.4, 9.5)		
Re-Identified and Still Used					
ACS (cless)/ACS Fixed	1.7 (1.1, 2.6)	6.6 (5.1, 8.5)			
Active Knee (cless)/Active Knee	1.1 (0.9, 1.4)	3.5 (3.1, 4.0)	5.0 (4.5, 5.6)	8.4 (7.7, 9.3)	
Advance/Advance	2.0 (1.2, 3.4)	4.6 (3.2, 6.5)	5.0 (3.6, 7.1)	8.4 (5.3, 13.2)	
Columbus/Columbus	1.9 (1.3, 2.9)	6.0 (4.7, 7.6)	7.7 (6.2, 9.5)	11.6 (9.2, 14.7)	
E.Motion/E.Motion	2.5 (1.7, 3.8)	6.1 (4.6, 8.1)	6.3 (4.8, 8.4)		
Optetrak-PS/Optetrak	1.5 (1.1, 2.0)	4.7 (3.9, 5.6)	6.4 (5.5, 7.5)	9.9 (8.5, 11.4)	
Optetrak-PS/Optetrak-RBK	2.1 (1.3, 3.2)	5.4 (4.1, 7.2)	6.8 (5.2, 8.8)	11.1 (8.4, 14.5)	
Score (cless)/Score (cless)	1.5 (1.0, 2.2)	5.2 (4.2, 6.5)	7.2 (5.9, 8.8)		
Scorpio NRG PS (cless)/Series 7000 (cless)	1.3 (0.8, 2.3)	5.8 (4.5, 7.5)	7.3 (5.8, 9.2)		
Trekking/Trekking	2.4 (1.5, 3.9)	4.0 (2.7, 5.9)	5.8 (3.8, 8.8)		
Vanguard PS/Maxim	1.8 (1.5, 2.3)	4.4 (3.8, 5.1)	5.5 (4.8, 6.3)	7.2 (6.0, 8.7)	
Vanguard PS/Regenerex	3.0 (1.6, 5.7)	4.7 (2.7, 8.0)	4.7 (2.7, 8.0)		
Identified and no longer used					
ACS/ACS Mobile PC (cless)	7.7 (4.2, 13.8)	18.6 (12.9, 26.5)			
AMK/AMK	1.0 (0.2, 3.9)	5.0 (2.7, 9.1)	6.6 (3.9, 11.1)	11.3 (7.5, 16.9)	13.2 (8.9, 19.4)
Buechel-Pappas/Buechel-Pappas	1.9 (1.0, 3.6)	5.5 (3.8, 8.0)	7.7 (5.6, 10.5)		
Eska RP/Eska RP	7.5 (2.5, 21.5)	12.7 (5.5, 27.9)	18.2 (9.1, 34.5)	21.1 (11.1, 37.9)	
Gemini MK II/Gemini MK II	9.5 (2.5, 33.0)	14.3 (4.8, 38.0)	23.8 (10.7, 48.1)	23.8 (10.7, 48.1)	
Genesis (ctd)/Genesis (ctd)	0.0 (0.0, 0.0)	6.7 (2.6, 16.8)	10.0 (4.6, 20.9)	16.1 (8.6, 28.9)	
Genesis II CR (cless)/Profix Mobile (ctd)	2.9 (1.4, 6.1)	7.7 (4.9, 11.9)	9.5 (6.3, 14.0)	12.6 (8.7, 18.0)	
Genesis II Oxinium CR (cless)/Genesis II	11.9 (7.1, 19.7)	39.2 (30.7, 49.1)	40.2 (31.6, 50.1)	41.2 (32.5, 51.2)	
Genesis II Oxinium CR (cless)/Profix Mobile	24.0 (16.3, 34.4)	52.8 (42.8, 63.5)	57.4 (47.4, 67.9)	61.1 (51.0, 71.3)	
Genesis II Oxinium PS (ctd)/Genesis II (cless)	19.6 (11.4, 32.7)	26.8 (17.1, 40.4)	30.4 (20.1, 44.2)		
Genesis II Oxinium PS (ctd)/Genesis II (keel)	4.5 (2.6, 7.7)	14.5 (10.8, 19.3)	18.7 (14.5, 23.9)	22.3 (17.7, 27.8)	
HLS Noetos/HLS Noetos	3.4 (1.8, 6.2)	8.6 (5.9, 12.4)	10.8 (7.7, 14.9)		
IB II/IB II	0.0 (0.0, 0.0)	3.6 (1.7, 7.3)	7.8 (4.8, 12.7)	15.4 (10.9, 21.5)	
Interax/Interax	0.0 (0.0, 0.0)	2.0 (0.3, 13.4)	8.3 (3.2, 20.7)	13.0 (6.0, 26.8)	
Journey Oxinium/Journey	1.4 (1.0, 1.9)	4.6 (3.9, 5.4)	6.4 (5.6, 7.4)	10.9 (9.4, 12.7)	
Optetrak-PS/Optetrak-PS	1.8 (0.3, 12.2)	16.4 (8.9, 29.1)	20.0 (11.6, 33.3)	24.4 (14.9, 38.5)	
Profix Oxinium (cless)/Profix	13.3 (7.4, 23.4)	36.1 (26.4, 48.1)	37.5 (27.6, 49.5)	42.0 (31.7, 54.2)	
Profix Oxinium (cless)/Profix Mobile	9.0 (5.4, 14.6)	40.2 (32.9, 48.3)	41.5 (34.2, 49.7)	46.0 (38.4, 54.3)	
Profix Oxinium (ctd)/Profix Mobile	1.8 (0.7, 4.6)	6.3 (3.8, 10.4)	8.6 (5.5, 13.1)	10.9 (7.4, 15.8)	
Profix/Profix Mobile	2.3 (1.5, 3.4)	6.4 (5.0, 8.1)	8.2 (6.6, 10.1)	9.9 (8.2, 12.0)	
Rotaglide Plus/Rotaglide Plus	0.8 (0.3, 1.9)	4.1 (2.8, 6.0)	5.8 (4.2, 8.0)	10.9 (8.6, 13.8)	
SAL/SAL	0.0 (0.0, 0.0)	1.9 (0.3, 12.6)	1.9 (0.3, 12.6)	14.8 (7.3, 28.6)	
Trac/Trac	2.2 (0.7, 6.6)	5.9 (3.0, 11.4)	9.0 (5.2, 15.2)	15.1 (9.9, 22.7)	
*LCS Duofix	1.5 (1.2, 1.9)	5.9 (5.3, 6.6)	9.6 (8.8, 10.5)	12.9 (11.9, 13.9)	
*LCS PS	2.1 (1.2, 3.5)	6.7 (5.0, 9.0)	8.8 (6.7, 11.3)		
*Renasys	2.5 (0.8, 7.5)	4.2 (1.8, 9.8)	8.5 (4.6, 15.1)	11.2 (6.7, 18.5)	
•					


Note: * Femoral Component ** Tibial Component


Table IP21 Yearly Usage of Individual Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision

							-	-							
Year of Implant	≤2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	201
Newly Identified		•		•	•	•	•	•	•	•	•	•	•		
**Legion Revision Tibial Baseplate		•	•	•	16	33	48	40	56	47	63	54	47	38	5
Re-Identified and Still Used		•	•	•	•	•	•	•	•	•	•	•	•		
ACS (cless)/ACS Fixed										41	119	283	337	332	23
Active Knee (cless)/Active Knee	221	613	790	693	466	510	483	412	479	601	500	427	318	335	17
Advance/Advance	54		8	12	16	2	5	43	115	138	74	7	92	91	9
Columbus/Columbus				49	91	90	148	156	134	136	108	69	36	60	11
E.Motion/E.Motion							•	12	87	114	129	236	106	113	12
Optetrak-PS/Optetrak	126	130	155	252	253	216	168	202	198	202	200	151	117	202	20
Optetrak-PS/Optetrak-RBK				1	81	173	166	119	82	40	37	50	100	56	4
Score (cless)/Score (cless)				1		11	135	212	187	204	195	238	252	249	15
Scorpio NRG PS (cless)/Series 7000 (cless)						76	185	171	166	114	67	71	76	72	7
Trekking/Trekking									35	102	133	107	108	106	12
Vanguard PS/Maxim				22	82	146	318	424	479	600	561	444	516	439	32
Vanguard PS/Regenerex				•		•		4	121	54	27	15	21	18	74
Identified and no longer used		•		•	•			•	•		٠	•	•		
ACS/ACS Mobile PC (cless)		•	•	•		•		•	•	20	37	57	17		
AMK/AMK	200	2	1	•		•		•	•	•	•		•		
Buechel-Pappas/Buechel-Pappas		•	•	1	39	51	84	100	148	44	4		7	1	
Eska RP/Eska RP				9	24	5		2	•	•	•		•		
Gemini MK II/Gemini MK II	14	7	•	•				•	•		٠		•		
Genesis (ctd)/Genesis (ctd)	45	6	3	8											
Genesis II CR (cless)/Profix Mobile (ctd)	126	26	10	4	2	5	12	6	9	17	2	22			
Genesis II Oxinium CR (cless)/Genesis II	4	106													
Genesis II Oxinium CR (cless)/Profix Mobile	22	66													
Genesis II Oxinium PS (ctd)/Genesis II (cless)						4	4	11	35	1	1				
Genesis II Oxinium PS (ctd)/Genesis II (keel)				19	123	127									
HLS Noetos/HLS Noetos			2	2	47	45	45	56	48	28	20	1			
IB II/IB II	187	12													
Interax/Interax	52														
Journey Oxinium/Journey					134	337	541	555	464	334	343	325			
Optetrak-PS/Optetrak-PS			8	14	18	15									
Profix Oxinium (cless)/Profix	10	65													
Profix Oxinium (cless)/Profix Mobile	63	95													
Profix Oxinium (ctd)/Profix Mobile	72	31	91	24	3	4	1	2							
Profix/Profix Mobile	197	173	258	245	51	56	11	12	2						
Rotaglide Plus/Rotaglide Plus	181	151	110	101	43	30	15								
SAL/SAL	56														
Trac/Trac	128	9	1												
*LCS Duofix					843	1636	1532	854	1						
*LCS PS							8	157	203	109	51	69	39	2	
*Renasys				51	53	3	14								

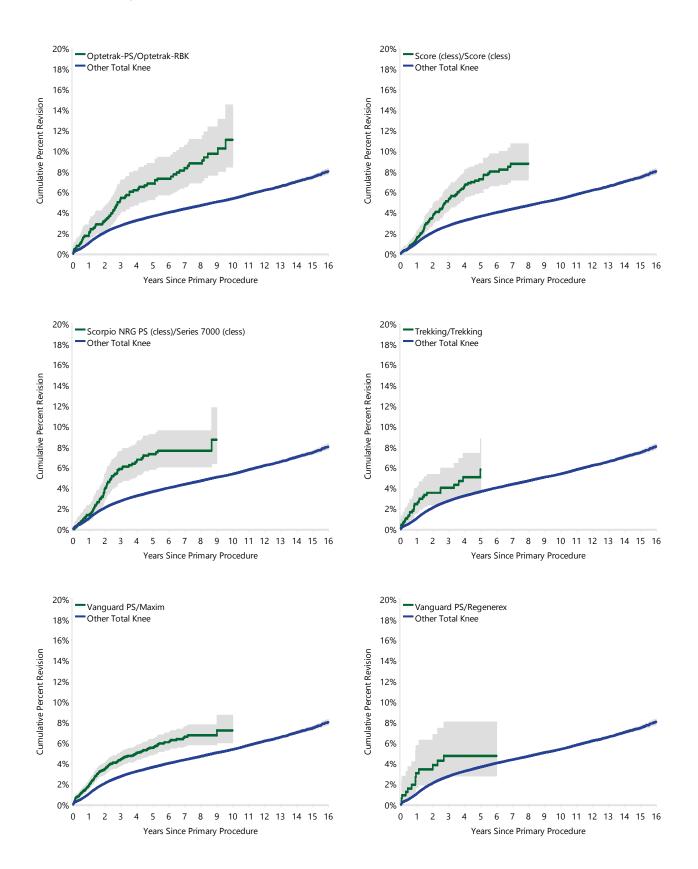

Note: * Femoral Component ** Tibial Component

Figure IP7 Cumulative Percent Revision of Re-identified and still used Individual Total Knee Prostheses

PRIMARY PARTIAL SHOULDER REPLACEMENT

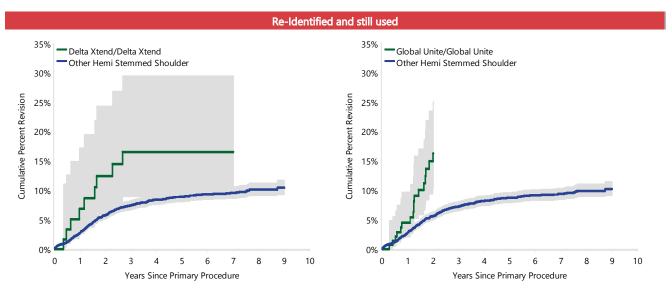
HEMI STEMMED

There are no newly identified hemi stemmed shoulder prostheses.

Table IP22 Revision Rate of Individual Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Humeral Stem/Head	N Revised			Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used					
Delta Xtend/Delta Xtend	9	62	242	3.71	Entire Period: HR=2.15 (1.11, 4.17),p=0.023
Global Unite/Global Unite	20	150	291	6.88	Entire Period: HR=2.23 (1.41, 3.52),p<0.001

Note: Components have been compared to all other hemi stemmed shoulder components


Table IP23 Cumulative Percent Revision of Individual Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Re-Identified and Still Used					
Delta Xtend/Delta Xtend	6.9 (2.6, 17.2)	16.5 (8.9, 29.5)	16.5 (8.9, 29.5)	16.5 (8.9, 29.5)	
Global Unite/Global Unite	4.5 (2.0, 9.7)				

Table IP24 Yearly Usage of Individual Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Re-Identified and Still Used										
Delta Xtend/Delta Xtend	2	5	9	9	5	10	7	6	5	4
Global Unite/Global Unite						15	37	25	38	35

PRIMARY TOTAL SHOULDER REPLACEMENT

TOTAL CONVENTIONAL

There are no newly identified total conventional shoulder prostheses.

Table IP25 Revision Rate of Individual Total Conventional Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision Revision

Humeral Stem/Glenoid	N Revised			Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used					
SMR/SMR L1	199	1765	6888	2.89	0 - 1.5Yr: HR=2.39 (1.95, 2.95),p<0.001
					1.5Yr+: HR=1.37 (1.06, 1.78),p=0.016
Identified and no longer used					
SMR/SMR L2	264	856	3873	6.82	0 - 6Mth: HR=3.11 (2.12, 4.55),p<0.001
	.				6Mth - 1.5Yr: HR=5.19 (3.99, 6.76),p<0.001
					1.5Yr+: HR=8.01 (6.47, 9.91),p<0.001
Univers 3D/Univers 3D	12	34	232	5.18	Entire Period: HR=3.83 (2.16, 6.79),p<0.001
Vaios/Vaios	15	36	136	11.0	Entire Period: HR=6.21 (3.73, 10.37),p<0.001

Note: Components have been compared to all other total conventional shoulder components

Table IP26 Cumulative Percent Revision of Individual Total Conventional Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

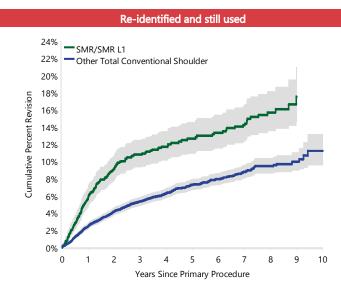

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Re-Identified and Still Used					
SMR/SMR L1	5.8 (4.8, 7.0)	10.8 (9.4, 12.5)	12.7 (10.9, 14.6)	14.2 (12.3, 16.5)	
Identified and no longer used					
SMR/SMR L2	9.5 (7.7, 11.7)	22.2 (19.6, 25.2)	29.8 (26.8, 33.0)		
Univers 3D/Univers 3D	5.9 (1.5, 21.5)	14.7 (6.4, 31.8)	21.2 (10.7, 39.4)	31.0 (18.0, 50.1)	
Vaios/Vaios	13.9 (6.0, 30.2)	27.8 (16.0, 45.5)	41.6 (26.6, 60.7)		

Table IP27 Yearly Usage of Individual Total Conventional Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Re-Identified and Still Used										
SMR/SMR L1	135	237	247			157	301	255	239	194
Identified and no longer used										
SMR/SMR L2			43	343	336	134				
Univers 3D/Univers 3D	23	11								
Vaios/Vaios					16	17	2	1		

Note: The SMR L1 was not used in 2010 and 2011 due to the exclusive use of the SMR L2 in total conventional shoulder replacement

Figure IP9 Cumulative Percent Revision of Re-identified and still used Individual Total Conventional Shoulder Prostheses

PRIMARY TOTAL REVERSE SHOULDER REPLACEMENT

There are no newly identified total reverse shoulder prostheses.

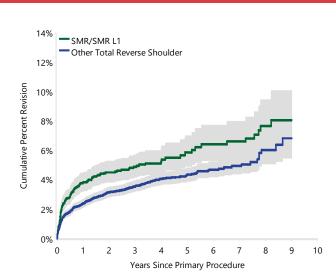
Table IP28Revision Rate of Individual Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of
Revision

Humeral Stem/Glenoid	N N Revised Tot		Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used			•	
SMR/SMR L1	172 373	9 10224	1.68	Entire Period: HR=1.40 (1.17, 1.68),p<0.001

Note: Components have been compared to all other total reverse shoulder components

Table IP29 Cumulative Percent Revision of Individual Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Re-Identified and Still Used					
SMR/SMR L1	3.8 (3.2, 4.5)	4.9 (4.2, 5.7)	5.8 (4.9, 7.0)	6.6 (5.4, 8.0)	


Table IP30 Yearly Usage of Individual Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Re-Identified and Still Used										
SMR/SMR L1	145	261	271			249	562	627	727	897

Re-identified and still used

Note: The SMR L1 was not used in 2010 and 2011 due to the exclusive use of the SMR L2 in total reverse shoulder replacement

Figure IP10 Cumulative Percent Revision of Re-identified and still used Individual Total Reverse Shoulder Prostheses

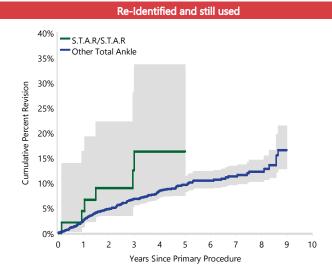
PRIMARY TOTAL ANKLE REPLACEMENT

There are no newly identified total ankle prosthesis.

Table IP1 Revision Rate of Individual Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision

Talar/Tibial Tray	N Revised			Revisions/100 Obs. Yrs	Hazard Ratio, P Value
Re-Identified and Still Used					
S.T.A.R/S.T.A.R	7	48	145	4.83	Entire Period: HR=2.28 (1.07, 4.88),p=0.033

Note: Components have been compared to all other ankle components


Table IP2 Cumulative Percent Revision of Individual Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision Compared Revision

CPR	1 Yr	3 Yrs	5 Yrs	7 Yrs	10 Yrs
Re-Identified and Still Used					
S.T.A.R/S.T.A.R	4.4 (1.1, 16.4)	16.3 (7.4, 33.6)	16.3 (7.4, 33.6)		

Table IP3 Yearly Usage of Individual Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision

Year of Implant	≤2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Re-Identified and Still Used										
S.T.A.R/S.T.A.R	1		3	3	4	2	15	12	4	4

Figure IP1 Cumulative Percent Revision of Re-identified and still used Individual Total Ankle Prostheses

Appendices

APPENDIX 1

PARTICIPATING HOSPITALS & COORDINATORS

VICTORIA

PUBLIC HOSPITALS

Austin Health

Bairnsdale Regional Health Service Ballarat Health Services Bass Coast Regional Health Bendigo Health Care Group Box Hill Hospital Cohuna District Hospital Colac Area Health Dandenong Hospital Djerriwarrh Health Services East Grampians Health Service Echuca Regional Health Goulburn Valley Health Hamilton Base Hospital Kerang District Health Kyabram & District Health Services Latrobe Regional Hospital Maroondah Hospital Mildura Base Hospital Monash Medical Centre, Clayton Monash Medical Centre, Moorabbin Northeast Health Wangaratta Peninsula Health Service, Frankston Portland Hospital Sandringham & District Memorial Seymour District Memorial Hospital South West Healthcare St Vincent's Public Hospital Stawell Regional Health Sunshine Hospital Swan Hill District Hospital The Alfred The Northern Hospital The Royal Children's Hospital The Royal Melbourne Hospital Uni Hospital Geelong Barwon Health West Gippsland Healthcare Group West Wimmera Health Service Western Hospital Williamstown Hospital Wimmera Health Care Group

Ross Kentish/Bev Murray Sian Guns Bernie Anderson/Kellie Livingston Debbie Rogers/Simonne Liberman Catherine Jensen/Shelly Sharp Lisa Bingham Karyn Storm Amanda Tout Karen Ferguson/Melanie Murray Kate Anderson/Judy Dehnert Jane Smith/Jenny Sargent Kerryn Giorgianni Cara Disint Rosalie Broadfoot Margie Christian Lynda Walker Simone Lovison Satish Singh Katrina Allen Jessica Cranston Carol Jackson/Lisa Mason Lynn Reid/Larissa Benci Donna Anderson Julie Sealey Rebecca Harouche/Trang Le Karen Lamaro Tony Kelly Shazeli Osman/Ridwaan Khan Sue Campigli/Judy Body Cassandra Mules Helen Wilkins Caroline McMurray Siew Perry Sonia Mouat Brychelyn Bennett David Barber/Michelle Quinn Stefanie Backman/Bernie Norman Sharon Sanderson/Christine Dufty Vicki Mahaljcek/Cassandra Mules Paul Buso/Maureen Clark Maree Markby

Beleura Private Hospital **Bellbird Private Hospital** Cabrini Private Hospital, Brighton Cabrini Private Hospital, Malvern Como Private Hospital Cotham Private Hospital Epworth Hospital Epworth Eastern Hospital Epworth Freemason Hospital Epworth Geelong Essendon Private Hospital Frankston Private Hospital Geelong Private Hospital Glenferrie Private Hospital John Fawkner Hospital Knox Private Hospital Linacre Private Hospital Maryvale Private Hospital Masada Private Hospital Melbourne Private Hospital Mildura Private Hospital Mitcham Private Hospital Northpark Private Hospital Peninsula Private Hospital **Ringwood Private Hospital** Shepparton Private Hospital St John of God Ballarat Hospital St John of God Bendigo Hospital St John of God Geelong Hospital St John of God Warrnambool St John of God Hospital, Berwick St Vincent's Private East Melb St Vincent's Private Fitzroy St Vincent's Private Kew The Avenue Hospital The Bays The Melbourne East Private The Valley Private Hospital Wangaratta Private Hospital Warringal Hospital Waverley Private Hospital Western Private Hospital

PRIVATE HOSPITALS

Jean Leyland Belinda Van Denberg Sandy Scherer Sandy Scherer Gillian Wilson/Nicole Groves Marianne Westley Lynne Moyes Kylie Longley/Janine Cope Claudia Nozzolillo Dianne Buttigieg/Julia Castro Elaine Jordan Tracey McIndoe Wilna Steyn Samantha Jervios Belinda Emmett Bronwyn Hawkins/Laura Tilley Melissa Dillon/Denice Tyler Glenda Chambers Anna Bonato/Lisa Butler Karen Grant/Tracey Perkins Sue Malcolm Julie Nankivell/Joshie Lonthyil Kath Morris Ruth Honan Carol Burns Niki Miller Gitty Mathachan Margaret Brown/Alanna Sheehan Colin Hay Leanne McPherson/Gill Wheaton Rebecca Jamieson Jan Gammon Naomi Carter/Deanna Dellevirgini Joy Miller/Sue Zidziunas John Davidson Romany Goonan Jay Phillpotts Anthony Puzon Janet McKie Marilyn Dey/Jodie Werkowski Alfred Monleon Abbie Grech

PUBLIC HOSPITALS

Albury Base Hospital Armidale Hospital Bankstown/Lidcombe Hospital Bathurst Base Hospital Blacktown Hospital Bowral and District Hospital Broken Hill Health Service Campbelltown Hospital Canterbury Hospital Coffs Harbour Health Campus Concord Repatriation Hospital Dubbo Base Hospital Fairfield Hospital Gosford Hospital Goulburn Base Hospital Grafton Base Hospital Hornsby & Ku-Ring-Gai Hospital Inst Rheum & Orthopaedic Surgery John Hunter Hospital Lismore Base Hospital Liverpool Health Service Maitland Hospital Manly District Hospital Manning Rural Referral Hospital Mona Vale Hospital Mt Druitt Hospital Murwillumbah District Hospital Nepean Hospital Orange Health Service Port Macquarie Base Hospital Royal Newcastle Centre Royal North Shore Hospital Royal Prince Alfred Hospital Ryde Hospital Shoalhaven District Memorial Hospital South East Regional Hospital St George Hospital St Vincent's Public Hospital Sutherland Hospital Tamworth Base Hospital The Children's Hospital Westmead The Prince of Wales Hospital The Tweed Hospital Wagga Wagga Base Hospital Westmead Public Hospital Wollongong Hospital Wyong Hospital

NEW SOUTH WALES

Laurel Rhodes

Amber Prater Karen Och Kylie Peers June Tsang Barbara Wise Sue Beahl/Brock Roberts Susan Birch Jenny Cubitt Eric Dorman David Debello Kathy Chapman Caroline Youkhana Kirstie Brown/Toni Hoad Karen Goode/Debbie Hay Anthony Corkett Bessie Chu Maria Hatziandreou Felicia Bristow Glen Nettle John Murphy Karen Cheers Heather Liddle/Maryann Howell Grahame Cooke Bronwyn Friend Charmaine Boyd Linda Gahan Debbie Dobbs Alexandra Woods Fiona Cheney/Jo Atkins Graham Cutler Kay Crawford Chris Chiapoco/Jennifer Wilkie Karen Jones Leanne McTavish Leanne Williams Simon Cheng MT Butler/L Black/A Baker Sara Hogan David Marsh Ariella Galstaun F O'Brien/L Robertson/C Noema Amanda Budd/Neroli Prestage Alison Giese/Melissa O'Reilly Dee Martic Carol Jackson Marilyn Randall

Albury Wodonga Private Hospital Armidale Private Hospital Baringa Private Hospital Bathurst Private Hospital Berkeley Vale Private Hospital Brisbane Waters Private Hospital Calvary Health Care Riverina Campbelltown Private Hospital Dalcross Adventist Hospital **Delmar Private Hospital Dubbo Private Hospital Dudley Private Hospital** East Sydney Private Forster Private Hospital Gosford Private Hospital Hawkesbury District Health Service Holroyd Private Hospital Hospital for Specialist Surgery Hunters Hill Private Hunter Valley Private Hurstville Private Insight Clinic Private Hospital Kareena Private Hospital Lake Macquarie Private Hospital Lingard Private Hospital Maitland Private Hospital Macquarie University Hospital Mayo Private Hospital National Day Surgery Sydney Nepean Private Hospital Newcastle Private Hospital North Shore Private Hospital Norwest Private Hospital Nowra Private Hospital Port Macquarie Private Hospital Shellharbour Private Hospital Southern Highlands Hospital St George Private & Medical Centre St Luke's Care St Vincent's Private Darlinghurst St Vincent's Private Lismore Strathfield Private Hospital Sydney Adventist Hospital Sydney Private Hospital Sydney South West Private Tamara Private Hospital The Mater Hospital The Prince of Wales Private Toronto Private Hospital Waratah Private Hospital Warners Bay Private Hospital Westmead Private Hospital

Wollongong Private Hospital

PRIVATE HOSPITALS

Ben Sutton Katherine Latter Karla Hannaford Diane Carter Michelle Turner Adele Ryan Annette Somerville Yvonne Quinn Anne Carroll/Kerrie Legg Cathy Byrne Sallie Cross/Kim Troth Michele Englart/Pam Fullgrabe Dane Browne/Jane Telfer Margaret Parish Melissa McLean Sharon Garden/Elizabeth Jones Christine Aldana Hailey MacAllister Jenny May Renae Ross Simelibuhle Masuku Debbie van de Stadt Tanja Radic Edward Miles/Fiona Lindsay Nicole Garland/Ian Jones Martine Mead/Joanne Chalmers Julie Guthrie Janet Hickman Stephanie Schofield/Kerry Gardner Lauren Bradford Darren Fogarty Satheesh Jose Reece Shepherd Linda Wright Tresna Bell Jenny Fraser Lynne Byrne Lee Mayo/Susy Tanevska Robbie Bentley Fiona Crawford/ Vivien Law Janelle Hospers John Mati Jill Parker/Melissa Ng Margaret Haughton Lucy Richardson Kris Wall Namor Guerrero Ellaine Perez/Paula Civit Diez Stephanie Kevs Kim Bassot Annette Harrison Katrina Teren Kim Dver/Mandy Holmes

PUBLIC HOSPITALS

Bundaberg Base Hospital Cairns Base Hospital Gold Coast Hospital, Robina Campus Gold Coast University Hospital Hervey Bay Hospital Ipswich Hospital Lady Cilento Children's Hospital Logan Hospital Mackay Base Hospital Maryborough Hospital Mater Misericordiae Public Adult's Nambour General Hospital Prince Charles Hospital Princess Alexandra Hospital Queen Elizabeth II Jubilee Hospital Redcliffe Hospital Redland Public Hospital Rockhampton Base Hospital Royal Brisbane & Women's Sunshine Coast University Hospital Toowoomba Hospital Townsville Hospital

J Anderson/J Larsen/D Norman Sharon Ryrie Annemarie Brooks/Helen McGuire Karen Morton Elaine Loots Ross Howells/Jannah O'Sullivan Andrew Jesbert/Aimee Reid Denise Maher Michelle Lanigan/Beth Keogh H Zillmann/B Christiansen Craig Steains Fiona Tognolini Louise Tuppin/Rose Seddon Jo-Anne de Plater Donna Cal Gemma van Fleet/Emily Currie Sara Mackenzie Gabrielle Sellen Emma Babao/Anna Dowe Sandy Colquist Amanda Lostroh/Freya Chadwick Tara Cudmore

QUEENSLAND

Brisbane Private Hospital Caboolture Private Hospital Cairns Private Hospital Friendly Society's Hospital Gold Coast Private Hospital Gold Coast Surgical Hospital Greenslopes Private Hospital Hervey Bay Surgical Centre Hillcrest Rockhampton Private Holy Spirit Northside Hospital John Flynn Hospital Mater Health Services North Qld Mater Misericordiae Bundaberg Mater Misericordiae Gladstone Mater Misericordiae Mackay Mater Misericordiae Rockhampton Mater Misericordiae Private Hospital Mater Private Hospital Redland Mater Private Springfield Nambour Selangor Private Hospital Noosa Hospital North West Private Hospital Peninsula Private Hospital Pindara Private Hospital St Andrew's Private Hospital, Ipswitch St Andrew's Hospital, Toowoomba St Andrew's War Memorial Hospital St Stephen's Private Hospital St Vincent's Hospital, Toowoomba Sunnybank Private Hospital Sunshine Coast University Private The Sunshine Coast Hospital Wesley Hospital

PRIVATE HOSPITALS

Julie Oddy/Liz Drabble Dee Ireland Louisa Smit Karen Smith Kathryn Schott Damien Knight Kelly Williams/Rhonda Griffin Margo Christensen Lyn Martin Lexie Shannon Paula Archer Jo Humphreys/Anjela Hunt Catherine Hackney Saroj Saini Judith McDonald Michelle Havik/Tim Harkin Justine lones Merryl Hoey Carole James/Krystal Lording Simon Pfeiffer/Trevor Dempsey Janet McMeekin Teressa Auckland/David Campbell Lesley Henderson Michael Young/Esther Moire Mel Grant Jeff van Leeuwen Kerrie Jenkins Wendy Simmers Judy Plotecki Francina Robinston Tanya Prothero Phil Hall Carole Gregory/Kalpana Patel

WESTERN AUSTRALIA

PUBLIC HOSPITALS

Albany Regional Hospital Armadale Health Service Bunbury Regional Hospital Fremantle Hospital Fiona Stanley Hospital Geraldton Hospital Kalgoorlie Regional Hospital Osborne Park Hospital Rockingham General Hospital Royal Perth Hospital, Wellington St Sir Charles Gairdner Hospital Jodie Hayton Eleri Griffiths/Deb Carkeek Anthea Amonini Elsy Jiji Jarrod Duncan Vicki Richards Nicole Hintz Jenny Misiewicz Carol Beaney Kerry Hodgkinson Angela Bibb

PRIVATE HOSPITALS

Bethesda HospitalH HaHollywood Private HospitalMichJoondalup Health CampusD CrMount HospitalJacqPeel Health CampusNicoSouth Perth HospitalDebSt John of God Health Care BunburyAlisoSt John of God Health Care MidlandGradSt John of God Health Care MidlandChrisSt John of God Health Care MurdochChrisSt John of God Health Care SubiacoAndSt John of God Health Care SubiacoAndWaikiki Private HospitalBill M

H Hanekom/H Collis/J Fitzroy Michelle Connor D Crowley/J Holmes/P Villanova/E Yates Jacqui McDonald Nicolle Turton Deb Waters Alison Hawkes Teresa Wood Grace Loh Christopher Sheen Francisco Campos/Stuart Meek Andy Sullivan Bill Muir

PUBLIC HOSPITALS

Clare Hospital and Health Services Flinders Medical Centre Gawler Health Service Lyell McEwin Hospital Modbury Public Hospital Mt Barker DSM Hospital Mt Gambier Regional Hospital Murray Bridge Soldiers Memorial Naracoorte Health Service Noarlunga Hospital Port Augusta Port Lincoln Hospital Port Pirie Hospital Queen Elizabeth Hospital Repatriation General Hospital Riverland Regional Hospital Royal Adelaide Hospital South Coast District Hospital Whyalla Health Service Women's and Children's Hospital

Melissa Bradley/Jo Knappstein Amy Ware Sharon Mewett Craig Keley Lisa Pearson Emma Crowder Kylie Duncan Janine Colwell Trina Berry Carole Dawson Janine Haynes/Paola Williams Christine Weber Sue Wilkinson Renae Wauchope Joy Telfer/Alistair Smith Leanne Zerna Lisa Lewington Anne Price/Jo Hunt Michael Prunty Margaret Betterman

SOUTH AUSTRALIA

PRIVATE HOSPITALS

Lisa Kowalik

Ashford Community Hospital Burnside War Memorial Hospital Calvary Central Districts Hospital Calvary North Adelaide Hospital Calvary Wakefield Hospital Flinders Private Hospital Glenelg Community Hospital North Eastern Community Hospital Parkwynd Private Hospital Sportsmed SA St Andrew's Private Hospital Stirling District Hospital The Memorial Hospital Western Hospital

Brooke Drechsler Linda Keech Maria Young F Hansen/I Snowball/T Heinrich Marcus Ender N Russell-Higgins/VLawrence Anne Sciacca Anna-Claire Naylor F Penning/S Smith/K Stapleton/M Odgaard H Crosby/L White Nick Clarke/Tanya Hanlon E Carroll/J Ohlson Sharon Till

TASMANIA

PUBLIC HOSPITALS

Hobart Private Hospital

North-West Private Hospital

E Davidson/M Postmus North West Regional, Burnie Campus B Kerr/ R Dicker Stuart Kirkham

PRIVATE HOSPITALS Calvary Health Care, St John's Calvary Health Care, St Luke's Calvary Hospital

Cate Farrell Gary Stratton/Toni Morice B Stephensen/A Copping/S Ransley Janine Dohnt Kylie Smith

AUSTRALIAN CAPITAL TERRITORY

PUBLIC HOSPITALS

Helen Boyd/Jose Abraham

The Canberra Hospital Calvary Health Care ACT

Launceston General Hospital

Royal Hobart Hospital

Rebecca Covington

PRIVATE HOSPITALS

Calvary John James Memorial Hospital Samjith Sreesan The National Capital Private M Liebhardt/G Palada Calvary Health Care ACT Rebecca Covington M Gower/S Phillips/M Rogina/L Tuohy Canberra Private Hospital

NORTHERN TERRITORY

PUBLIC HOSPITALS

PRIVATE HOSPITALS

Alice Springs Hospital Royal Darwin Hospital

Debra Mullan Tanya Anderson/Wendy Rogers Darwin Private Hospital

Beverley Hinchcliffe/Vanessa Frewin

APPENDIX 2

GLOSSARY

Statistical Terms

Adjustment: The process of re-estimating a crude measure, such as a rate or rate ratio, to minimise the effects of a difference in the distribution of a characteristic, such as age, between groups being compared on that measure. Adjustment may be carried out in the context of a modelling procedure, for example, linear or proportional hazards regression models, or by standardising the data set against a reference population with a known age distribution, for example, the World Standard Population or the Australian population defined by the Australian Bureau of Statistics Census in a specified year.

Censoring: When the outcome of interest is the time to a defined event, for example, revision of a prosthesis, the event may not occur during the available period of observation. For example, the Registry analyses its data on prosthesis revision for the period ending 31 December each year, and many prostheses will not have been revised by that time. Unless the prosthesis was revised prior to 31 December the outcome is unknown. For the majority, we only know that up until 31 December they had not yet been revised. The times to revision for these prostheses are said to have been censored at 31 December. Statistical methods exist to ensure that censored data are not ignored in analysis, rather information on survival up until the time of censoring is used to give the best possible estimates of survival or revision probabilities.

Chi-Square Test (\chi 2) Test: Any test whose statistic has a chi-square distribution under the null hypothesis is called a chi-square test. A common example is a test for association between two categorical variables whose data are arrayed in a cross-classification table of counts (Pearson's chi-square test). This can be generalised to many situations where the distribution of observed data is being compared to an expected theoretical distribution.

Competing Risk: Any event that changes the probability of occurrence of another event is known as a competing risk for the other event. For example, death is a competing risk for revision because the probability of revision after death cannot be assumed to be the same as the probability of revision before death. Another example is that if interest centres on specific causes of revision, then each cause (infection, loosening etc) is a competing risk for each other cause. Treating a competing risk event as a right censoring will bias the estimation of the risk of the event of interest.

Confidence Interval: A set of values for a summary measure, such as a rate or rate ratio, constructed so the set has a specified probability of including the true value of the measure. The specified probability is called the confidence interval, the end points are called lower and upper confidence limits; 95% confidence intervals are most common.

Cox Model or Proportional Hazards Model: A statistical model that relates the hazard for an individual at any time *t* to an (unspecified) baseline hazard and a set of predictor variables, such as treatment type, age, gender etc. The Cox model produces hazard ratios that allow comparisons between groups of the rate of the event of interest. The main assumption of a Cox model is that the ratio of hazards between groups that we wish to compare does not vary over time. If the hazard for prosthesis Model A is twice that of prosthesis Model B at three years, it will also be twice at four years, and so on. This is referred to as the 'proportional hazards assumption'. If the hazard ratio is not proportional over the entire time of observation, then a time varying model is used, which estimates a separate hazard ratio within each pre-defined time period. Within each time period, the hazards are proportional hazards is met for each time period. The time points are selected based on where the greatest change in hazard occurs between the two comparison groups, weighted by the number of events in that time period.

Cumulative Incidence Function: An estimator of the actual probability of revision in the presence of a competing risk. In these circumstances, the Kaplan-Meier estimate, which treats competing risks as censored, overestimates the true probability. In the competing risks paradigm, patients who have

already had a revision or died are excluded from the set at risk of being revised. Under Kaplan-Meier only patients who have already been revised are excluded from the risk set; dead patients are analysed as though they are still at risk of revision.

Cumulative Percent Revision: Otherwise known as the 'cumulative failure rate'. This is defined as 100 x [1-S(t)] where S(t) is the survivorship probability estimated by the Kaplan-Meier method (see survival curve, below). The cumulative percent revision gives the percent of procedures revised up until time t, and allows for right censoring due to death (but see Cumulative Incidence Function above) or closure of the database for analysis.

Hazard Ratio: A hazard is an estimate of the instantaneous risk of occurrence of an event, for example revision, at a point in time, *t*. A hazard ratio results from dividing one group's hazard by another's to give a comparative measure of the instantaneous risk of experiencing the event of interest. In this report, hazard ratios are adjusted for age and gender as appropriate. Hazard ratios are either for the entire survivorship period (if proportional; see 'Cox Model or Proportional Hazards Model' section above) or for specific time periods (if the hazard for the entire survivorship period is not proportional).

For example, a comparison of Primary Total Conventional Hip Replacement for a Primary Diagnosis of Avascular Necrosis (AVN), Developmental Dysplasia of the Hip (DDH) and Osteoarthritis (OA): Avascular Necrosis vs Osteoarthritis.

Entire Period: HR=1.34 (1.16, 1.54), p<0.001

The hazard ratio for this comparison is proportional over the entire time of observation. AVN has a significantly higher rate of event (in this case, revision) compared to OA over the entire time of observation (p<0.001). The hazard is 1.34 times higher for AVN compared to OA and, with 95% confidence, the true hazard for AVN will lie between 1.16 times higher and 1.54 times higher than the hazard for OA.

Developmental Dysplasia vs Osteoarthritis

0-3Mth: HR=1.75 (1.21, 2.52), p=0.002

3Mth+: HR=1.07 (0.78, 1.45), p=0.683

The hazard ratio is not proportional over the entire time of observation, so the hazard ratio has been divided into two periods; the time from primary arthroplasty to three months following the primary and three months following the primary to the end of observation. DDH has a significantly higher revision rate compared to OA in the first three months following the primary (p=0.002). The hazard for revision in the first three months is 1.75 times higher for DDH than for OA and with 95% confidence, the true hazard for DDH will lie between 1.21 and 2.52 times higher. From three months following the primary to the end of observation, there is no significant difference in the revision rate between DDH and OA (p=0.683).

Incidence Rate: The number of new occurrences of an event divided by a measure of the population at risk of that event over a specified time period. The population at risk is often given in terms of person-time: for example, if 6 persons are each at risk over 4 months, they contribute $6 \times 1/3 = 2$ person-years to the denominator of the incidence rate. The incidence rate ratio (IRR) is commonly used to compare the incidence rates of two groups. If the two groups incidence rates are the same, an IRR of 1 results.

Log Rank Test: A family of statistical tests that compares the survival experience of two or more groups over the entire time of observation (contrast with comparison of survival at a defined time, e.g. five-year survival.)

Observed Component Years: For each procedure, component time is the time during which it is at risk of being revised. This is calculated as the number of days from the date of the primary procedure until either the date of revision, date of death or end of study (31/12/2016) whichever happens first. This is then divided by 365.25 to obtain the number of 'component years'. Each primary procedure then contributes this calculated number of component years to the overall total component years for a particular category of prosthesis.

For example:

A primary total hip procedure performed on 1/1/2016 was revised on 1/7/2016. Therefore, the number of days that this procedure is at risk of being revised is 183 days. This prosthesis then contributes 0.5

(183/365.25) component years to the overall number of observed component years for the total hip procedure category.

A patient with a primary procedure on 1/1/2016 died without being revised on 1/4/2016. This procedure contributes 0.25 component years.

A primary procedure occurs on 1/1/2016 and has not been revised. This procedure contributes 1 component year (as observation time is censored at 31/12/2016).

Survival Curve: A plot of the proportion of subjects who have not yet experienced a defined event (for example, death or revision of prosthesis) versus time. The Kaplan-Meier method is the one most commonly used. The curve takes account of subjects whose ultimate survival time is not known, a phenomenon called 'censoring'. The survival estimate at each time is accompanied by a confidence interval based on the method of Greenwood. An interval is interpretable only at the time for which it was estimated and the sequence of intervals (depicted as shading on the Kaplan-Meier curve) cannot be used to judge the significance of any perceived difference over the entire time of observation. Often, for convenience, the curve is presented to show the proportion revised by a certain time, rather than the proportion not being revised ('surviving'). In the Registry, we call this cumulative percent revision (CPR). The Kaplan-Meier method is biassed in the presence of a competing risk and will overestimate the risk of revision. In such circumstances, use of the cumulative incidence of all competing risks must be assessed simultaneously to avoid bias in interpretation.

Funnel Plot: A funnel plot is a scatter plot where each point represents a single surgeon or single hospital. The X (horizontal) axis represents volume: the total number of relevant surgical procedures recorded by the Registry for each surgeon or hospital. The Y-axis is a measure of performance given by the standardised proportion. This is calculated for each surgeon or hospital as the ratio of the number of revisions observed to the number of revisions expected, multiplied by the overall proportion of revisions. To calculate the expected number of revisions, a logistic regression model is used to determine the probability of revision based on a patient's age and gender. The sum of these predicted values for each surgeon or hospital is the estimate of the expected number of revisions.

DIAGNOSIS HIERARCHY FOR REVISION HIP REPLACEMENT

Rank	Diagnosis	Category
1	Tumour	Dominant diagnosis
0		independent of
2	Infection	prosthesis/surgery
	1	
3	Leg Length Discrepancy	
4	Incorrect Sizing	Surgical procedure
5	Malposition	
6	Metal Related Pathology	
7		Reaction to prosthesis
8	Lysis	Redenon to prosinesis
0	Ly313	
9	Wear Hip Insert	
10	Wear Acetabular Cup/Shell	
11	Wear Head	
12	Implant Breakage Head	Wear and implant breakage
13	Implant Breakage Stem	
14	Implant Breakage Hip Insert	
15	Implant Breakage Acetabular Cup/Shell	
1 /		
16	Prosthesis Dislocation	Stability of prosthesis
17	Instability	
10	Fracture	Freedure of bane
18	(Femur/Acetabular/Neck/Periprosthetic)	Fracture of bone
10	Changely sight a state day Evening	
19	Chondrolysis/Acetabular Erosion	Progression of disease on non-operated part of joint
20	Progression of Disease	non-operated part of joint
21	Synovitis	New diseases occurring in
22	Osteonecrosis/AVN	association with joint
23	Heterotopic Bone	replacement
24	Pain	Pain
25	Other	Remaining diagnoses

DIAGNOSIS HIERARCHY FOR REVISION KNEE REPLACEMENT

Rank	Diagnosis	Category
1	Tumour	Dominant diagnosis
2	Infection	independent of prosthesis/surgery
		prosiriesis/sorgery
3	Incorrect Side	
4	Incorrect Sizing	Surgical procedure
5	Malalignment	
6	Metal Related Pathology	
7	Loosening	Reaction to prosthesis
8	Lysis	
0		
9 10	Wear Knee Insert	
10	Wear Tibial Tray Wear Femoral	
12	Wear Patella	Wear and implant breakage
13	Implant Breakage Femoral	
14	Implant Breakage Knee Insert	
15	Implant Breakage Tibial Tray	
16	Implant Breakage Patella	
17	Pearing Dideestion	
17	Bearing Dislocation Patellar Dislocation	
19	Prosthesis Dislocation	Stability of prosthesis/knee
20	Instability	
21	Patellar Maltracking	
00		
22	Fracture (Femur/Tibia/Patella/Periprosthetic)	Fracture of bone
23	Progression of Disease	Progression of disease on
24	Patellar Erosion	non-operated part of joint
05	Come and the	
25 26	Synovitis Arthrofibrosis	New diseases occurring in
20 27	Osteonecrosis/AVN	association with joint
28	Heterotopic Bone	replacement
29	Patellofemoral Pain	
30	Pain	Pain
31	Other	Remaining diagnoses
••		

DIAGNOSIS HIERARCHY FOR REVISION SHOULDER REPLACEMENT

Rank	Diagnosis	Category
1		
1	Tumour	Dominant diagnosis
2	Infection	independent of
2		prosthesis/surgery
2	Incorrect Side	
3	Incorrect Side Incorrect Sizing	Surgical procedure
4 5	Malposition	Surgical procedure
5	Malposition	
6	Metal Related Pathology	
7	Loosening	Reaction to prosthesis
8	Lysis	
9	Wear Glenoid Insert	
10	Wear Glenoid	Wear and implant breakage
11	Wear Humeral	Wear and implain breakage
12	Implant Breakage Glenoid Insert	
13	Implant Breakage Glenoid	
14	Implant Breakage Humeral	
15	Implant Breakage Head	
16	Instability/ Dislocation	
17	Rotator Cuff Insufficiency	Stability of prosthesis
18	Dissociation	
19	Fracture (Glenoid/Humeral/Periprosthetic)	Fracture of bone
20	Progression of Disease	Progression of disease on
21	Glenoid Erosion	non-operated part of joint
00		
22	Synovitis	New diseases occurring in
23	Arthrofibrosis	association with joint
24 25	Osteonecrosis/AVN	replacement
ZJ	Heterotopic Bone	
26	Pain	Pain
20		
27	Other	Remaining diagnoses
	1	

PATIENT CONSENT AND CONFIDENTIALITY GUIDELINES

PATIENT CONSENT

The Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) obtains consent to include information from individuals undergoing joint replacement by using the 'opt off' approach. The implementation of the new Commonwealth Legislation at the end of 2001 resulted in the Registry meeting with the Privacy Commission to ensure that the system used for patient consent is within the privacy guidelines.

Using this approach, patients are provided with a Patient Information Sheet. This explains what information is required, how it is collected and the avenues to take should an individual not want their information included in the Registry. The information is provided to patients by surgeons and hospitals prior to surgery. To accommodate patients that may have questions, wish to opt off or discuss any issues, a freecall number is available to contact the Registry.

PATIENT CONFIDENTIALITY

Joint replacement patients will not be contacted directly by the Registry. No individual patient will be identified during analysis or in reports and publications produced by the Registry. Patient operative and prostheses data is managed in accordance with the Guidelines for the Protection of Privacy in the Conduct of Medical Research. Personal data collected are for use by the AOA National Joint Replacement Registry only. The Registry has been listed as a Federal Quality Assurance Activity and all information is protected (refer to section below).

DATA MANAGEMENT & CONFIDENTIALITY

The South Australian Health and Medical Research Institute (SAHMRI) undertakes data entry, validation and analysis and provides secure data storage.

The list of personnel with access to identified Registry information is as follows:

Director, Professor Stephen Graves Deputy Director, Professor Richard de Steiger Deputy Director, Mr Peter Lewis Deputy Director, Mr Ian Harris Assistant Deputy Director, Mr James Stoney Assistant Deputy Director, Bill Donnelly Manager, Ms Cindy Turner Research Coordinator, Dr Sophia Rainbird Administration Assistant, Ms Rychelle Brittain SAHMRI staff including the project manager, data managers, data assistants, statisticians and programmers.

Declaration of the project as a Quality Assurance Activity ensures that Registry and SAHMRI staff are bound to maintain confidentiality. Confidentiality not only applies to individual patients but also includes surgeons and hospitals.

SAHMRI has security systems to restrict access to SAHMRI and Registry staff only. There are policies and procedures in place as well as software barriers to protect personal information. These include the use of codes, passwords and encryption.

The proforma used for data collection are stored in a secure locked room at SAHMRI. Forms are scanned and electronically stored. After data entry and data cleaning, all data are securely stored and retained in accordance with good scientific practice.

SURGEON CONFIDENTIALITY

Surgeon confidentiality is assured. The purpose of the Registry is to provide demographic and outcome information relevant to joint replacement surgery. Surgeon name is not recorded in the Registry database.

It is an important Registry function to provide a service to surgeons that allows them to monitor and audit their own performance. For this reason, surgeons have a choice to identify themselves by code, which can be linked to their procedures. This is optional and there is no requirement to provide the surgeon code. These codes are provided to surgeons by AOA.

Surgeons are provided with access to their own information through a secure internet facility. It is important to emphasise that surgeons have the choice of using their code and that surgeon name is not recorded in the database.

FEDERAL QUALITY ASSURANCE ACTIVITY

The AOANJRR was initially declared a Federal Quality Assurance Activity in March 1999, by the then Federal Minister for Health and Aged Care, Dr Wooldridge. This was renewed in 2001, 2006, 2011 and for a further five years in August 2017. An amendment was approved in 2017 to add collection of Knee Osteotomy procedures. This declaration ensures freedom from subpoena and absolute confidentiality of information held by the Registry.

The Quality Assurance legislation is part of the Health Insurance Act of 1973. This act was amended in 1992 to include quality assurance confidentiality. The Act operates on the underlying assumption that quality assurance activities are in the public interest.

A declaration as a Quality Assurance Activity by the Commonwealth Minister of Health prohibits the disclosure of information, which identifies individual patients or health care providers that is known solely as a result of the declared quality assurance activity. It is not possible to provide identifying information to any individual or organisation including the government.

The protection provided by the declaration assures surgeons, hospitals and government that information supplied to the Registry remains confidential and secure. The act also protects persons engaging in those activities in good faith from civil liability in respect of those activities.

PATIENT INFORMATION

INTRODUCTION - about the Registry

You are about to have a joint replacement. This operation is very successful and most people do not require any further surgery following this procedure. However, a number of people who have a joint replacement may at some time in the future require another operation on that joint. This may occur due to a variety of reasons; the most common being that the joint replacement has worn out. Furthermore, differences between the many types of artificial joints available may affect the time at which they wear out and require replacing. In order to improve the success of this surgery, the Australian Orthopaedic Association has set up a National Joint Replacement Registry so that joint replacement and prostheses can be monitored.

The purpose of the Registry is to assess the performance of all joint replacement. If a joint replacement is identified as having a problem, the Registry can assist hospitals to locate those people that may be affected. To do this it is important to record information on every person having a joint replacement. More than 90,000 people have joint replacement surgery each year in Australia. It is also important to record details on any subsequent operations and the reason the surgery was performed. By analysing this information, it will be possible to identify the cause of any problems as well as determine which types of joint replacement have the best results. To be successful, the Registry needs to gather information on as many people having joint replacement surgery as possible. We are asking you to participate in the Registry, by allowing us to document information relevant to your operation.

Your Involvement - the information we need

The information we require includes your name, date of birth, address, Medicare number, hospital identity number, the name of the hospital and the reason you are having a joint replacement. This information is necessary to accurately link you to the artificial joint inserted as well as linking any following joint surgery you may have, to your previous records. We will also record the day of the operation, which joint was operated on and the type of artificial joint used. No other personal information is recorded. Hospitals and Government will from time to time provide information that enables the Registry to check the accuracy of its data.

Information - how we will keep your information confidential

Your personal information is confidential and cannot be used outside the Registry. Procedures are in place to protect your information and to keep it confidential. When your details have been entered into the Registry your record will be given a specific Registry number. In addition, you cannot be identified in any reports produced by the Registry.

How we will collect the information

Although we are asking to record your operation details in the Registry you are not required to do anything. Your surgeon and/or theatre staff will complete the form that contains your personal details at the time of your operation and send it to us. The information will be entered into the Registry computer.

Risks and Benefits - to you

There are no risks to you by having your details in the Registry. Your information is protected and we are not allowed to identify you by law. The Registry produces general reports on a variety of factors that influence the success of joint replacement surgery. This will improve the quality of future joint replacement surgery.

What to do if you don't want to be in the Registry

We understand that not everyone is comfortable about having his or her personal details documented in a Registry. If you feel this way and do not want your details recorded please contact Ms Cindy Turner, Manager, on 1800 068 419 (*freecall*) as well as making your decision known to hospital staff. A decision on whether or not you wish to be involved in the Registry does not affect your treatment in any way. If you have any questions, concerns or require further information on the National Joint Replacement Registry please do not hesitate to contact Ms Cindy Turner.

Concerns or complaints related to the data collection process may be directed to the AOANJRR on 1800 068 419 (freecall) or alternatively the Australian Government, Office of the Privacy Commissioner on 1300 363 992

IMPLEMENTATION OF NATIONAL JOINT REPLACEMENT REGISTRY FOR HIP, KNEE & SHOULDER

The Registry was implemented in a staged manner on a state-by-state basis. The table below shows the commencement date for each state. Implementation was completed nationally by mid 2002, therefore 2003 was the first year of complete national data. National data collection on shoulder replacement commenced in November 2007.

State/Territory	Commencement Date
South Australia	September 1999
Queensland	April 2000
Western Australia	April 2000
Victoria	July 2000
Tasmania	September 2000
Northern Territory	October 2000
Australian Capital Territory	May 2001
New South Wales	June 2001

ICD-10-AM CODES

HIP REPLACEMENT

PARTIAL HIP REPLACEMENT

49315-00	Partial arthroplasty (excludes Austin-Moore)
47522-00	Austin-Moore

PRIMARY TOTAL HIP REPLACEMENT

49318-00	Total arthroplasty of hip unilateral
49319-00	Total arthroplasty of hip bilateral
90607-00 [1489]	Resurfacing of hip, unilateral
90607-01 [1489]	Resurfacing of hip, bilateral

REVISION HIP REPLACEMENT

49312-00 49324-00 49327-00 49330-00 49333-00 49339-00 49342-00 49345-00	Excision arthroplasty of hip (removal of prosthesis without replacement) Revision of total arthroplasty of hip Revision of total arthroplasty with bone graft to acetabulum Revision of total arthroplasty with bone graft to femur Revision of total arthroplasty with bone graft to acetabulum and femur Revision of total arthroplasty of hip with anatomic specific allograft to acetabulum Revision of total arthroplasty of hip with anatomic specific allograft to femur Revision of total arthroplasty with anatomic specific allograft to femur Revision of total arthroplasty with anatomic specific allograft to acetabulum & femur Revision of total arthroplasty with anatomic specific allograft to acetabulum & femur
49345-00 49346-00	Revision of total arthroplasty with anatomic specific allograft to acetabulum & temur Revision of partial arthroplasty hip replacement

KNEE REPLACEMENT

PARTIAL KNEE REPLACEMENT

Patellofemoral Knee Replacement

49534-01 Total replacement arthroplasty of patellofemoral joint of knee

Unicompartmental Knee Replacement

49517-00 Hemi arthroplasty of knee

PRIMARY TOTAL KNEE REPLACEMENT

49518-00	Total arthroplasty of knee unilateral
49519-00	Total arthroplasty of knee bilateral
49521-00	Total arthroplasty of knee with bone graft to femur unilateral
49521-01	Total arthroplasty of knee with bone graft to femur bilateral
49521-02	Total arthroplasty of knee with bone graft to tibia unilateral
49521-03	Total arthroplasty of knee with bone graft to tibia bilateral
49524-00	Total arthroplasty of knee with bone graft to femur and tibia unilateral
	Total arthroplasty of knee with bone graft to femur and tibia unilateral Total arthroplasty of knee with bone graft to femur and tibia bilateral

REVISION KNEE REPLACEMENT

49512-00	Arthrodesis with removal of prosthesis
49515-00	Removal-prostheses from knee
49527-00	Revision of total arthroplasty of knee excluding patellar resurfacing
49530-00	Revision of total arthroplasty of knee with bone graft to femur
49530-01	Revision of total arthroplasty of knee with bone graft to tibia
49533-00	Revision of total arthroplasty of knee with bone graft to femur and tibia
49554-00	Revision of total arthroplasty of knee with anatomic specific allograft
90562-00	Patellar resurfacing

SHOULDER REPLACEMENT

PARTIAL SHOULDER REPLACEMENT

48915-00 Hemiarthroplasty of shoulder

TOTAL SHOULDER REPLACEMENT

48918-00 Total arthroplasty of shoulder

REVISION SHOULDER REPLACEMENT

48921-00	Revision of total joint replacement of shoulder
48924-00	Revision of total joint replacement of shoulder with bone graft
48927-00	Removal of shoulder prosthesis
48942-00	Arthrodesis and removal of shoulder prosthesis

List of Tables

Surgeon and Hospital Variation	
Table SV1 Number of Surgeons within each Prosthesis Consistency Group	
Table SV2 CPR of Primary Total Conventional Hip Replacement by Prosthesis Consistency (Primary Diagnosis OA)	
Table SV3 Primary Total Conventional Hip Replacement by Prosthesis Consistency and Prosthesis Combination Used (Primary Diagnosis OA)	
Table SV4 CPR of Primary Conventional THR by Prosthesis Consistency, using the 10 Prosthesis Combinations with Lowest 5 Year CPR (OA)	
Table SV5 Number of Surgeons within each Prosthesis Consistency Group	
Table SV6 CPR of Primary Total Knee Replacement by Prosthesis Consistency (Primary Diagnosis OA)	
Table SV7 Primary Total Knee Replacement by Prosthesis Consistency and Prosthesis Used (Primary Diagnosis OA)	
Table SV8 CPR of Primary Total Knee Replacement by Prosthesis Consistency using the 10 Prosthesis Combinations with Lowest 5 Year CPR (OA)	
Table SV9 CPR of Primary Total Conventional Hip Replacement by Hospital Type (Primary Diagnosis OA)	
Table SV10 CPR of Primary Total Conventional Hip Replacement by Hospital Type (Primary Diagnosis Fractured NOF)	
Table SV11 CPR of Primary Conventional THR by Hospital Type using the 10 Prosthesis Combinations with Lowest 5 year CPR (OA)	
Table SV12 CPR of Primary Conventional THR by Hospital Type using the 10 Prosthesis Combinations with Lowest 5 year CPR (Fractured NOF)	
Table SV13 CPR of Primary Total Knee Replacement by Hospital Type (Primary Diagnosis OA)	
Table SV14 CPR of Primary Total Knee Replacement by Hospital Type using the 10 Prosthesis Combinations with Lowest 5 year CPR (OA)	
Ten and Fifteen Year Prosthesis Outcomes	
Table TY1 CPR of Primary Total Conventional Hip Replacement Combinations with 10 Year Data (Primary Diagnosis OA)	
Table TY2 CPR of Primary Total Knee Replacement Combinations with 10 Year Data (Primary Diagnosis OA)	
Table FY1 CPR of Primary Total Conventional Hip Replacement Combinations with 15 Year Data (Primary Diagnosis OA)	
Table FY2 CPR of Primary Total Knee Replacement Combinations with 15 Year Data (Primary Diagnosis OA)	
Hip Replacement	
Table H1 Number of Hip Replacements	
Table H2 ASA Score by Hip Category	
Table H3 BMI Category for Hip Replacement by Hip Category	
Primary Partial Hip Replacement	
Table HP1 Primary Partial Hip Replacement by Class	
Table HP2 Cumulative Percent Mortality of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)	
Table HP3 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)	
Table HP4 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF)	
Table HP5 Age and Gender of Primary Unipolar Monoblock Hip Replacement	60
Table HP6 Most Used Monoblock Prostheses in Primary Unipolar Monoblock Hip Replacement	
Table HP7 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF)	
Table HP8 Primary Unipolar Monoblock Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)	
Table HP9 Primary Unipolar Monoblock Hip Replacement by Type of Revision (Primary Diagnosis Fractured NOF)	
Table HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF)	
Table HP11 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF)	
Table HP12 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation and Prosthesis Type (Primary Diagnosis Fractured NOF)	
Table HP13 Age and Gender of Primary Unipolar Modular Hip Replacement	
Table HP14 10 Most Used Unipolar Head Prostheses in Primary Unipolar Modular Hip Replacement	
Table HP15 10 Most Used Femoral Stem Prostheses in Primary Unipolar Modular Hip Replacement	
Table HP16 CPR of Primary Unipolar Modular Hip Replacement by Prosthesis Combination	
Table HP17 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF)	
Table HP18 Primary Unipolar Modular Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)	
Table HP19 Primary Unipolar Modular Hip Replacement by Type of Revision (Primary Diagnosis Fractured NOF)	
Table HP20 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF)	
Table HP21 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF)	
Table HP22 CPR of Primary Unipolar Modular Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)	
Table HP23 Age and Gender of Primary Bipolar Hip Replacement	
Table HP24 10 Most Used Bipolar Head Prostheses in Primary Bipolar Hip Replacement	
Table HP25 10 Most Used Femoral Stem Prostheses in Primary Bipolar Hip Replacement	
Table HP26 CPR of Primary Bipolar Hip Replacement by Prosthesis Combination	
Table HP27 CPR of Primary Bipolar Hip Replacement (Primary Diagnosis Fractured NOF)	
Table HP28 Primary Bipolar Hip Replacement by Reason for Revision	
Table HP29 Primary Bipolar Hip Replacement by Type of Revision	
Table HP30 CPR of Primary Bipolar Hip Replacement by Age (Primary Diagnosis Fractured NOF)	
Table HP31 CPR of Primary Bipolar Hip Replacement by Gender (Primary Diagnosis Fractured NOF)	
Table HP32 CPR of Primary Bipolar Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)	
Primary Total Hip Replacement	
Table HT1 Primary Total Hip Replacement by Class	
Table HT2 CPR of Primary Total Hip Replacement by Class	
Table HT3 Age and Gender of Primary Total Conventional Hip Replacement	
Table HT4 10 Most Used Femoral Components in Primary Total Conventional Hip Replacement	
Table HT5 10 Most Used Cemented Femoral Components in Primary Total Conventional Hip Replacement	
Table HT6 10 Most Used Cementless Femoral Components in Primary Total Conventional Hip Replacement	
Table HT7 10 Most Used Acetabular Components in Primary Total Conventional Hip Replacement	
Table HT8 10 Most Used Cemented Acetabular Components in Primary Total Conventional Hip Replacement	84

	Table HT9 10 Most Used Cementless Acetabular Components in Primary Total Conventional Hip Replacement	8	34
	Table HT10 CPR of Primary Total Conventional Hip Replacement by Primary Diagnosis	8	86
	Table HT11 CPR of Primary Total Conventional Hip Replacement with Cemented Fixation		
	Table HT12 CPR of Primary Total Conventional Hip Replacement with Cementless Fixation		
	Table HT13 CPR of Primary Total Conventional Hip Replacement with Hybrid Fixation		
	Table HT14 CPR of Primary Total Conventional Hip Replacement (Primary Diagnosis OA)		
	Table HT15 Primary Total Conventional Hip Replacement by Reason for Revision (Primary Diagnosis OA)	ç	ЭЗ
	Table HT16 Primary Total Conventional Hip Replacement by Type of Revision (Primary Diagnosis OA)		
	Table HT17 CPR of Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)		
	Table HT18 CPR of Primary Total Conventional Hip Replacement by Gender and Age (Primary Diagnosis OA)		
	Table HT19 CPR of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)		
	Table HT20 CPR of Primary Total Conventional Hip Replacement by Age and Fixation (Primary Diagnosis OA)		
	Table HT21 CPR of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)		
	Table HT22 Primary Total Conventional Hip Replacement by Type of Revision and Stem Type (Primary Diagnosis OA)		
	Table HT23 CPR of Primary Total Conventional Hip Replacement using a Mini Stem by Femoral Stem (Primary Diagnosis OA)		
	Table HT24 CPR of Primary Total Conventional Hip Replacement by Type of Femoral Neck (Primary Diagnosis OA)		
	Table HT25 Primary Total Conventional Hip Replacement by Reason for Revision and Type of Femoral Neck (Primary Diagnosis OA)		
	Table HT26 CPR of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Stem/Neck Metal Combination (OA)		
	Table HT27 CPR of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Prosthesis Type (OA)		
	Table HT28 CPR of Primary Total Conventional Hip Replacement by Bearing Surface (Primary Diagnosis OA)		
	Table HT29 CPR of Primary Total Conventional Hip Replacement by Polyethylene Type and Head Size (Primary Diagnosis OA)		
	Table HT30 CPR of Primary Total Conventional Hip Replacement by Prosthesis Type and Polyethylene Type (Primary Diagnosis OA)		
	Table HT31 CPR of Primary Total Conventional Hip Replacement by Prosthesis Type and Polyethylene Type (Primary Diagnosis OA)		
	Table HT32 CPR of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA)		
	Table HT32 Critical Mixed Ceramic/Mixed Ceramic Himary Total Conventional Hip Replacement by Head Size (Himary Diagnosis OA)		
	Table HT34 CPR of Primary Total Conventional Hip Replacement by Acetabular Type (All Diagnoses)		
	Table HT35 CPR of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis OA)		
	Table HT36 CPR of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)		
	Table HT36 CPR of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)		
	Table HT38 CPR of Constrained Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)		
	Table HT39 Primary Diagnosis of Primary Total Conventional Hip Replacement by Acetabular Mobility		
	Table HT40 CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Diagnoses)		
	Table HT41 CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA)		
	Table HT42 CPR of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF)		
	Table HT43 Primary Total Conventional Hip Replacement by Reason for Revision (Primary Diagnosis Fractured NOF)		
	Table HT44 Primary Total Conventional Hip Replacement Hip Replacement by Type of Revision (Primary Diagnosis Fractured NOF)		
	Table HT45 CPR of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis Fractured NOF)		
	Table HT46 CPR of Primary Total Conventional Hip Replacement by Age and Fixation (Primary Diagnosis Fractured NOF)		
	Table HT47 CPR of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF)		
	Table HT48 CPR of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis Fractured NOF)		
	Table HT49 CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis Fractured NOF)		
	Table HT50 CPR of Primary Hip Replacement by Class (Primary Diagnosis Fractured NOF)		
	Table HT51 CPR of Primary Hip Replacement by Class and Age (Primary Diagnosis Fractured NOF)		
	Table HT52 Cumulative Incidence Mortality of Primary Hip Replacement in Patients Aged <70 Years by Class (Fractured NOF)		
	Table HT53 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged <70 Years by Class (Fractured NOF)		
	Table HT54 Cumulative Incidence Mortality of Primary Hip Replacement in Patients Aged ≥ 70 Years by Class (Fractured NOF)		
	Table HT55 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged ≥ 70 Years by Class (Fractured NOF)		
	Table HT56 Age and Gender of Primary Total Resurfacing Hip Replacement		
	Table HT57 Most Used Resurfacing Heads in Primary Total Resurfacing Hip Replacement		
	Table HT58 CPR of Primary Total Resurfacing Hip Replacement by Primary Diagnosis		
	Table HT59 CPR of Primary Total Resurfacing Hip Replacement by Prosthesis Combination		
	Table HT60 CPR of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)		
	Table HT61 Primary Total Resurfacing Hip Replacement by Reason for Revision (Primary Diagnosis OA)		
	Table HT62 Primary Total Resurfacing Hip Replacement by Type of Revision (Primary Diagnosis OA)		
	Table HT63 CPR of Primary Total Resurfacing Hip Replacement by Age (Primary Diagnosis OA)		
	Table HT64 CPR of Primary Total Resurfacing Hip Replacement by Gender and Age (Primary Diagnosis OA)		
	Table HT65 CPR of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)	. 16	52
	Table HT66 CPR of Primary Total Resurfacing Hip Replacement by Gender and Head Size (Primary Diagnosis OA)		
Kı	iee Replacement	16	ô5
	Table K1 Number of Knee Replacements	. 16	<u> </u>
	Table K2 ASA Score by Knee Category	. 16	58
	Table K3 BMI Category for Knee Replacement by Knee Category	. 16	58
Pr	imary Partial Knee Replacement	16	6 9
	Table KP1 Partial Knee Replacement by Class	. 16	<u> </u>
	Table KP2 CPR of Primary Partial Knee Replacement by Class	. 16	<u> 5</u> 9
	Table KP3 Age and Gender of Primary Partial Resurfacing Knee Replacement	. 17	70
	Table KP4 CPR of Primary Partial Resurfacing Knee Replacement (Primary Diagnosis OA)	. 17	71
	Table KP5 Age and Gender of Primary Patella/Trochlea Knee Replacement	. 17	72
	Table KP6 Most Used Resurfacing Trochlear Prostheses in Primary Patella/Trochlea Knee Replacement	. 17	72
	Table KP7 CPR of Primary Patella/Trochlea Knee Replacement by Prosthesis Combination		
	Table KP8 Primary Patella/Trochlea Knee Replacement by Reason for Revision (Primary Diagnosis OA)		
	Table KP9 Primary Patella/Trochlea Knee Replacement by Type of Revision (Primary Diagnosis OA)		

Table KP10 CPR of Primary Patella/Trochlea Knee Replacement (Primary Diagnosis OA)	
Table KP11 CPR of Primary Patella/Trochlea Knee Replacement by Age (Primary Diagnosis OA) Table KP12 CPR of Primary Patella/Trochlea Knee Replacement by Gender (Primary Diagnosis OA)	
Table KP12 CFN of Primary Patella, Hochiea Kiele Replacement by Gender (Primary Diagnosis OA)	
Table KP14 10 Most Used Tibial Prostheses in Primary Unicompartmental Knee Replacement	
Table KP15 CPR of Primary Unicompartmental Knee Replacement by Prosthesis Combination	
Table KP16 CPR of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)	
Table KP17 Primary Unicompartmental Knee Replacement by Reason for Revision (Primary Diagnosis OA)	
Table KP18 Primary Unicompartmental Knee Replacement by Type of Revision (Primary Diagnosis OA)	
Table KP19 CPR of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA) Table KP20 CPR of Primary Unicompartmental Knee Replacement by Gender and Age (Primary Diagnosis OA)	
Table KP20 CPR of Primary Unicompartmental Knee Replacement by Gender and Age (Primary Diagnosis OA)	
Table KP22 CPR of Lateral Primary Unicompartmental Knee Replacement by Posthesis Combination (Primary Diagnosis OA)	
Primary Total Knee Replacement	
Table KT1 Age and Gender of Primary Total Knee Replacement	
Table KT2 10 Most Used Femoral Prostheses in Primary Total Knee Replacement	
Table KT3 10 Most Used Femoral Prostheses in Cemented Primary Total Knee Replacement	
Table KT4 10 Most Used Femoral Prostheses in Cementless Primary Total Knee Replacement	
Table KT5 10 Most Used Femoral Prostheses in Hybrid Primary Total Knee Replacement	
Table KT6 CPR of Primary Total Knee Replacement by Primary Diagnosis Table KT7 CPR of Cemented Primary Total Knee Replacement by Prosthesis Combination	
Table KT8 CPR of Cementless Primary Total Knee Replacement by Prosthesis Combination	
Table KT9 CPR of Hybrid Primary Total Knee Replacement by Prosthesis Combination	
Table KT10 CPR of Primary Total Knee Replacement (Primary Diagnosis OA)	
Table KT11 Primary Total Knee Replacement by Reason for Revision (Primary Diagnosis OA)	
Table KT12 Primary Total Knee Replacement by Type of Revision (Primary Diagnosis OA)	198
Table KT13 CPR of Primary Total Knee Replacement by Age (Primary Diagnosis OA)	199
Table KT14 CPR of Primary Total Knee Replacement by Gender and Age (Primary Diagnosis OA)	
Table KT15 CPR of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA) Table KT16 CPR of Fixed Primary Total Knee Replacement by Bearing Type (Primary Diagnosis OA)	
Table K116 CPR of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Table KT18 CPR of Primary Total Knee Replacement with Medial Pivot by Insert (Primary Diagnosis OA)	
Table KT19 CPR of Primary Total Knee Replacement by Stability (Primary Diagnosis OA, excluding Advance)	
Table KT20 CPR of Primary Total Knee Replacement by Patella Usage (Primary Diagnosis OA)	
Table KT21 CPR of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)	
Table KT22 CPR of Minimally Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Table KT23 CPR of Posterior Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Table KT24 CPR of Medial Pivot Primary Total Knee Replacement by Fixation (Primary Diagnosis OA).	
Table KT25 CPR of Primary Total Knee Replacement by Computer Navigation and Age (Primary Diagnosis OA) Table KT26 CPR of Primary Total Knee Replacement since 2009 by IDI Usage (Primary Diagnosis OA)	
Table KT27 CPR of Primary Total Knee Replacement since 2009 by IDI Usage and Age (Primary Diagnosis OA)	
Table KT28 CPR of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Table KT29 CPR of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA)	
Table KT30 CPR of Primary Total Knee Replacement by Prosthesis Combination and Polyethylene Type (Primary Diagnosis OA)	
Table KT31 Hazard Ratios of XLPE vs Non XLPE in Primary Total Knee Replacement by Prosthesis Combination (Primary Diagnosis OA)	
Table KT32 CPR of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Shoulder Replacement	
Table S1 Number of Shoulder Replacements Table S2 ASA Score by Shoulder Category	
Table S3 BMI Category for Shoulder Category	
Primary Partial Shoulder Replacement	
Table SP1 Primary Partial Shoulder Replacement by Class	
Table SP2 Primary Partial Shoulder Replacement by Gender and Class	
Table SP3 Primary Partial Shoulder Replacement by Age and Class	
Table SP4 Primary Partial Shoulder Replacement by Age and Gender	
Table SP5 Primary Partial Shoulder Replacement by Primary Diagnosis and Gender	
Table SP6 CPR of Primary Partial Shoulder Replacement by Class (All Diagnoses)	
Table SP7 CPR of Primary Partial Shoulder Replacement by Class (Primary Diagnosis OA) Table SP8 Primary Partial Resurfacing Shoulder Replacement by Age and Gender	
Table SP9 Primary Partial Resurfacing Shoulder Replacement by Primary Diagnosis and Gender	
Table SP10 Primary Hemi Resurfacing Shoulder Replacement by Age and Gender	
Table SP11 Primary Hemi Resurfacing Shoulder Replacement by Primary Diagnosis and Gender	
Table SP12 Most Used Humeral Head Prostheses in Primary Hemi Resurfacing Shoulder Replacement	
Table SP13 Primary Hemi Resurfacing Shoulder Replacement by Reason for Revision	
Table SP14 Primary Hemi Resurfacing Shoulder Replacement by Type of Revision	
Table SP15 CPR of Primary Hemi Resurfacing Shoulder Replacement by Age (Primary Diagnosis OA)	
Table SP16 CPR of Primary Hemi Resurfacing Shoulder Replacement by Gender (Primary Diagnosis OA)	
Table SP17 CPR of Primary Hemi Resurfacing Shoulder Replacement by Humeral Head (Primary Diagnosis OA) Table SP18 Primary Hemi Mid Head Shoulder Replacement by Age and Gender	
Table SP18 Primary Hemi Mid Head Shoulder Replacement by Age and Gender	
Table SP20 Primary Hemi Mid Head Shoulder Replacement by Reason for Revision	
Table SP21 Primary Hemi Mid Head Shoulder Replacement by Type of Revision	

	~ ~ ~
Table SP22 Primary Hemi Stemmed Shoulder Replacement by Age and Gender Table SP23 Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis and Gender	
Table SP23 Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis and Gender Table SP24 10 Most Used Humeral Head Prostheses in Primary Hemi Stemmed Shoulder Replacement	
Table SP25 10 Most Used Humeral Stem Prostheses in Primary Hemi Stemmed Shoulder Replacement	
Table SP26 CPR of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis	
Table SP27 Primary Hemi Stemmed Shoulder Replacement by Reason for Revision and Primary Diagnosis	
Table SP28 Primary Hemi Stemmed Shoulder Replacement by Type of Revision and Primary Diagnosis	
Table SP29 CPR of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis Fracture)	251
Table SP30 CPR of Primary Hemi Stemmed Shoulder Replacement by Gender (Primary Diagnosis Fracture)	
Table SP31 CPR of Primary Hemi Stemmed Shoulder Replacement by Stem Type (Primary Diagnosis Fracture)	
Table SP32 Yearly CPR of Primary Hemi Stemmed Shoulder Replacement by Stem Type and Humeral Fixation (Primary Diagnosis Fracture)	254
Table SP33 CPR of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Stem (Primary Diagnosis Fracture)	
Table SP34 CPR of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Fracture Stem (Primary Diagnosis Fracture)	
Table SP35 CPR of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Non Fracture Stem (Primary Diagnosis Fracture)	
Table SP36 CPR of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis OA)	
Table SP37 CPR of Primary Hemi Stemmed Shoulder Replacement by Gender (Primary Diagnosis OA) Table SP38 CPR of Primary Hemi Stemmed Shoulder Replacement by Humeral Head and Stem Prostheses (Primary Diagnosis OA)	257
Primary Total Shoulder Replacement	
Table ST1 Primary Total Shoulder Replacement by Class	
Table ST2 Primary Total Shoulder Replacement by Gender and Class	
Table ST3 Primary Total Shoulder Replacement by Gender and Class	
Table ST4 Primary Total Shoulder Replacement by Age and Gender	
Table ST5 Primary Total Shoulder Replacement by Primary Diagnosis and Gender	
Table ST6 CPR of Primary Total Shoulder Replacement by Class (All Prostheses)	
Table ST7 CPR of Primary Total Shoulder Replacement by Class (excluding SMR L2)	
Table ST8 Primary Total Resurfacing Shoulder Replacement by Age and Gender	264
Table ST9 Primary Total Resurfacing Shoulder Replacement by Primary Diagnosis and Gender	264
Table ST10 Most Used Humeral Head Prostheses in Primary Total Resurfacing Shoulder Replacement	265
Table ST11 Most Used Glenoid Prostheses in Primary Total Resurfacing Shoulder Replacement	265
Table ST12 Primary Total Resurfacing Shoulder Replacement by Reason for Revision	
Table ST13 Primary Total Resurfacing Shoulder Replacement by Type of Revision	
Table ST14 Primary Total Mid Head Shoulder Replacement by Age and Gender	
Table ST15 Primary Total Mid Head Shoulder Replacement by Primary Diagnosis and Gender	
Table ST16 Primary Total Mid Head Shoulder Replacement by Reason for Revision	
Table ST17 Primary Total Mid Head Shoulder Replacement by Type of Revision Table ST18 Most Used Humeral Stem Prostheses in Primary Total Mid Head Shoulder Replacement	
Table ST19 Most Used Flumeral Stem Prostneses in Primary Total Mid Head Shoulder Replacement	
Table ST20 Primary Total Conventional Shoulder Replacement by Age and Gender	
Table ST20 Primary Total Conventional Shoulder Replacement by Primary Diagnosis and Gender	
Table ST22 10 Most Used Humeral Stem Prostheses in Primary Total Conventional Shoulder Replacement	
Table ST23 10 Most Used Glenoid Prostheses in Primary Total Conventional Shoulder Replacement	
Table ST24 CPR of Primary Total Conventional Shoulder Replacement by Primary Diagnosis	
Table ST25 Primary Total Conventional Shoulder Replacement by Reason for Revision	273
Table ST26 Primary Total Conventional Shoulder Replacement by Type of Revision	273
Table ST27 CPR of Primary Total Conventional Shoulder Replacement by Age (Primary Diagnosis OA)	
Table ST28 CPR of Primary Total Conventional Shoulder Replacement by Gender (Primary Diagnosis OA)	
Table ST29 CPR of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA)	
Table ST30 CPR of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)	
Table ST31 CPR of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)	
Table ST32 CPR of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA, excluding SMR L2)	
Table ST33 CPR of All Polyethylene Cemented Primary Total Conventional Shoulder Replacement by Glenoid Design (Primary Diagnosis OA)	
Table ST34 CPR of Primary Total Conventional Shoulder Replacement using All Types of Glenoid by Polyethylene Type (Primary Diagnosis OA). Table ST35 CPR of Primary Total Conventional Shoulder Replacement using All Polyethylene Glenoids by Polyethylene Type (OA)	
Table ST35 CPR of Primary Total Conventional Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)	
Table ST37 CPR of All Primary Total Conventional Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)	
Table ST38 CPR of Cementless Primary Total Conventional Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)	
Table ST39 CPR of Hybrid (Glenoid Cemented) Primary Total Conventional Shoulder Replacement by Prosthesis Combination (OA)	
Table ST40 Primary Total Reverse Shoulder Replacement by Age and Gender	
Table ST41 Primary Total Reverse Shoulder Replacement by Primary Diagnosis and Gender	
Table ST42 10 Most Used Humeral Stem Prostheses in Primary Total Reverse Shoulder Replacement	
Table ST43 10 Most Used Glenoid Prostheses in Primary Total Reverse Shoulder Replacement	290
Table ST44 CPR of Primary Total Reverse Shoulder Replacement by Primary Diagnosis	
Table ST45 Primary Total Reverse Shoulder Replacement by Reason for Revision	292
Table ST46 Primary Total Reverse Shoulder Replacement by Type of Revision	
Table ST47 CPR of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis OA)	
Table ST48 CPR of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis OA)	
Table ST49 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA)	
Table ST50 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)	
Table ST51 CPR of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA) Table ST52 CPR of All Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis OA)	
Table ST52 CPR of Air Primary Total Reverse Shoulder Replacement by Prostnesis Combination (Primary Diagnosis OA)	
Table ST55 CPR of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (OA)	
	501

Table ST55 CPR of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Rotator Cuff Arthropathy)	302
Table ST56 CPR of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Rotator Cuff Arthropathy)	
Table ST57 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy)	304
Table ST58 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy, excluding SMR L2)	305
Table ST59 CPR of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Rotator Cuff Arthropathy)	306
Table ST60 CPR of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Rotator Cuff Arthropathy)	308
Table ST61 CPR of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Rotator Cuff Arthropathy)	308
Table ST62 CPR of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (RCA)	308
Table ST63 CPR of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Fracture)	310
Table ST64 CPR of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Fracture)	311
Table ST65 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture)	
Table ST66 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture, excluding SMR L2)	313
Table ST67 CPR of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)	314
Table ST68 Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)	
Table ST69 CPR of Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)	
Table ST70 CPR of Cementless Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Primary Diagnosis Fracture)	317
Table ST71 CPR of Hybrid (Humerus Cemented) Primary Total Reverse Shoulder Replacement by Prosthesis Combination (Fracture)	317
Prostheses with Higher Than Anticipated Rates of Revision	319
Table IP1 Revision Rate of Individual Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	321
Table IP2 CPR of Individual Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	321
Table IP3 Yearly Usage of Individual Unipolar Modular Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	321
Table IP4 Revision Rate of Individual Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	323
Table IP5 CPR of Individual Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	323
Table IP6 Yearly Usage of Individual Bipolar Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	323
Table IP7 Revision Rate of Individual Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	326
Table IP8 CPR of Individual Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	328
Table IP9 Yearly Usage of Individual Total Conventional Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	330
Table IP10 Revision Rate of Individual Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	337
Table IP11 CPR of Individual Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	338
Table IP12 Yearly Usage of Individual Total Resurfacing Hip Prostheses Identified as having a Higher than Anticipated Rate of Revision	338
Table IP13 Revision Rate of Individual Patella/Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	339
Table IP14 CPR of Individual Patella/Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	339
Table IP15 Yearly Usage of Individual Patella/Trochlear Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	339
Table IP16 Revision Rate of Individual Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	340
Table IP17 CPR of Individual Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	340
Table IP18 Yearly Usage of Individual Unicompartmental Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	340
Table IP19 Revision Rate of Individual Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	342
Table IP20 CPR of Individual Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	344
Table IP21 Yearly Usage of Individual Total Knee Prostheses Identified as having a Higher than Anticipated Rate of Revision	345
Table IP22 Revision Rate of Individual Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	349
Table IP23 CPR of Individual Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	349
Table IP24 Yearly Usage of Individual Hemi Stemmed Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	349
Table IP25 Revision Rate of Individual Total Conventional Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision.	350
Table IP26 CPR of Individual Total Conventional Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	350
Table IP27 Yearly Usage of Individual Total Conventional Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	350
Table IP28 Revision Rate of Individual Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	352
Table IP29 CPR of Individual Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP30 Yearly Usage of Individual Total Reverse Shoulder Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP31 Revision Rate of Individual Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP32 CPR of Individual Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision	
Table IP33 Yearly Usage of Individual Total Ankle Prostheses Identified as having a Higher than Anticipated Rate of Revision	252

List of Figures

Surgeon and Hospital Variation	10
Figure SV1 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Any Reason)	
Figure SV2 Funnel Plot of Primary Conventional THR by Surgeon (OA, Excluding Large Head (>32mm) Metal/Metal, Revision for Any Reason)	
Figure SV3 Funnel Plot of Primary Conventional THR by Surgeon performed from 1 January 2008 (OA, Revision for Any Reason)	
Figure SV4 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (OA, Revision for Any Reason Within 2 Years)	
Figure SV5 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (OA, Revision for Prosthesis Dislocation Within 2 Years)	
Figure SV6 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Infection Within 2 Year	s) 22
Figure SV7 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Fracture Within 2 Years	i) 23
Figure SV8 Funnel Plot of Primary Total Conventional Hip Replacement by Surgeon (Primary Diagnosis OA, Revision for Loosening Within 2 Yea	rs)23
Figure SV9 CPR of Primary Total Conventional Hip Replacement by Prosthesis Consistency (Prosthesis Combinations) (Primary Diagnosis OA)	25
Figure SV10 CPR of Primary Conventional THR by Prosthesis Consistency using the 10 Prosthesis Combinations with Lowest 5 Year CPR (OA)	
Figure SV11 Funnel Plot of Primary Conventional THR by Surgeon (OA, Revision for Any Reason, 10 Prosthesis Combinations with Lowest 5Yr C	,
Figure SV12 Funnel Plot of Primary Conventional THR by Surgeon (OA, Revision for Any Reason, Excl 10 Combinations with Lowest 5Yr CPR)	
Figure SV13 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Any Reason)	
Figure SV14 Funnel Plot of Primary Total Knee Replacement by Surgeon performed from 1 January 2008 (OA, Revision for Any Reason)	
Figure SV15 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Any Reason Within 2 Years)	
Figure SV16 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Infection Within 2 Years)	
Figure SV17 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Loosening Within 2 Years) Figure SV18 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Patellofemoral Pain Within 2 Years)	
Figure SV18 Funnel Plot of Primary Total Knee Replacement by Surgeon (Primary Diagnosis OA, Revision for Pain Within 2 Years)	
Figure SV20 CPR of Primary Total Knee Replacement by Prosthesis Consistency (Primary Diagnosis OA).	
Figure SV21 CPR of Primary Total Knee Replacement by Prosthesis Consistency, 10 Prosthesis Combinations with Lowest 5 Year CPR (OA)	
Figure SV22 Funnel Plot of Primary TKR by Surgeon (OA, Revision for Any Reason, Excl 10 Combinations with Lowest 5Yr CPR)	
Figure SV23 Funnel Plot of Primary TKR by Surgeon (OA, Revision for Any Reason, 10 Prosthesis Combinations with Lowest 5 Year CPR)	
Figure SV24 Funnel plot of Primary Total Conventional Hip Replacement by Hospital (Primary Diagnosis OA, Revision for Any Reason)	
Figure SV25 CPR of Primary Total Conventional Hip Replacement by Hospital Type (Primary Diagnosis OA)	38
Figure SV26 CPR of Primary Total Conventional Hip Replacement by Hospital Type (Primary Diagnosis Fractured NOF)	39
Figure SV27 CPR of Primary Total Conventional Hip Replacement by Hospital Type, 10 Prosthesis Combinations with Lowest 5Yr CPR (OA)	40
Figure SV28 CPR of Primary Conventional THR by Hospital Type using the 10 Prosthesis Combinations with Lowest 5Yr CPR (Fractured NOF)	
Figure SV29 Funnel plot of Primary Total Knee Replacement by Hospital (Primary Diagnosis OA, Revision for Any Reason)	
Figure SV30 CPR of Primary Total Knee Replacement by Hospital Type (Primary Diagnosis OA)	
Figure SV31 CPR of Primary Total Knee Replacement by Hospital Type using the 10 Prosthesis Combinations with Lowest 5 year CPR (OA)	
Ten and Fifteen Year Prosthesis Outcomes	
Hip Replacement	53
	Γ.4
Figure H1 Proportion of Hip Replacement	
Figure H2 BMI Distribution by Gender and Hip Category	56
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement	56 57
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class	56 57 57
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF)	56 57 57 58
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class	56 57 57 58 59
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF)	56 57 57 58 59 60
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF)	56 57 57 58 59 60 60 60
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF)	56 57 58 59 60 60 61 62
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF)	56 57 58 59 60 60 61 62 63
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF)	56 57 58 59 60 60 61 62 63 64
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF)	56 57 58 60 60 61 62 63 64 65
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age	56 57 57 58 60 60 61 62 63 64 65 66
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age	56 57 57 58 60 60 61 62 63 64 65 66 66
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class	56 57 57 58 60 60 61 62 63 64 65 66 66 69
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class. Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Preoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP11 Primary Unipolar Modular Hip Replacement by Gender Figure HP12 Primary Unipolar Modular Hip Replacement by Age Figure HP13 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF)	56 57 57 58 60 60 61 62 63 64 65 66 66 69 70
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class. Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP5 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP11 Primary Unipolar Modular Hip Replacement by Gender Figure HP12 Primary Unipolar Modular Hip Replacement by Age Figure HP13 CPR of Primary Unipolar Modular Hip Replacement by Age Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP15 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP15 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NO	56 57 57 58 60 60 61 62 63 64 65 66 66 69 70 71
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class. Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Gender Figure HP12 Primary Unipolar Modular Hip Replacement by Age Figure HP12 Primary Unipolar Modular Hip Replacement by Age Figure HP13 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP15 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis	56 57 57 58 59 60 60 61 61 62 63 63 64 64 65 66 66 66 66 66 70 70 71 72
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class. Figure HP2 CPR of Primary Partial Hip Replacement to Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP11 Primary Unipolar Modular Hip Replacement by Gender Figure HP12 Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP13 CPR of Primary Unipolar Modular Hip Replacement Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP15 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary U	56 57 58 59 60 60 61 62 63 64 65 66 66 66 69 70 71 72 72
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class. Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement in Patients Aged <75 Years by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age Figure HP7 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Gender Figure HP12 Primary Unipolar Modular Hip Replacement by Age Figure HP12 Primary Unipolar Modular Hip Replacement by Age Figure HP13 CPR of Primary Unipolar Modular Hip Replacement (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP15 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis	56 57 58 59 60 60 61 62 63 64 65 66 66 66 69 70 71 72 72 73
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement	56 57 58 59 60 61 62 63 64 65 66 66 66 66 66
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement	56 57 57 58 59 60 60 61 61 62 63 63 64 64 65 66 66 66 66 70 71 71 72 72 73 73 73 73
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement	56 57 57 58 59 60 60 61 62 63 64 64 65 66 66 66 66 66 69 70 70 71 71 72 72 72 73 73 73 73
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class. Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP8 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Modular Hip Replacement by Age Figure HP12 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP14 Primary Bipolar Hip Replacement by Gender (Primar	56 57 57 58 59 60 60 61 62 63 64 64 65 66 66 66 66 69 70 70 71 71 72 72 72 73 73 73 73 76 77 78 79
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement Figure HP1 Primary Partial Hip Replacement by Class. Figure HP2 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP3 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF) Figure HP4 Primary Unipolar Monoblock Hip Replacement by Gender Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP5 Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP6 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP9 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Femoral Fixation (Primary Diagnosis Fractured NOF) Figure HP11 Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP13 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP13 CPR of Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF) Figure HP15 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF) Figure HP16 CPR of Primary Bipolar Hip Replacement by Gender Figure HP16 CPR of Primary Bipolar Hip Replacement by Gender Figure HP18 Primary Bipolar Hip Replacement by Gender Figure HP19 Primary Bipolar Hip Replacement by Gender	56 57 57 58 59 60 60 61 61 62 63 63 64 64 65 66 66 66 66 69 70 71 71 72 72 72 73 73 73 73 73 73 77 78 79 79
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement	56 57 57 58 59 60 60 61 62 63 64 64 65 66 66 66 69 70 70 71 71 72 72 72 73 73 73 73 73 73 73 78 79 79 80
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement	56 57 57 58 59 60 60 61 62 63 64 64 65 66 66 66 66 66 69 70 70 71 71 72 72 72 73 73 73 73 73 73 80 81
Figure H2 BMI Distribution by Gender and Hip Category Primary Partial Hip Replacement	56 57 57 58 59 60 60 61 62 63 63 64 64 65 66 66 66 66 69 70 70 71 72 72 73 73 73 73 73 73 73 78 79 79 80 81
Figure H2 BMI Distribution by Gender and Hip Category	56 57 57 58 59 60 60 61 62 63 64 64 65 66 66 66 66 69 70 70 71 72 72 73 73 73 73 73 76 77 79 79 80 81 81
Figure H2 BMI Distribution by Gender and Hip Category. Primary Partial Hip Replacement. Figure HP2 CPR of Primary Partial Hip Replacement by Class. Figure HP3 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF). Figure HP3 CPR of Primary Partial Hip Replacement by Class (Primary Diagnosis Fractured NOF). Figure HP3 CPR of Primary Dinpolar Monoblock Hip Replacement by Age Figure HP5 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF). Figure HP5 CPR of Primary Unipolar Monoblock Hip Replacement by Age (Primary Diagnosis Fractured NOF). Figure HP3 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP3 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP3 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP10 CPR of Primary Unipolar Monoblock Hip Replacement by Prosthesis Type and Femoral Fixation (Primary Diagnosis Fractured NOF). Figure HP11 Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF). Figure HP12 Primary Unipolar Modular Hip Replacement by Age (Primary Diagnosis Fractured NOF). Figure HP13 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP14 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP15 CPR of Primary Unipolar Modular Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP15 CPR of Primary Bipolar Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP17 Cumulative Incidence Revision Diagnosis of Primary Diagnosis Fractured NOF). Figure HP18 Primary Bipolar Hip Replacement by Gender (Primary Diagnosis Fractured NOF). Figure HP18 Primary Bipolar Hip Replacement by Gender (Primary Diagnosis F	56 57 57 58 59 60 60 61 62 63 64 64 65 66 66 66 69 70 70 71 72 72 73 73 73 73 76 77 72 73 73 73 76 77 79 79 79 80 81 81 81 81 81 81
Figure H2 BMI Distribution by Gender and Hip Category	56 57 57 58 59 60 60 61 62 63 63 64 64 66 66 66 66 66 66 66 66 70 71 71 72 72 72 73 73 73 73 73 76 77 78 80 81 81 81 81 81 81

Figure HT7 CPR of Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)	
Figure HT8 CPR of Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)	
Figure HT9 CPR of Primary Total Conventional Hip Replacement in Males by Age (Primary Diagnosis OA) Figure HT10 CPR of Primary Total Conventional Hip Replacement in Females by Age (Primary Diagnosis OA)	
Figure HT11 CPR of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)	
Figure HT12 CPR of Primary Total Conventional Hip Replacement in Patients Aged <55 Years by Fixation (Primary Diagnosis OA)	
Figure HT13 CPR of Primary Total Conventional Hip Replacement in Patients Aged 55-64 Years by Fixation (Primary Diagnosis OA)	
Figure HT14 CPR of Primary Total Conventional Hip Replacement in Patients Aged 65-74 Years by Fixation (Primary Diagnosis OA)	
igure HT15 CPR of Primary Total Conventional Hip Replacement in Patients Aged ≥75 Years by Fixation (Primary Diagnosis OA)	
igure HT16 CPR of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis OA)	
igure HT17 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement by Stem Type (Primary Diagnosis	,
igure HT18 CPR of Primary Total Conventional Hip Replacement by Type of Femoral Neck (Primary Diagnosis OA)	
igure HT19 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement by Type of Femoral Neck (OA)	
igure HT20 CPR of Primary Total Conventional Hip Replacement by Bearing Surface and Type of Femoral Neck (Primary Diagnosis OA)	
igure HT21 CPR of Primary Total Conventional Hip Replacement Using an Exchangeable Femoral Neck by Stem/Neck Metal Combinat igure HT22 Cumulative Incidence Revision Diagnosis of Primary Conventional THR Using an Exch Neck by Stem/Neck Metal Combinat	
igure HT22 Cumulative incluence Revision Diagnosis of Finnary Conventional Trix Osing an Excit Neck by Stern Neck Wetar Combinat	
igure HT24 Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
igure HT25 CPR of Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
igure HT26 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement by Polyethylene Type (OA)	
igure HT27 CPR of Primary Total Conventional Hip Replacement using Non XLPE by Head Size (Primary Diagnosis OA)	
igure HT28 CPR of Primary Total Conventional Hip Replacement using XLPE by Head Size (Primary Diagnosis OA)	
igure HT29 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement by Polyethylene Type and Head	. ,
igure HT30 CPR of Primary Total Conventional Hip Replacement by Head Surface and Polyethylene Type (Primary Diagnosis OA)	
igure HT31 CPR of Allofit Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
igure HT32 CPR of Duraloc Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
igure HT33 CPR of Mallory-Head Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
igure HT34 CPR of Reflection (Cup) Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA) igure HT35 CPR of Reflection (Shell) Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
igure HT36 CPR of Vitalock Primary Total Conventional Hip Replacement by Polyethylene Type (Primary Diagnosis OA)	
igure HT37 Primary Total Conventional Hip Replacement with Ceramic Femoral Head by Ceramic Type (Primary Diagnosis OA)	
igure HT38 CPR of Mixed Ceramic/Mixed Ceramic Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis OA).	
igure HT39 Cumulative Incidence Revision Diagnosis of Mixed Ceramic/Mixed Ceramic Primary Conventional THR by Head Size (OA)	
igure HT40 CPR of Primary Total Conventional Hip Replacement by Acetabular Type (All Diagnoses)	
igure HT41 CPR of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis OA)	
igure HT42 CPR of Constrained Primary Total Conventional Hip Replacement by Gender (Primary Diagnosis OA)	
igure HT43 CPR of Constrained Primary Total Conventional Hip Replacement by Age (Primary Diagnosis OA)	
igure HT44 CPR of Constrained Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis OA)	
igure HT45 CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (All Diagnoses)	
igure HT46 CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis OA)	
igure HT47 CPR of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NOF) igure HT48 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Hip Replacement (Primary Diagnosis Fractured NC	
igure HT49 CPR of Primary Total Conventional Hip Replacement by Fixation (Primary Diagnosis Fractured NOF)	,
igure HT49 CPR of Primary Total Conventional Hip Replacement in Patients Aged <70 Years by Fixation (Primary Diagnosis Fractured N	
igure HT51 CPR of Primary Total Conventional Hip Replacement in Patients Aged \geq 70 Years by Fixation (Primary Diagnosis Fractured	,
igure HT52 CPR of Primary Total Conventional Hip Replacement by Head Size (Primary Diagnosis Fractured NOF)	
igure HT53 CPR of Primary Total Conventional Hip Replacement by Acetabular Type (Primary Diagnosis Fractured NOF)	
igure HT54 CPR of Primary Total Conventional Hip Replacement by Acetabular Mobility (Primary Diagnosis Fractured NOF)	
igure HT55 CPR of Primary Hip Replacement by Class (Primary Diagnosis Fractured NOF)	
igure HT56 CPR of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fractured NOF)	
igure HT57 CPR of Primary Hip Replacement in Patients Aged ≥70 Years by Class (Primary Diagnosis Fractured NOF)	
igure HT58 Cumulative Incidence Mortality of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fractu	,
igure HT59 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged <70 Years by Class (Primary Diagnosis Fracture UT50 Cumulative Incidence Mantality of Primary Line Packagement in Patients Aged <70 Years by Class (Primary Diagnosis Fracture UT50 Cumulative Incidence Mantality of Primary Line Packagement in Patients Aged <70 Years by Class (Primary Diagnosis Fracture UT50 Cumulative Incidence Mantality of Primary Line Packagement in Patients Aged <70 Years by Class (Primary Diagnosis Fracture UT50 Cumulative Incidence Mantality of Primary Line Packagement in Patients Aged <70 Years by Class (Primary Diagnosis Fracture UT50 Cumulative Incidence Mantality of Primary Line Packagement in Patients Aged <70 Years by Class (Primary Diagnosis Fracture UT50 Cumulative Incidence Mantality of Primary Line Packagement in Patients Aged <70 Years by Class (Primary Diagnosis Fracture UT50 Cumulative Incidence Mantality of Primary Diagnosis Fracture Ut50 Cumulative Incidenc	
gure HT60 Cumulative Incidence Mortality of Primary Hip Replacement in Patients Aged ≥ 70 Years by Class (Primary Diagnosis Fract	
gure HT61 Cumulative Incidence Revision of Primary Hip Replacement in Patients Aged ≥ 70 Years by Class (Primary Diagnosis Fractu gure HT62 Primary Total Resurfacing Hip Replacement by Gender	
igure HT63 Primary Total Resurfacing Hip Replacement by Gender	
gure HT64 CPR of Primary Total Resurfacing Hip Replacement by Primary Diagnosis	
igure HT65 CPR of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)	
igure HT66 Cumulative Incidence Revision Diagnosis of Primary Total Resurfacing Hip Replacement (Primary Diagnosis OA)	
igure HT67 CPR of Primary Total Resurfacing Hip Replacement by Age (Primary Diagnosis OA)	
igure HT68 CPR of Primary Total Resurfacing Hip Replacement by Gender (Primary Diagnosis OA)	
igure HT69 CPR of Primary Total Resurfacing Hip Replacement in Males by Age (Primary Diagnosis OA)	
igure HT70 CPR of Primary Total Resurfacing Hip Replacement in Females by Age (Primary Diagnosis OA)	
igure HT71 CPR of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis OA)	
igure HT72 Cumulative Incidence Revision Diagnosis of Primary Total Resurfacing Hip Replacement by Head Size (Primary Diagnosis C	
igure HT73 CPR of Primary Total Resurfacing Hip Replacement by Gender and Head Size (Primary Diagnosis OA)	
e Replacement	
igure K1 Proportion of Knee Replacements igure K2 BMI Distribution by Gender and Knee Category	
nary Partial Knee Replacement	
	•••••••

Figure KP2 Primary Patella/Trochlea Knee Replacement by Gender	170
Figure KP2 Primary Patella/Trochlea Knee Replacement by Gender	
Figure KP4 CPR of Primary Patella/Trochlea Knee Replacement (Primary Diagnosis OA)	
Figure KP5 CPR of Primary Patella/Trochlea Knee Replacement by Age (Primary Diagnosis OA)	
Figure KP6 CPR of Primary Patella/Trochlea Knee Replacement by Gender (Primary Diagnosis OA)	
Figure KP7 Primary Unicompartmental Knee Replacement by Gender	
Figure KP8 Primary Unicompartmental Knee Replacement by Age Figure KP9 CPR of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)	
Figure KP10 Cumulative Incidence Revision Diagnosis of Primary Unicompartmental Knee Replacement (Primary Diagnosis OA)	
Figure KP11 CPR of Primary Unicompartmental Knee Replacement by Age (Primary Diagnosis OA)	
Figure KP12 CPR of Primary Unicompartmental Knee Replacement by Gender (Primary Diagnosis OA)	
Figure KP13 CPR of Primary Unicompartmental Knee Replacement by Position (Primary Diagnosis OA)	
Primary Total Knee Replacement	
Figure KT1 Primary Total Knee Replacement by Gender Figure KT2 Primary Total Knee Replacement by Age	
Figure K12 Primary Total Knee Replacement by Patella Usage	
Figure KT4 Primary Total Knee Replacement by Fixation	
Figure KT5 Primary Total Knee Replacement by Computer Navigation	
Figure KT6 Primary Total Knee Replacement by Polyethylene Type	188
Figure KT7 CPR of Primary Total Knee Replacement by Primary Diagnosis	
Figure KT8 CPR of Primary Total Knee Replacement (Primary Diagnosis OA)	
Figure KT9 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement (Primary Diagnosis OA)	
Figure KT10 CPR of Primary Total Knee Replacement by Age (Primary Diagnosis OA) Figure KT11 CPR of Primary Total Knee Replacement by Gender (Primary Diagnosis OA)	
Figure K112 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Gender (Primary Diagnosis OA)	
Figure KT13 CPR of Primary Total Knee Replacement in Males by Age (Primary Diagnosis OA)	
Figure KT14 CPR of Primary Total Knee Replacement in Females by Age (Primary Diagnosis OA)	202
Figure KT15 CPR of Primary Total Knee Replacement by Bearing Mobility (Primary Diagnosis OA)	
Figure KT16 CPR of Fixed Primary Total Knee Replacement by Bearing Type (Primary Diagnosis OA)	
Figure KT17 Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Figure KT18 CPR of Primary Total Knee Replacement by Stability (Primary Diagnosis OA) Figure KT19 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Stability (Primary Diagnosis OA)	
Figure KT20 CPR of Primary Total Knee Replacement by Stability (Primary Diagnosis OA, Excluding Advance)	
Figure KT21 CPR of Primary Total Knee Replacement by Patella Usage (Primary Diagnosis OA)	
Figure KT22 CPR of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)	
Figure KT23 CPR of Primary Total Knee Replacement by Stability and Patella Usage (Primary Diagnosis OA)	
Figure KT24 CPR of Minimally Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Figure KT25 CPR of Posterior Stabilised Primary Total Knee Replacement by Fixation (Primary Diagnosis OA)	
Figure KT26 CPR of Medial Pivot Primary Total Knee Replacement by Fixation (Primary Diagnosis OA) Figure KT27 CPR of Primary Total Knee Replacement by Computer Navigation and Age (Primary Diagnosis OA)	
Figure K127 CFR of Finnary Total Knee Replacement by Computer Navigation and Age (Frimary Diagnosis OA)	
Figure KT29 CPR of Primary Total Knee Replacement since 2009 by IDI Usage (Primary Diagnosis OA)	
Figure KT30 CPR of Primary Total Knee Replacement since 2009 by IDI Usage and Age (Primary Diagnosis OA)	219
Figure KT31 CPR of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Figure KT32 Cumulative Incidence Revision Diagnosis of Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA)	
Figure KT33 CPR of Primary Total Knee Replacement by Polyethylene Type and Age (Primary Diagnosis OA)	
Figure KT34 CPR of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA) Figure KT35 CPR of XLPE Primary Total Knee Replacement by Polyethylene Type (Primary Diagnosis OA, excluding Attune)	
Shoulder Replacement	
Figure S1 Proportion of Shoulder Replacement by Shoulder Category	
Figure S2 BMI Distribution by Gender and Shoulder Category	
Primary Partial Shoulder Replacement	
Figure SP1 Primary Partial Shoulder Replacement by Class	
Figure SP2 CPR of Primary Partial Shoulder Replacement by Class (All Diagnoses)	
Figure SP3 CPR of Primary Partial Shoulder Replacement by Class (Primary Diagnosis OA) Figure SP4 Cumulative Incidence Revision Diagnosis of Primary Hemi Resurfacing Shoulder Replacement (All Diagnoses)	
Figure SP5 CPR of Primary Hemi Resurfacing Shoulder Replacement by Age (Primary Diagnosis OA)	
Figure SP6 CPR of Primary Hemi Resurfacing Shoulder Replacement by Gender (Primary Diagnosis OA)	
Figure SP7 Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis	
Figure SP8 CPR of Primary Hemi Stemmed Shoulder Replacement by Primary Diagnosis	
Figure SP9 Cumulative Incidence Revision Diagnosis of Primary Hemi Stemmed Shoulder by Primary Diagnosis	
Figure SP10 CPR of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis Fracture)	
Figure SP11 CPR of Primary Hemi Stemmed Shoulder Replacement by Gender (Primary Diagnosis Fracture) Figure SP12 CPR of Primary Hemi Stemmed Shoulder Replacement by Stem Type (Primary Diagnosis Fracture)	
Figure SP12 CPR of Primary Hemi Stemmed Shoulder Replacement by Stem Type and Humeral Fixation (Primary Diagnosis Fracture)	
Figure SP14 CPR of Primary Hemi Stemmed Shoulder Replacement by Age (Primary Diagnosis OA)	
Figure SP15 CPR of Primary Hemi Stemmed Shoulder Replacement by Gender (Primary Diagnosis OA)	
Primary Total Shoulder Replacement	
Figure ST1 Proportion of Primary Total Shoulder Replacement by Class	
Figure ST2 CPR of Primary Total Shoulder Replacement by Class (All Prostheses)	
Figure ST3 CPR of Primary Total Shoulder Replacement by Class (excluding SMR L2) Figure ST4 Proportion of Primary Total Conventional Shoulder Replacement by Gender	
האמרכי איד הסטטרנטה טרר החמרץ דטנמ כטוויפרונטרומי סוטעועבר הבעומנכוחבות שע טבוועבר	200

Figure ST5 Proportion of Primary Total Conventional Shoulder Replacement by Age	
Figure ST6 Proportion of Primary Total Conventional Shoulder Replacement by Fixation	
Figure ST7 CPR of Primary Total Conventional Shoulder Replacement by Primary Diagnosis	
Figure ST8 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Shoulder Replacement	
Figure ST9 CPR of Primary Total Conventional Shoulder Replacement by Age (Primary Diagnosis OA)	
Figure ST10 CPR of Primary Total Conventional Shoulder Replacement by Gender (Primary Diagnosis OA)	
Figure ST11 CPR of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA)	
Figure ST12 CPR of Primary Total Conventional Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)	
Figure ST13 CPR of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA)	
Figure ST14 CPR of Primary Total Conventional Shoulder Replacement by Glenoid Type (Primary Diagnosis OA, excluding SMR L2)	
Figure ST15 CPR of All Polyethylene Cemented Primary Total Conventional Shoulder Replacement by Glenoid Design (Primary Diagnosis OA)	
Figure ST16 Proportion of Primary Total Conventional Shoulder Replacement by Polyethylene Type (All Diagnoses)	
Figure ST17 CPR of Primary Total Conventional Shoulder Replacement using All Types of Glenoid by Polyethylene Type (Primary Diagnosis OA).	
Figure ST18 CPR of Primary Total Conventional Shoulder Replacement using All Polyethylene Glenoids by Polyethylene Type (OA)	
Figure ST19 CPR of Primary Total Conventional Shoulder Replacement by Humeral Head Size (Primary Diagnosis OA)	
Figure ST20 Cumulative Incidence Revision Diagnosis of Primary Total Conventional Shoulder Replacement by Humeral Head Size (OA)	
Figure ST21 Proportion of Primary Total Reverse Shoulder Replacement by Primary Diagnosis	
Figure ST22 Proportion of Primary Total Reverse Shoulder Replacement by Gender	
Figure ST23 Proportion of Primary Total Reverse Shoulder Replacement by Age	
Figure ST24 Proportion of Primary Total Reverse Shoulder Replacement by Fixation	
Figure ST25 CPR of Primary Total Reverse Shoulder Replacement by Primary Diagnosis	
Figure ST26 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement	
Figure ST27 CPR of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis OA)	294
Figure ST28 CPR of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis OA)	
Figure ST29 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA)	
Figure ST30 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis OA, excluding SMR L2)	297
Figure ST31 CPR of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis OA)	298
Figure ST32 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (OA)	299
Figure ST33 CPR of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Rotator Cuff Arthropathy)	302
Figure ST34 CPR of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Rotator Cuff Arthropathy)	303
Figure ST35 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy)	304
Figure ST36 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Rotator Cuff Arthropathy, excluding SMR L2)	305
Figure ST37 CPR of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Rotator Cuff Arthropathy)	306
Figure ST38 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (RCA)	307
Figure ST39 CPR of Primary Total Reverse Shoulder Replacement by Age (Primary Diagnosis Fracture)	310
Figure ST40 CPR of Primary Total Reverse Shoulder Replacement by Gender (Primary Diagnosis Fracture)	311
Figure ST41 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture)	312
Figure ST42 CPR of Primary Total Reverse Shoulder Replacement by Fixation (Primary Diagnosis Fracture, excluding SMR L2)	313
Figure ST43 CPR of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Primary Diagnosis Fracture)	314
Figure ST44 Cumulative Incidence Revision Diagnosis of Primary Total Reverse Shoulder Replacement by Glenosphere Size (Fracture)	316
ostheses with Higher Than Anticipated Rates of Revision	
Figure IP1 CPR of Re-identified and still used Individual Unipolar Modular Hip Prostheses	322
Figure IP2 CPR of Re-identified and still used Individual Bipolar Hip Prostheses	
Figure IP3 CPR of Newly Identified Individual Total Conventional Hip Prostheses	332
Figure IP4 CPR of Re-identified and still used Individual Total Conventional Hip Prostheses	333
Figure IP5 CPR of Re-identified and still used Individual Unicompartmental Knee Prostheses	
Figure IP6 CPR of Newly Identified Individual Total Knee Prostheses	346
Figure IP7 CPR of Re-identified and still used Individual Total Knee Prostheses	
Figure IP8 CPR of Re-Identified and Still Used Hemi Stemmed Shoulder Prostheses	
Figure IP9 CPR of Re-identified and still used Individual Total Conventional Shoulder Prostheses	
is ure IP10 CPR of Re-identified and still used Individual Total Reverse Shoulder Prostheses	
regure IP11 CPR of Re-identified and still used Individual Total Ankle Prostheses	

